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Zusammenfassung

Diese Dissertation besteht aus fünf großteils unabhängigen Kapiteln, die sich — mit Aus-
nahme des vierten — mit der (symbolischen) Summation von q-hypergeometrischen Folgen
befassen. Einen besonderen Schwerpunkt bildet das automatische Beweisen und Finden von
q-Identitäten.

Im ersten Kapitel stellen wir eine neu entwickelte Mathematica Implementierung eines bi-
basischen Analogons des Gosperschen Algorithmus zur indefiniten hypergeometrischen Sum-
mation vor, die auf einer Verallgemeinerung des von Paule entwickelten Konzepts der ”grea-
test factorial factorization“ von Polynomen beruht.

Im zweiten Kapitel wird zunächst die von Wilf und Zeilberger präsentierte Theorie der
WZ-Paare in die q-hypergeometrische Welt übertragen und danach meine Mathematica Im-
plementierung qZeil des q-Zeilbergerschen Algorithmus zur systematischen Erzeugung von

”companion“ und dualen Identitäten verwendet, wodurch eine große Anzahl bekannter sowie
neuer Identitäten algorithmisch gefunden werden kann.

Das dritte Kapitel ist dem Konzept der Bailey-Paare und dem zugrunde liegenden Ite-
rationsmechanismus gewidmet. Dieser kann auf einfache Weise zum Verifizieren und Finden
von q-Identitäten einer bestimmten Klasse herangezogen werden. Insbesondere beschreiben
wir das Mathematica Paket Bailey, das einen halbautomatischen ”Spaziergang“ entlang so-
genannter Bailey-Ketten ermöglicht. Mit einer erweiterten Version des q-Zeilbergerschen Al-
gorithmus werden anschließend neue Bailey-Paare hergeleitet.

In Anhang A wird kurz eine allgemeine Definition des q-Binomialkoeffizienten, basierend
auf der q-Gamma Funktion, für komplexe Parameter vorgestellt.

In Anhang B schließlich findet sich eine detaillierte Anleitung für die Benutzung des qZeil
Pakets.

Abstract

This thesis consists of five mostly self-contained parts which all — except the fourth —
deal with (symbolic) summation of q-hypergeometric sequences. The main emphasis has been
put on automatically proving and finding q-identities.

In Chapter 1 we introduce a newly developed Mathematica implementation of a bibasic
analogue of Gosper’s algorithm for indefinite hypergeometric summation together with its
theoretical background based on a bibasic variant of Paule’s concept of greatest factorial
factorization of polynomials.

In Chapter 2 the theory of WZ-pairs presented by Wilf and Zeilberger is generalized to
the q-case. The author’s Mathematica implementation qZeil of the q-Zeilberger algorithm is
then used to systematically generate companion and dual identities. Proceeding this way, a
large number of known as well as new identities can be found algorithmically.

Chapter 3 is devoted to the concept of Bailey pairs and its underlying iteration mechanism
that can be used to easily prove and find q-identities of certain type. In particular, the
author’s package Bailey, which allows to walk along Bailey chains semi-automatically, is
described. With the help of an extended version of the q-Zeilberger algorithm some new
Bailey pairs are derived.

In Appendix A we shortly present a general definition of the q-binomial coefficient for
complex parameters in terms of the q-gamma function.

Finally, Appendix B serves as a detailed manual for using the qZeil package.
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Introduction

Thanks to Zeilberger’s [46] algorithm, proving most definite hypergeometric summation and
transformation formulas has become routine work that can be performed by a computer. It
was also Zeilberger who first observed that his algorithm can be carried over to the q-hyper-
geometric case. Based on Paule’s [32] algebraic concept of greatest factorial factorization
(GFF), which provides an explanation of hypergeometric telescoping and extends beautifully
to the q- (and even multibasic) hypergeometric case, I implemented a Mathematica q-analogue
of Zeilberger’s algorithm in the frame of my diploma thesis [37] trying to overcome short-
comings of the already existing Maple implementations of Zeilberger (see Petkovšek, Wilf,
and Zeilberger [36]) and Koornwinder [25]. Since I came up with a first prototype of qZeil
in late 1993, the program has constantly undergone substantial improvements. Special at-
tention has been directed to advancing the capabilities for finding q-identities automatically.
As an example, qZeil now discovers polynomial multipliers or suggests powers of q which
make a given input summable. This Extended q-Zeilberger Algorithm† builds the algorithmic
backbone of this thesis.

The thesis consists of five self-contained parts, which are all devoted to the field of q-series
but can mostly be read independently from each other. To this end some of the basic
definitions appear more than once. Readers being familiar with the subject may safely skip
these repetitions.

In Chapter 1 a newly developed Mathematica implementation of a bibasic analogue of
Gosper’s algorithm for indefinite hypergeometric summation is introduced together with its
theoretical background based on a bibasic variant of Paule’s [32] concept of greatest factorial
factorization of polynomials. This chapter has been already published in the Electronic
Journal of Combinatorics [38].

In Chapter 2 the theory of WZ-pairs developed by Wilf and Zeilberger [44] is gener-
alized to the q-case. The author’s Mathematica implementation qZeil of the q-Zeilberger
algorithm (cf. Paule and Riese [33]) is then used to systematically generate companion and
dual identities from “standard” qWZ-pairs employing a recently established shadowing strat-
egy. Proceeding this way, a large number of known as well as new identities can be found
automatically.

In Chapter 3 it is shown how the concept of Bailey pairs and its underlying iteration
mechanism (cf. Andrews [9,10] or Paule [30]) can be used to easily prove and find q-identities
of certain type. In particular, the author’s package Bailey, which allows to walk along Bailey
chains semi-automatically, is described. With the help of qZeil some new Bailey pairs are
derived.

In Appendix A we shortly present a general definition of the q-binomial coefficient for
complex parameters in terms of the q-gamma function, which has been stimulated by several

†Latest information on the package can be retrieved via the World Wide Web from the qZeil homepage
at http://www.risc.uni-linz.ac.at/research/combinat/risc/software/qZeil
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inaccurate definitions found in literature.
Appendix B serves as a manual for the qZeil package including hints on installation,

usage, and new features.
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Chapter 1

A Generalization of Gosper’s
Algorithm to Bibasic
Hypergeometric Summation

Recently, Paule and Strehl [34] from a normal form point of view described how the algorithm
presented by Gosper [24] for indefinite hypergeometric summation extends quite naturally
to the q-hypergeometric case by introducing a q-analogue of the canonical Gosper-Petkovšek
(GP) representation for rational functions. Based on the new algebraic concept of greatest
factorial factorization (GFF), Paule [32] developed a general approach to hypergeometric
telescoping. For instance, it was shown by Paule (cf. Paule and Riese [33]) that the problem
of q-hypergeometric telescoping can be treated along the same lines as the q = 1 case by
making use of a q-version of GFF. Built on these concepts, a Mathematica implementation
of q-analogues of Gosper’s as well as of Zeilberger’s [46] fast algorithm for definite q-hyper-
geometric summation has been carried out by the author (cf. Paule and Riese [33], and
Riese [37]). The original approach to definite q-hypergeometric summation is due to Wilf
and Zeilberger [45].

The object of this chapter is to describe how the algorithm qTelescope presented in
[33], a q-analogue of Gosper’s algorithm, generalizes to the bibasic hypergeometric case.
In Section 1.1 the underlying theoretical background based on a bibasic extension of GFF is
discussed, which leads to the bibasic counterpart of the algorithm qTelescope. In Section 1.2
the degree setting for solving the bibasic key equation is established. Applications are given
in Section 1.3 to illustrate the usage of the newly developed Mathematica implementation
which is available by email request to the author†.

1.1 Theoretical Background

In this section, q-greatest factorial factorization (qGFF) of polynomials, which has been
introduced by Paule (cf. Paule and Riese [33]) providing an algebraic explanation of q-hyper-
geometric telescoping, is extended to the bibasic hypergeometric case. It turns out that to
this end the argumentation can be carried over almost word by word.

†Axel.Riese@risc.uni-linz.ac.at
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1.1.1 Bibasic Greatest Factorial Factorization

Let Z denote the set of all integers, and N the set of all non-negative integers. Let p, q, x, and
y be fixed indeterminates. Assume K = L(κ1, . . . , κn) to be the field of rational functions
in a fixed number of indeterminates κ1, . . . , κn, n ∈ N, where p 6= κi 6= y and q 6= κi 6= x,
1 ≤ i ≤ n, over some computable field L of characteristic 0 and not containing p, q, x, and
y. (For the sake of simplicity with regard to the implementation we will restrict ourselves to
the case where L is the rational number field Q.) The transcendental extension of K by the
indeterminates p and q is denoted by F , i.e., F = K(p, q).

For P ∈ F [x, y], let the bibasic shift operator ε be given by (εP )(x, y) = P (qx, py). The
extension of this shift operator to the rational function field F (x, y), the quotient field of the
polynomial ring F [x, y], will be also denoted by ε.

Definition 1.1. A polynomial P ∈ F [x] (resp. P ∈ F [y]) is called q-monic (resp. p-monic)
if P (0) = 1. A polynomial P ∈ F [x, y] is called bibasic monic if P (x, 0) 6= 0 6= P (0, y) and
either P (0, 0) = 1, or P (0, 0) = 0 and the coefficients of P are relatively prime polynomials
in F .†

Example 1.1. (i) The following polynomials are bibasic monic:

P1(x, y) = 1, P2(x, y) = 1− apqx2y3, P3(x, y) = (1− q)2x2 + py.

(ii) The following polynomials are not bibasic monic:

P4(x, y) = q, P5(x, y) = xy − apqx2y3, P6(x, y) = (1− q)−1px2 + py.

The properties of being q-monic, p-monic, and bibasic monic are clearly invariant with
respect to the bibasic shift operator ε, i.e., if P is q-monic, p-monic, or bibasic monic, then
the same holds true for εP . Furthermore, the product of two bibasic monic polynomials is
again bibasic monic. Also note that a bibasic monic polynomial P satisfies gcd(x, P ) = 1 =
gcd(y, P ).

Evidently, any non-zero polynomial P ∈ F [x, y] has a unique factorization, the bibasic
monic decomposition, in the form

P = z · xα · yβ · P∗,

where z ∈ F , α, β ∈ N, and P∗ ∈ F [x, y] is bibasic monic.
The bibasic monic decomposition of a polynomial P 6= 0 can be computed easily as

follows. Define α := max{i ∈ N : xi|P}, β := max{j ∈ N : yj |P}, and put P̄ := x−α · y−β ·P .
If P̄ (0, 0) 6= 0 define z := P̄ (0, 0), otherwise let l denote the least common multiple of all
coefficient-denominators of P̄ , let g denote the greatest common divisor of all coefficients of
l · P̄ , and define z := g/l. Then, for P∗ := z−1 · P̄ , the bibasic monic decomposition of P is
given by P = z · xα · yβ · P∗.

Example 1.2. The bibasic monic decompositions of the polynomials P4, P5, and P6 from
the example above are given by

P4 = q · x0 · y0 · 1, P5 = 1 · x · y · (1− apqxy2), P6 =
p

1− q
· x0 · y0 · (x2 + (1− q)y).

†In other words, P is assumed to be primitive over L[κ1, . . . , κn, p, q] in this case, which will guarantee
the uniqueness of the so-called bibasic monic decomposition of a polynomial as shown below.
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Moreover, we assume the result of any gcd computation over F [x, y] as being normalized
in the following sense. If P1 = z1 · xα1 · yβ1 · P∗1 and P2 = z2 · xα2 · yβ2 · P∗2 are the bibasic
monic decompositions of P1, P2 ∈ F [x, y], we define

gcdp,q(P1, P2) := gcd(xα1 , xα2) · gcd(yβ1 , yβ2) · gcdp,q(P∗1, P
∗
2),

where the gcdp,q of two bibasic monic polynomials is understood to be bibasic monic.
The polynomial degree in x and y of any P ∈ F [x, y] is denoted by degx(P ) and degy(P ),

respectively.

Definition 1.2. For any bibasic monic polynomial P ∈ F [x, y] and k ∈ N, the k-th falling
bibasic factorial [P ]kp,q of P is defined as

[P ]kp,q :=
k−1∏

i=0

ε−iP.

Note that by the null convention
∏

i∈∅ Pi := 1 we have [P ]0p,q = 1. In general, polynomials
arising in bibasic hypergeometric summation have several different representations in terms
of falling bibasic factorials. From all possibilities, we shall consider only the one taking care of
maximal chains, which informally can be obtained as follows. One selects irreducible factors
of P in such a way that their product, say

Pk,1(x, y) · Pk,1(q−1x, p−1y) · · ·Pk,1(q−k+1x, p−k+1y),

forms a falling bibasic factorial [Pk,1]
k
p,q of maximal length k. For the remaining irreducible

factors of P this procedure is applied again in order to find all k-th falling factorial divisors
[Pk,1]

k
p,q, . . . , [Pk,l]

k
p,q of that type. Then [Pk]kp,q := [Pk,1 · · ·Pk,l]

k
p,q forms the bibasic factorial

factor of P of maximal length k. Iterating this procedure one gets a factorization of P in
terms of “greatest” factorial factors.

Definition 1.3. We say that 〈P1, . . . , Pk〉, Pi ∈ F [x, y], is a bibasic GFF-form of a bibasic
monic polynomial P ∈ F [x, y], written as GFFp,q(P ) = 〈P1, . . . , Pk〉, if the following condi-
tions hold:

(GFFp,q 1) P = [P1]
1
p,q · · · [Pk]kp,q,

(GFFp,q 2) each Pi is bibasic monic, and k > 0 implies Pk 6= 1,
(GFFp,q 3) for i ≤ j we have gcdp,q([Pi]

i
p,q, εPj) = 1 = gcdp,q([Pi]

i
p,q, ε−jPj).

Note that GFFp,q(1) = 〈〉. Condition (GFFp,q 3) intuitively can be understood as prohibit-
ing “overlaps” of bibasic factorials that violate length maximality. The following theorem
states that, as in the q-hypergeometric case, the bibasic GFF-form is unique and thus provides
a canonical form.

Theorem 1.1. If 〈P1, . . . , Pk〉 and 〈P ′1, . . . , P ′l 〉 are bibasic GFF-forms of a bibasic monic
polynomial P ∈ F [x, y], then k = l and Pi = P ′i for all 1 ≤ i ≤ k.

Proof. The corresponding result for the ordinary hypergeometric case (p = q = 1) has been
proved by Paule [32, Thm. 2.1]. The arguments used there extend immediately to the bibasic
hypergeometric case proceeding by induction on d := degx(P ) + degy(P ).

From algorithmic point of view it is important to note that the bibasic GFF-form can be
computed in an iterative manner essentially involving only gcd computations.
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In q-hypergeometric summation, the normalized gcd of a polynomial P and its q-shift εP
plays a fundamental role, as the gcd of P and its shift EP does in ordinary hypergeomet-
ric summation, where (EP )(x) = P (x + 1). The same is true for bibasic hypergeometric
summation with respect to the bibasic shift operator ε. The mathematical and algorithmic
essence lies in the following lemma.

Lemma 1.2 (Fundamental GFFp,q Lemma). Let P ∈ F [x, y] be a bibasic monic poly-
nomial with GFFp,q(P ) = 〈P1, . . . , Pk〉. Then

gcdp,q(P, εP ) = [P1]0p,q · · · [Pk]k−1
p,q .

Proof. Due to the choice of the bibasic shift operator ε, the proof of the so-called Fundamental
qGFF Lemma (cf. Paule and Riese [33, Lemma 1]) can be carried over to the bibasic hyper-
geometric case completely unchanged.

Thus, if GFFp,q(P ) = 〈P1, . . . , Pk〉, then GFFp,q(gcdp,q(P, εP )) = 〈P2, . . . , Pk〉. Con-
sequently, dividing P with GFFp,q(P ) = 〈P1, . . . , Pk〉 by ε−1 gcdp,q(P, εP ) or gcdp,q(P, εP )
results in separating the product of the first, respectively last, falling bibasic factorial entries,
or in other words

P

ε−1 gcdp,q(P, εP )
= P1 · P2 · · ·Pk and

P

gcdp,q(P, εP )
= P1 · (ε−1P2) · · · (ε−k+1Pk).

1.1.2 Bibasic Hypergeometric Telescoping

A sequence (fk)k∈Z is said to be bibasic hypergeometric (see, e.g., Petkovšek, Wilf, and
Zeilberger [36]) in p and q over F , if there exists a rational function ρ ∈ F (x, y) such that
fk+1/fk = ρ(qk, pk) for all k where the quotient is well-defined.

Assume we are given a bibasic hypergeometric sequence (fk)k∈Z. Then the problem of
bibasic hypergeometric telescoping is to decide whether there exists a bibasic hypergeometric
sequence (gk)k∈Z such that

gk+1 − gk = fk, (1.1)

and if so, to determine (gk)k∈Z with the motive that for a, b ∈ Z, a ≤ b,

b∑

k=a

fk = gb+1 − ga,

which solves the indefinite summation problem.
For the rational function ρ, related to fk+1/fk as above, there exists a representation

ρ(x, y) = z · xα · yβ · A∗(x, y)/B∗(x, y) with bibasic monic A∗, B∗ ∈ F [x, y], z ∈ F , and
α, β ∈ Z, which we call a rational representation of the bibasic hypergeometric sequence
(fk)k∈Z. If additionally A∗ and B∗ are relatively prime, then ρ(x, y) is called the reduced
rational representation of (fk)k∈Z. For α ∈ Z, let α+ := max(α, 0) and α− := max(−α, 0).

It will be shown below that bibasic hypergeometric telescoping can be decided construc-
tively as follows.
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Algorithm Telescopep,q. Input: a bibasic hypergeometric sequence (fk)k∈Z specified by
its reduced rational representation ρ = z · xα · yβ ·A∗/B∗;
Output: a bibasic hypergeometric solution (gk)k∈Z of (1.1); in case such a solution does
not exist, the algorithm stops.

(i) Compute the bibasic GP form of (fk)k∈Z, i.e.,

(a) determine unique bibasic monic polynomials P∗, Q∗, R∗ ∈ F [x, y] such that

A∗

B∗
=

εP∗

P∗
· Q∗

εR∗
, (1.2)

where gcdp,q(P∗, Q∗) = 1 = gcdp,q(P∗, R∗) and gcdp,q(Q∗, εjR∗) = 1 for all j ≥ 1,
and

(b) let ax, bx, ay, and by denote the coefficients of the lowest occurring powers of x
and y in A∗(x, 0), B∗(x, 0), A∗(0, y), and B∗(0, y), respectively. Define

(γ, δ) :=





(ϕ,ψ) if α = 0 = β and qϕ · pµ · by/ay = z = pψ · qν · bx/ax

for ϕ,ψ ∈ N and µ, ν ∈ Z,

(ϕ, 0) if α = 0 6= β and z = qϕ · pµ · by/ay for ϕ ∈ N, µ ∈ Z,

(0, ψ) if α 6= 0 = β and z = pψ · qν · bx/ax for ψ ∈ N, ν ∈ Z,

(0, 0) otherwise,

and put

P := xγ · yδ · P∗,
Q := z · q−γ · p−δ · xα+ · yβ+ ·Q∗, (1.3)

εR := xα− · yβ− · εR∗,
with the motive that then

ρ =
εP

P
· Q

εR
.

(ii) Try to solve the bibasic key equation

P = Q · εY −R · Y (1.4)

for a polynomial Y ∈ F [x, y].

(iii) If such a polynomial solution Y exists, then

gk =
R(qk, pk) · Y (qk, pk)

P (qk, pk)
· fk (1.5)

is a bibasic hypergeometric solution of (1.1), otherwise no bibasic hypergeometric so-
lution (gk)k∈Z exists.

The steps of Algorithm Telescopep,q are derived as follows. First, assume that a bibasic
hypergeometric solution (gk)k∈Z with rational representation gk+1/gk = σ(qk, pk) of (1.1)
exists. Then evidently we have

gk = τ(qk, pk) · fk, (1.6)
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where τ(x, y) = 1/(σ(x, y)− 1) ∈ F (x, y).
By relation (1.6), equation (1.1) is equivalent to

z · xα+ · yβ+ ·A∗ · ετ − xα− · yβ− ·B∗ · τ = xα− · yβ− ·B∗, (1.7)

where the reduced rational representation of (fk)k∈Z is given by ρ = z · xα · yβ ·A∗/B∗.
Vice versa, any rational solution τ ∈ F (x, y) of (1.7) gives rise to a bibasic hypergeomet-

ric solution gk := τ(qk, pk) · fk of (1.1). This means, bibasic hypergeometric telescoping is
equivalent to finding a rational solution τ of (1.7).

Any τ ∈ F (x, y) can be represented as the quotient of relatively prime polynomials in the
form τ = U/V where U ,V ∈ F [x, y] with V = xϕ · yψ · V∗ the bibasic monic decomposition
of V. In case such a solution τ of (1.7) exists, assume we know V or a multiple V ∈ F [x, y]
of V. Then by clearing denominators in

z · xα+ · yβ+ ·A∗ · εU

εV
− xα− · yβ− ·B∗ · U

V
= xα− · yβ− ·B∗,

the problem reduces further to finding a polynomial solution U ∈ F [x, y] of the resulting
difference equation with polynomial coefficients,

z · xα+ · yβ+ ·A∗ · V · εU − xα− · yβ− ·B∗ · (εV ) · U = xα− · yβ− ·B∗ · V · εV. (1.8)

Note that at least one polynomial solution, namely U = U · V/V, exists. Furthermore,
equations of that type simplify by canceling gcdp,q’s. For instance, in order to get more
information about the denominator V, let Vi := εiV/ gcdp,q(V, εV), i ∈ {0, 1}. Then (1.7) is
equivalent to

z · xα+ · yβ+ ·A∗ · V0 · εU − xα− · yβ− ·B∗ · V1 · U = xα− · yβ− ·B∗ · V0 · V1 · gcdp,q(V, εV).
(1.9)

Now, if 〈P1, . . . ,Pm〉, m ∈ N, is the bibasic GFF-form of V∗, it follows from gcdp,q(U ,V) =
1 = gcdp,q(V0,V1) and the Fundamental GFFp,q Lemma that

V0 = (ε0P1) · · · (ε−m+1Pm) | B∗ and V1 = qϕ · pψ · (εP1) · · · (εPm) | A∗.

This observation gives rise to a simple and straightforward algorithm for computing a
multiple V ∗ := [P1]

1
p,q · · · [Pn]np,q of V∗. For instance, if P1 := gcdp,q(ε−1A∗, B∗) then obviously

P1|P1. Actually, one can iteratively extract bibasic monic Pi-multiples Pi such that εPi|A∗
and ε−i+1Pi|B∗ by the following algorithm.

Algorithm V∗MULT. Input: relatively prime and bibasic monic polynomials A∗, B∗ ∈
F [x, y] that constitute the bibasic monic quotient of ρ = z · xα · yβ ·A∗/B∗ ∈ F (x, y);
Output: bibasic monic polynomials P1, . . . , Pn such that V ∗ := [P1]

1
p,q · · · [Pn]np,q is a multiple

of V∗, the bibasic monic part of the denominator V = xϕ · yψ · V∗ of τ ∈ F (x, y).

(i) Compute n = min{j ∈ N | gcdp,q(ε−1A∗, εk−1B∗) = 1 for all integers k > j}.
(ii) Set A0 = A∗, B0 = B∗, and compute for i from 1 to n:

Pi = gcdp,q(ε−1Ai−1, ε
i−1Bi−1),

Ai = Ai−1/εPi,

Bi = Bi−1/ε−i+1Pi.
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A proof for the fact that the Pi are indeed multiples of the Pi has been worked out for the
ordinary hypergeometric case by Paule [32, Lemma 5.1]. It can be carried over to the bibasic
hypergeometric world almost word by word. Hence we leave the steps of the verification to
the reader.

Note that in general step (i) of Algorithm V∗MULT would be a rather time-consuming task
involving resultant computations which could be solved by generalizing the univariate case
(cf. Abramov, Paule, and Petkovšek [1]) in a straightforward way, for instance, as follows.
Define R1(v, w) := Resx(A∗(x, y), B∗(vx, wy)) and R2(v, w) := Resy(A∗(x, y), B∗(vx, wy)),
viewed as polynomials of v and w over F [y], respectively F [x]. Then n is the maximal
positive integer such that R1(qn, pn) · R2(qn, pn) = 0 if such an integer exists, and n = 0
otherwise. However, in our implementation we make use of the fact that A∗ and B∗ already
come in nicely factored form so that the computation of n boils down to a comparison of
those factors.

Moreover, Algorithm V∗MULT also delivers the constituents of the bibasic monic part of
the GP representation (1.2) as stated in the following lemma.

Lemma 1.3. Let n, An, Bn, and the tuple 〈P1, . . . , Pn〉 be computed as in Algorithm
V∗MULT. Then for P∗ = V ∗, Q∗ = An, and R∗ = ε−1Bn we have

A∗

B∗
=

εP∗

P∗
· Q∗

εR∗
,

where gcdp,q(P∗, Q∗) = 1 = gcdp,q(P∗, R∗) and gcdp,q(Q∗, εjR∗) = 1 for all j ≥ 1.

For more details on GP representations in the q-hypergeometric case, see Abramov, Paule,
and Petkovšek [1], or Paule and Strehl [34]. The results obtained there also apply to the
bibasic hypergeometric case, in particular we have the following.

Lemma 1.4. The polynomials P∗, Q∗, and R∗ of the bibasic monic part of the GP represen-
tation (1.2) are unique.

Proof. The corresponding result for the case p = q = 1 has been proved by Petkovšek [35].
The argumentation extends directly to the q- and bibasic hypergeometric case.

With the multiple V ∗ of V∗ in hands, all what is left for solving (1.7), and thus the bibasic
hypergeometric telescoping problem (1.1), is to determine appropriate multiplicities γ and δ
such that

V = xγ · yδ · V ∗ is a multiple of V = xϕ · yψ · V∗.

For that we consider equation (1.9) again in the equivalent version

z · xα+ · yβ+ ·A∗ · V∗ · εU − xα− · yβ− ·B∗ · qϕ · pψ · (εV∗) · U = xα− · yβ− ·B∗ · V∗ · εV,
(1.10)

and distinguish the following cases corresponding to step (ib) of Algorithm Telescopep,q.

(i) Assume that either α− 6= 0 or α+ 6= 0. In the first case we have α+ = 0 and xα− | U ,
hence ϕ must be 0 because of gcdp,q(U ,V) = 1. This means, we can choose γ := 0. In
the second case we have α− = 0 and xmin(α+,ϕ) | U , because of εV = xϕ ·yψ ·qϕ ·pψ ·εV∗.
Again ϕ must be 0, and again we can choose γ := 0. Analogously, if β 6= 0 we can
choose δ := 0.
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(ii) Assume that α = 0 and β 6= 0, hence ψ = 0 by (i). For ϕ > 0, evaluating equation (1.10)
at x = 0 results in

z · yβ+ ·A∗(0, y) · V∗(0, y) · U(0, py)− yβ− ·B∗(0, y) · qϕ · V∗(0, py) · U(0, y) = 0.
(1.11)

In order to evaluate (1.11) at y = 0, note that P ∈ F [x, y] being bibasic monic does
not necessarily imply that P (0, y) ∈ F [y] is p-monic. To overcome this problem, let us
consider the p-monic decompositions of U(0, y) and V∗(0, y), say U(0, y) = u ·yβu · Ū(y)
and V∗(0, y) = v · yβv · V̄ (y), respectively. Now, dividing equation (1.11) by U(0, y) ·
V∗(0, y) 6= 0 leads to

z · yβ+ ·A∗(0, y) · pβu · Ū(py)
Ū(y)

− yβ− ·B∗(0, y) · qϕ · pβv · V̄ (py)
V̄ (y)

= 0. (1.12)

Additionally, let the p-monic decompositions of A∗(0, y) and B∗(0, y) be given by
A∗(0, y) = ay · yβa · Ā(y) and B∗(0, y) = by · yβb · B̄(y), respectively. Then the powers
yβa+β+ and yβb+β− must be equal, and after cancellation eq. (1.12) at y = 0 turns into

z · ay · pβu − by · qϕ · pβv = 0.

This means, we obtain as a condition for ϕ > 0 that z = qϕ · pµ · by/ay with µ ∈ Z.
Hence, in this case we choose γ := ϕ, i.e., we set γ to this q-power if z has this particular
form, and γ := 0 otherwise. Analogously, if α 6= 0 and β = 0 we define δ := ψ > 0, if
z = pψ · qν · bx/ax with ν ∈ Z, and δ := 0 otherwise.

(iii) Finally, for the case α = 0 = β similar reasoning as in case (ii) leads to the conditions

qϕ · pµ · by/ay = z = pψ · qν · bx/ax, (1.13)

for ϕ > 0 or ψ > 0, and µ, ν ∈ Z. Thus, if both conditions (1.13) are satisfied we choose
γ := ϕ and δ := ψ, and otherwise γ = δ := 0.

The remaining steps of Algorithm Telescopep,q now are explained as follows. Once again,
employing the GP representation for the bibasic monic quotient of ρ,

A∗

B∗
=

εP∗

P∗
· Q∗

εR∗
,

it is easily seen that equation (1.8) can be written as

z · q−γ · p−δ · xα+ · yβ+ · Q∗

εR∗
· εU − xα− · yβ− · U = xγ+α− · yδ+β− · P∗. (1.14)

Because of relative primeness of certain polynomials, we observe that xα− |U , yβ− |U , and
εR∗ | εU . Hence by defining Y by the relation

U = xα− · yβ− · q−α− · p−β− ·R∗ · Y,

the task to solve equation (1.8) for U reduces to solve

z · q−γ · p−δ · xα+ · yβ+ ·Q∗ · εY − xα− · yβ− · q−α− · p−β− ·R∗ · Y = xγ · yδ · P∗ (1.15)

for Y ∈ F [x, y]. By definition (1.3) of P , Q, and R, equation (1.15) immediately turns into
the bibasic key equation (1.4),

Q · εY −R · Y = P.
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Finally, from U/V = R · Y/P , again by definition (1.3), it follows directly that

gk =
R(qk, pk) · Y (qk, pk)

P (qk, pk)
· fk

as in (1.5) actually is a solution of the bibasic hypergeometric telescoping problem (1.1).
This completes the proof of the correctness of Algorithm Telescopep,q.

1.2 Degree Setting for Solving the Bibasic Key Equation

To solve the bibasic key equation

P = Q · εY −R · Y (1.16)

we first have to determine degree bounds d1 and d2, say, for the solution polynomial Y ∈
F [x, y] with respect to x and y, respectively, as shown in Theorem 1.5 below. Then we put

Y (x, y) :=
d1∑

i=0

d2∑

j=0

yi,j · xi · yj

with undetermined yi,j and solve (1.16) for the yi,j by equating to zero all coefficients of xiyj

in the equation

P −Q · εY + R · Y = 0,

which corresponds to solving a system of linear equations.

Theorem 1.5. Let lxQ(y) and lxR(y) denote the leading coefficient polynomials of Q and R

with respect to x. Let QR+ := Q + R and QR− := Q − R. Then a bound for degx(Y ) is
given by:

(Ax) If degx(QR+) 6= degx(QR−), then

degx(Y ) ≤ max{degx(P )−max{degx(QR+), degx(QR−)}, 0}.

(Bx) If degx(QR+) = degx(QR−), then

(B1x) if degx(Q) 6= degx(R), then

degx(Y ) = degx(P )− degx(QR+),

(B2x) if degx(Q) = degx(R), then

(B2ax) if lxR(y)/lxQ(y) is of the form pµ · qν · r(y) with µ, ν ∈ N, and r(y) a rational
function with r(0) = 1, then

degx(Y ) ≤ max{degx(P )− degx(QR+), ν},

(B2bx) otherwise

degx(Y ) = degx(P )− degx(QR+).

A bound for degy(Y ) is given by interchanging x with y and p with q in both (Ax) and (Bx).
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Proof. We rewrite the key equation to obtain

2 P = QR+ · (εY − Y ) + QR− · (εY + Y ). (1.17)

Cases (Ax) and (Ay) follow immediately. Note that it might happen that

degx(QR+) > degx(P ) and degx(QR−) = degx(P ),

and simultaneously

degy(QR+) > degy(P ) and degy(QR−) = degy(P ).

In this case, setting degx(Y ) = degy(Y ) = 0 could yield a solution, since εY − Y = 0 then.

For Case (B1x) let a := degx(Q), c := degx(Y ), and let lxY (y) denote the leading coefficient
polynomial of Y with respect to x. Assume that degx(Q) > degx(R). Then (1.17) gives

2 P (x, y) = (lxQ(y)xa + . . . ) · [(lxY (py) qc − lxY (y)) xc + . . . ]

+ (lxQ(y)xa + . . . ) · [(lxY (py) qc + lxY (y)) xc + . . . ]

= 2 lxQ(y) lxY (py) qc xa+c + . . . . (1.18)

Clearly, the coefficient of xa+c in (1.18) will never vanish. Therefore we have

degx(Y ) = degx(P )− degx(Q).

Including the case degx(Q) < degx(R), we obtain

degx(Y ) = degx(P )−max{degx(Q), degx(R)} = degx(P )− degx(QR+).

Analogous reasoning leads to Case (B1y).

For Case (B2x) we similarly observe that

2 P (x, y) = [(lxQ(y) + lxR(y)) xa + . . . ] · [(lxY (py) qc − lxY (y)) xc + . . . ]

+ [(lxQ(y)− lxR(y)) xa + . . . ] · [(lxY (py) qc + lxY (y)) xc + . . . ]

= 2 [lxQ(y) lxY (py) qc − lxR(y) lxY (y)] xa+c + . . . . (1.19)

Now we no longer have the guarantee that the coefficient of xa+c in (1.19) does not vanish,
but it is easily seen that this happens only for

qc =
lxR(y)
lxQ(y)

· lxY (y)
lxY (py)

. (1.20)

Note that lxY (y) is actually not known. However, for any non-zero polynomial h(y) = h0 +
h1 y + · · ·+ hd yd, the quotient h(y)/h(py) is of the form p−m · s(y), where s(y) is a rational
function with s(0) = 1 and m is the zero-root multiplicity of h(y). Hence, the rightmost
fraction in (1.20) may eliminate only positive integer powers of p and a rational function of
y but never introduce a power of q. This proves Cases (B2ax) and (B2ay).

On the other hand, if the coefficient of xa+c in (1.19) does not vanish, we obtain Case
(B2bx) and analogously Case (B2by).
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1.3 Applications

In this section we shall illustrate the method of bibasic hypergeometric telescoping using
the author’s Mathematica implementation qTelescope, which is a bibasic extension of a
q-analogue of Gosper’s algorithm originally described in Paule and Riese [33].

Let the q-shifted factorial of a ∈ F be defined as usual (see, e.g., Gasper and Rahman [20])
by

(a; q)k :=





(1− a)(1− aq) · · · (1− aqk−1), if k > 0,
1, if k = 0,[
(1− aq−1)(1− aq−2) · · · (1− aqk)

]−1
, if k < 0,

and

(a; q)∞ :=
∞∏

k=0

(1− aqk),

where products of q-shifted factorials will be abbreviated by

(a1, a2, . . . , an; q)k := (a1; q)k (a2; q)k · · · (an; q)k.

In the present implementation we allow as summand any bibasic hypergeometric sequence
(fk)k∈Z of the form

fk =
∏

r(Cr q(crir)k+dr ; qir )ark+br∏
s(Ds q(vsjs)k+ws ; qjs)tsk+us

·
∏

r(C
′
r p(c′ri′r)k+d′r ; pi′r )a′rk+b′r∏

s(D′
s p(v′sj′s)k+w′s ; pj′s)t′sk+u′s

×R(qk, pk) · qα(k
2) · pβ(k

2) · zk,

with
Cr, Ds power products in K(p),
C ′r, D

′
s power products in K(q),

ar, ts, a
′
r, t

′
s specific integers (i.e., integers free of any parameters),

br, us, b
′
r, u

′
s integer parameters free of k, or ±∞ if ar (resp. ts, a

′
r, t

′
s) = 0,

cr, vs, c
′
r, v

′
s specific integers,

dr, ws, d
′
r, w

′
s integer parameters free of k,

ir, js, i
′
r, j

′
s specific non-zero integers,

R a rational function in F (qk, pk) s.t. the denominator factors completely
into a product of terms of the form (1−D qvk+w) and (1−D′pv′k+w′),

α, β specific integers, and
z a rational function in F .

For the actual computation of the GP representation let ρ(x, y) denote the possibly non-
reduced rational representation of the summand fk. It is obvious from the input specification
that ρ can always be converted into the form

ρ(x, y) =
(εP̄ )(x, y)
P̄ (x, y)

·
∏

i(1− Γi xγi)∏
j(1−∆j xδj )

·
∏

i(1− Γ′i yγ′i)∏
j(1−∆′

j yδ′j )
· xᾱ · yβ̄ · z̄

=
(εP̄ )(x, y)
P̄ (x, y)

· Ā(x, y)
B̄(x, y)

· xᾱ · yβ̄ · z̄,
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where P̄ is bibasic monic and satisfies gcdp,q(P̄ , Ā) = 1 = gcdp,q(εP̄ , B̄); the Γi, ∆j , Γ′i, ∆
′
j

are power products in F , the γi, δj , γ
′
i, δ

′
j are positive integers, ᾱ, β̄ ∈ Z, and z̄ ∈ F .

Concerning Algorithm V∗MULT, it is clear from above that any P̄ 6= 1 will actually
contribute to [P1]

1
p,q and thus can be treated separately. Due to our input restrictions — this

is the reason for admitting only power products instead of arbitrary rational functions — it
is possible to find n in step (i) of Algorithm V∗MULT simply by comparing all factors in Ā
and B̄ as already mentioned.

Furthermore, since Ā and B̄ are both products of a q-monic and a p-monic polynomial,
they will never contribute to bx/ax and by/ay. Thus, bx/ax and by/ay are in any case integer
powers of q and p, respectively, coming from εP̄ /P̄ . Therefore, they do not take influence on
the computation of γ and δ at all.

1.3.1 Bibasic Summation Formulas

In 1989, Gasper [19] derived the indefinite bibasic summation formula
n∑

k=0

fk =
n∑

k=0

(1− apkqk) (1− bpkq−k)
(1− a) (1− b)

(a, b; p)k (c, a/bc; q)k

(q, aq/b; q)k (ap/c, bcp; p)k
qk

=
(ap, bp; p)n (cq, aq/bc; q)n

(q, aq/b; q)n (ap/c, bcp; p)n
= gn (1.21)

by showing that gk is a bibasic hypergeometric solution of the equation fk = gk − gk−1,
however, without revealing how to come up with gk. With our implementation the job of
finding gk is left to the computer.

In[1]:= (* first of all load the package *)

<<qTelescope.m

Out[1]= Axel Riese’s qTelescope implementation version 2.1 loaded

In[2]:= qTelescope[(1-a p^k q^k) (1-b p^k/q^k) qfac[a,p,k] qfac[b,p,k] qfac[c,q,k] *

qfac[a/b/c,q,k] q^k / ((1-a) (1-b) qfac[q,q,k] qfac[a q/b,q,k] *

qfac[a p/c,p,k] qfac[b c p,p,k]), {k, 0, n}]

a q

qfac[a p, p, n] qfac[b p, p, n] qfac[---, q, n] qfac[c q, q, n]

b c

Out[2]= ---------------------------------------------------------------

a p a q

qfac[---, p, n] qfac[b c p, p, n] qfac[q, q, n] qfac[---, q, n]

c b

Applying the same argumentation, Gasper and Rahman [21] generalized (1.21) to
n∑

k=−m

(1− adpkqk) (1− bpk/dqk)
(a, b; p)k (c, ad2/bc; q)k

(dq, adq/b; q)k (adp/c, bcp/d; p)k
qk

=
(1− a) (1− b) (1− c) (1− ad2/bc)

d (1− c/d) (1− ad/bc)

×
{

(ap, bp; p)n (cq, ad2q/bc; q)n

(dq, adq/b; q)n (adp/c, bcp/d; p)n
− (c/ad, d/bc; p)m+1 (1/d, b/ad; q)m+1

(1/c, bc/ad2; q)m+1 (1/a, 1/b; p)m+1

}
.

(1.22)



1.3. APPLICATIONS 15

Obviously, (1.21) is the case d = 1, m = 0 of (1.22). Since the output of qTelescope for
identity (1.22) is quite lengthy, here we shall consider only the case m = −1 after dividing
the summand by the constant fraction on the right hand side. Of course, the algorithm works
for symbolic m as well.

In[3]:= qTelescope[(1-a d p^k q^k) (1-b/d p^k/q^k) qfac[a,p,k] qfac[b,p,k] *

qfac[c,q,k] qfac[a d^2/b/c,q,k] q^k d (1-c/d) (1-a d/b/c) /

(qfac[d q,q,k] qfac[a d q/b,q,k] qfac[a d p/c,p,k] *

qfac[b c p/d,p,k] (1-a) (1-b) (1-c) (1-a d^2/b/c)), {k, 1, n}]

2

a d q

Out[3]= -1 + (qfac[a p, p, n] qfac[b p, p, n] qfac[c q, q, n] qfac[------, q, n]) /

b c

b c p a d p a d q

(qfac[-----, p, n] qfac[-----, p, n] qfac[d q, q, n] qfac[-----, q, n])

d c b

1.3.2 Bibasic Matrix Inverses

Al-Salam and Verma [4] showed that the triangular matrices H = (hn,k) and G = (gk,n),
where

hn,k =
(−1)n+k (hqpn; q)n−1 (1− hqkpk)

(p; p)n−k (hqpn; q)k

and

gk,n =
(hpnqn; q)k−n

(p; p)k−n
p(k−n

2 )

are inverse to each other. This result is equivalent to the fact that
n∑

k=m

hn,k · gk,m = δn,m, (1.23)

where δn,m denotes the Kronecker symbol. Running the algorithm we obtain:

In[4]:= qTelescope[(-1)^(n+k) qfac[h q p^n,q,n-1] (1-h q^k p^k) *

qfac[h p^m q^m,q,k-m] p^Binomial[k-m,2] /

(qfac[p,p,n-k] qfac[h q p^n,q,k] qfac[p,p,k-m]), {k, m, n}]

Out[4]= {0, {-m + n != 0}}

This means, we algorithmically proved identity (1.23) for m 6= n, but evaluation failed for
m = n. However, it is easily seen that hn,n · gn,n = 1, which completes the proof.

These matrices were used in a slightly modified form also by Gessel and Stanton [23] in
the derivation of a family of q-Lagrange inversion formulas.

Al-Salam and Verma [4] employed the fact that the n-th q-difference of a polynomial of
degree less than n is equal to zero, to show that

(
1− a

q

) n∑

k=0

(−1)k (apk; q)n−1

(p; p)k (p; p)n−k
p(k

2) = δn,0. (1.24)
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Unfortunately, for dk := (apk; q)n−1, we find that

dk+1

dk
=

(1− apk+1) (1− apk+1q) · · · (1− apk+1qn−2)
(1− apk) (1− apkq) · · · (1− apkqn−2)

is a rational function of qk and pk only for fixed n. Therefore dk is not a valid input for the
algorithm. To overcome the problem, we replace k, n, and a in (1.24) by k −m, n−m, and
a−1pmq1−n, respectively, such that (1.24) turns into the orthogonality relation

cn,m

n∑

k=m

an,k · bk,m = δn,m (1.25)

with

cn,m = (1− a−1pmq−n) a1+m−n q(
m+1

2 )−(n
2),

an,k =
(ap−k; q)n

(p; p)n−k
(−1)1+k+n p(n−k

2 ),

bk,m =
p−k(m+1)

(p; p)k−m (ap−k; q)m+1
.

Note that an,k and bk,m still do not fit into the input specification of the algorithm. For A =
(an,k), B = (bk,m), and C = (cn,m), relation (1.25) could be rewritten as A ·B = diag(C)−1,
showing that the matrix diag(C) · A = (cn,n · an,k) is inverse to the matrix B. Since inverse
matrices commute, we exchange diag(C) ·A with B and find that (1.25) is equivalent to

n∑

k=m

bn,k · ck,k · ak,m = δn,m,

or, in other words
n∑

k=m

(−1)k+m (1− ap−kqk) (ap−m; q)k

(p; p)n−k (p; p)k−m (ap−n; q)k+1
p(k−m

2 )−n(k+1)+k(m+1) = δn,m. (1.26)

Now, in this form we are faced with an admissible input and compute:

In[5]:= qTelescope[(-1)^(k+m) (1-a q^k/p^k) qfac[a/p^m,q,k] *

p^(Binomial[k-m,2]-n(k+1)+k(m+1)) /

(qfac[p,p,n-k] qfac[p,p,k-m] qfac[a/p^n,q,k+1]), {k, m, n}]

Out[5]= {0, {-m + n != 0}}

For m = 0, (1.26) reduces to

n∑

k=0

(−1)k (1− ap−kqk) (a; q)k

(p; p)n−k (p; p)k (ap−n; q)k+1
p(n−k

2 ) = δn,0.

In[6]:= qTelescope[(-1)^k (1-a q^k/p^k) qfac[a,q,k] p^Binomial[n-k,2] /

(qfac[p,p,n-k] qfac[p,p,k] qfac[a/p^n,q,k+1]), {k, 0, n}]

Out[6]= {0, {n != 0}}
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Proceeding in the same way, for instance, we also can prove the bibasic identity (cf.
Gasper [19])

(
1− a

q

)(
1− b

q

) n∑

k=0

(−1)k (apk, bp−k; q)n−1 (1− ap2k/b)
(p; p)k (p; p)n−k (apk/b; p)n+1

pk(n−1)+(n−k
2 ) = δn,0,

by transforming it into the equivalent version

(
1− b

a

) n∑

k=0

(1− ap−kqk)(1− bpkqk)
(−1)k (a, b; q)k (bpk+1/a; p)n−1

(p; p)k (p; p)n−k (ap−n, bpn; q)k+1
p(n−k

2 ) = δn,0.

In[7]:= qTelescope[(1-b/a) (1-a q^k/p^k) (1-b p^k q^k) (-1)^k qfac[a,q,k] *

qfac[b,q,k] qfac[b/a p^(k+1),p,n-1] p^Binomial[n-k,2] /

(qfac[p,p,k] qfac[p,p,n-k] qfac[a/p^n,q,k+1] qfac[b p^n,q,k+1]),

{k, 0, n}]

Out[7]= {0, {n != 0}}

1.3.3 Extensions and Open Problems

With the input specification described above we actually have not taken into account that a
bibasic hypergeometric summand fk could involve q-shifted factorials with mixed bases such
as (a; piqj)k for i, j ∈ Z as well. However, since to our knowledge applications of this type
have not arisen in practice up to now, this feature has not been implemented yet.

For the sake of simplicity we restricted ourselves to discuss in detail the bibasic case.
Nevertheless, the presented algorithm should easily extend to the multibasic case, i.e.,
to sequences being hypergeometric in independent bases q1, . . . , qm. Recently, Bauer and
Petkovšek [16] developed a different approach to multibasic hypergeometric telescoping which
also covers the “mixed” (ordinary and multibasic) hypergeometric case.

A generalization of bibasic hypergeometric telescoping to definite summation can only be
regarded as a useful extension, if one can prove that sums like

∑
k

[
n
k

]
p

[
n
k

]
q

satisfy a linear
recurrence with polynomial coefficients in pn and qn. However, this seems to be untrue in
general.

Finally, we would like to remark that so far we found only one single bibasic example in
the literature which we could not handle with our machinery, namely Gasper’s [19] transfor-
mation formulas

∞∑

k=0

1− apkqk

1− a

(a; p)k (c/b; q)k

(q; q)k (abp; p)k
bk

=
1− c

1− b

∞∑

k=0

(ap; p)k (c/b; q)k

(q; q)k (abp; p)k
(bq)k

=
1− c

1− abp

∞∑

k=0

(ap; p)k (cq/b; q)k

(q; q)k (abp2; p)k
bk

=
(1− c) (ap; p)∞
(1− b) (abp; p)∞

∞∑

k=0

(b; p)k (cqpk; q)∞
(p; p)k (bqpk; q)∞

(ap)k,

when max(|p|, |q|, |ap|, |b|) < 1.
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Chapter 2

Automatic Generation of
q-Identities

Using the author’s Mathematica implementation qZeil of a q-analogue of Zeilberger’s algo-
rithm (cf. Paule and Riese [33]) for definite q-hypergeometric summation we will show in
this chapter how the concept of WZ-pairs introduced by Wilf and Zeilberger [44] generalizes
to the q-case giving new identities from existing ones “for free”, i.e., without too much addi-
tional effort. In particular, we shall focus our attention on generating companion and dual
identities from qWZ-pairs. Similar to Gessel’s [22] systematic investigation of dual identity
production for the q = 1 case, we shall apply this method to several “standard” terminating
q-identities leading to a large number of new identities as well as identities appearing in the
context of Bailey chains (see, e.g., Andrews [10], Paule [30], or Chapter 3).

2.1 q-Hypergeometric Telescoping and qWZ-Certifica-
tion

Analogous to Zeilberger’s [46] algorithm its q-analogue takes terminating q-hypergeometric
sums as input. The output is a linear recurrence that is satisfied by the input sum, together
with a rational function which serves as the proof certificate. It is important to note that
the proof certificate enables an independent verification of the output recurrence merely by
checking a rational function identity. This means, the algorithm itself supplies complete
information for a correctness check which works independently of the steps in which the
output recurrence was manufactured.

The backbone of the author’s q-Zeilberger implementation is Algorithm qTelescope, a
q-analogue of Gosper’s [24] algorithm for indefinite hypergeometric summation based on a
q-version of Paule’s [32] concept of greatest factorial factorization. A detailed description of
Algorithm qTelescope is given in Paule and Riese [33].

Let Z denote the set of all integers, N the set of all non-negative integers, and N+ := N\{0}
the set of all positive integers. Assume K = L(κ1, . . . , κm) to be the field of rational functions
in a fixed number of indeterminates κ1, . . . , κm, all different from q, over some computable
field L of characteristic 0. (For the sake of simplicity with regard to the implementation we
will restrict ourselves to the case where L is the rational number field Q.) The transcendental
extension of K by the indeterminate q is denoted by F , i.e., F = K(q).

A sequence (fk) with values in F , where k runs through all integers, is said to be
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q-hypergeometric in k, if the quotient fk+1/fk is a rational function of qk over F for all k
where the quotient is well-defined. Given a q-hypergeometric sequence (fk), the problem of
q-hypergeometric telescoping then consists in constructively deciding whether there exists a
q-hypergeometric sequence (gk) such that

fk = gk − gk−1,

with the motive that for a, b ∈ Z, a ≤ b,

b∑

k=a

fk = gb − ga−1.

It is well known that Algorithm qTelescope in general fails as soon as we turn to definite
q-hypergeometric summation. However, it can be used in a non-obvious way also for this
purpose thanks to an observation by Zeilberger [46,47,48]. For this, let f := (fn,k) be a
double-indexed sequence with values in F . We shall consider only sequences where n runs
through N, whereas the second parameter k might run through all integers.

The sequence f is called q-hypergeometric in n and k, if both quotients

fn+1,k

fn,k
and

fn,k+1

fn,k

are rational functions of qn and qk over F for all n and k where the quotients are well-defined.
Let the q-shifted factorial of a ∈ F be defined as usual (see, e.g., Gasper and Rahman [20])

by

(a; q)k :=





(1− a) (1− aq) · · · (1− aqk−1), if k > 0,
1, if k = 0,[
(1− aq−1) (1− aq−2) · · · (1− aqk)

]−1
, if k < 0,

and

(a; q)∞ :=
∞∏

k=0

(1− aqk),

where products of q-shifted factorials will be abbreviated by

(a1, a2, . . . , am; q)k := (a1; q)k (a2; q)k · · · (am; q)k.

Example 2.1. The sequence of Gaussian polynomials (also called q-binomial coefficients)

[
n

k

]

q

:=





(q; q)n

(q; q)k (q; q)n−k
, if 0 ≤ k ≤ n,

0, otherwise,

is q-hypergeometric in n and k.

We say that the sequence f has finite support with respect to k, if for all n there exists
a finite integer interval In such that fn,k 6= 0 for k ∈ In, and fn,k = 0 for k 6∈ In. As an
example, consider fn,k :=

[
n
k

]
q

with In = {0, 1, . . . , n}.
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Given f being q-hypergeometric in n and k, one can prove under mild side-conditions, as
demonstrated in Wilf and Zeilberger [45], that for a certain integer d ≥ 0 and n ≥ d there
exists a linear recurrence

σ0(n) fn,k + σ1(n) fn−1,k + · · ·+ σd(n) fn−d,k = gn,k − gn,k−1, (2.1)

where the coefficients are polynomials in qn not depending on k and not all zero, and where
gn,k is a rational function multiple of fn,k and thus q-hypergeometric in n and k, too. Given
the order d, which in general is not known a priori, gn,k and also the coefficient polynomials
σi(n) are determined by q-hypergeometric telescoping, i.e., by Algorithm qTelescope.

Assume that f has finite support with respect to k. Then summing both sides of (2.1)
over all k results in

σ0(n)Sn + σ1(n) Sn−1 + · · ·+ σd(n) Sn−d = 0, (2.2)

a recurrence for the sum sequence Sn :=
∑

k fn,k, a finite sum due to the finite support
property. We use the convention that the summation parameter k runs through all the
integers, in case the summation range is not specified explicitly.

Now the qWZ-certificate (for short: certificate) of recurrence (2.1) or (2.2), respectively,
by definition is the rational function cert(n, k), rational in qn and qk, such that

gn,k = cert(n, k) · fn,k.

Evidently, with the certificate in hands the verification of (2.1), and therefore (2.2),
reduces to checking the rational function identity

r(n, k) = cert(n, k)− cert(n, k − 1) · fn,k−1

fn,k
,

where r(n, k), rational in qn and qk, comes from rewriting the left hand side of (2.1) as
r(n, k) · fn,k. The computation of r(n, k) is straightforward, because any fn−i,k can be
written as a rational function multiple of fn,k, for instance, fn−1,k = (fn−1,k/fn,k) · fn,k.

In the inhomogeneous case, i.e., if f does not have finite support, or, if one is interested
in summation with bounds not naturally induced by the finite support, we have to introduce
the corresponding correction terms in (2.2). For more details, see Paule and Riese [33].

It is well known that Zeilberger’s algorithm and especially its q-analogue do not always
deliver the recurrence with minimal order. However, several approaches have been devel-
oped to decrease the order to the expected one, such as Paule’s [31] method of creative
symmetrizing (see also Paule and Riese [33], or Petkovšek, Wilf, and Zeilberger [36]).

Finally, suppose that we want to prove a closed form summation identity
∑

k
an,k = bn,

where (an,k) has finite support and bn 6= 0 for all n. By putting fn,k := an,k/bn, the identity
to be proved may be rewritten as

∑
k
fn,k = 1. (2.3)

In this situation, it turns out that in many instances fk := fn,k−fn−1,k is Gosper-summable,
i.e., q-hypergeometric telescoping applied to fk, a rational function multiple of fn,k, leads to
a so-called qWZ-pair defined as follows.
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Definition 2.1. Let f = (fn,k) and g = (gn,k) denote q-hypergeometric sequences, where
gn,k is a rational function multiple of fn,k. We say that (f, g) forms a qWZ-pair if

fn,k − fn−1,k = gn,k − gn,k−1, (2.4)

for all n and k where both sides are well-defined.

Now, under the additional assumption that f has finite support, the same holds true for g.
Summing both sides of the qWZ-equation (2.4) over all k then gives Sn = Sn−1. Thus, Sn is
free of n, and therefore we have Sn = S0 for all n. Checking that S0 = 1 completes the proof
of (2.3). The proof strategy based on these observations is called the qWZ method, originally
introduced for the q = 1 case by Wilf and Zeilberger [44] (cf. also Gessel [22], or Petkovšek,
Wilf, and Zeilberger [36]). Note that with the q-Zeilberger algorithm in hands, computing
a qWZ-pair just consists in applying the algorithm to fn,k with order 1 and checking that
σ0 + σ1 = 0 in case a solution exists (w.l.o.g. we may assume that σ0 has been normalized
to 1). This will be true in almost all instances of closed form summation formulas, eventually
with the help of creative symmetrizing.

However, the remarkable fact about qWZ-pairs is that they can be used to produce new
identities from existing ones easily — as shown in the following sections.

2.2 Companion Identities

As in the q = 1 case (cf. Wilf and Zeilberger [44]), a certain type of identities we get “for
free” from a qWZ-pair is called the companion identity. It is based on the symmetry of f
and g in the qWZ-equation (2.4).

Theorem 2.1. Let (f, g) form a qWZ-pair satisfying the following conditions:

(F) For each integer k, the limit fk := lim
n→∞

fn,k exists and is finite.

(G) We have lim
k→−∞

∑

n≥0

gn+1,k = 0.

Then the companion identity is given by
∑

n≥0

gn+1,k =
∑

j≤k

(fj − f0,j) ,

provided that both series either converge absolutely or are treated as formal power (Laurent)
series.

Proof. Since f and g form a qWZ-pair we have

fn+1,k − fn,k = gn+1,k − gn+1,k−1.

Summing both sides for n from 0 to N gives

fN+1,k − f0,k =
N∑

n=0

gn+1,k −
N∑

n=0

gn+1,k−1.



2.2. COMPANION IDENTITIES 23

Now we let N →∞ and use (F) to get

fk − f0,k =
∑

n≥0

gn+1,k −
∑

n≥0

gn+1,k−1.

If we first replace k by j and then sum over both sides for j from −l to k, we obtain

k∑

j=−l

(fj − f0,j) =
∑

n≥0

gn+1,k −
∑

n≥0

gn+1,−l−1.

Letting l →∞ and using (G) gives the companion identity
∑

j≤k

(fj − f0,j) =
∑

n≥0

gn+1,k.

Note that condition (G) is satisfied automatically if f (and therefore g) has finite support
with respect to k.

The actual computation of fk depends on whether we treat the companion identity ana-
lytically or in the sense of formal power (Laurent) series. In the first case one usually needs
at least to make the assumption |q| < 1. In general, most of the factors of fn,k have the same
limit for n → ∞ whatever our point of view is. For those factors, the computation is car-
ried out fully automatically by our implementation. However, for the remaining factors, the
“critical” ones such as bn or b−n, etc., which analytically need further assumptions (|b| < 1
or |b| > 1, respectively), or whose limits are not defined in the sense of formal Laurent series
(e.g., limn→∞ b−n), the limit is kept in an unevaluated form.

As an example, let us consider the q-Chu-Vandermonde identity in the form

n∑

k=0

[
n

k

]

q

[
b

k

]

q

qk2
=

[
b + n

n

]

q

.

Setting fn,k =
[
n
k

]
q

[
b
k

]
q
qk2

/
[
b+n

n

]
q

we have

fk = lim
n→∞

fn,k =
(q; q)b

(q; q)k

[
b

k

]

q

qk2
and f0,k =

[
0
k

]
q

[
b
k

]
q[

b
0

]
q

qk2
= δk,0,

where δk,0 denotes the Kronecker symbol. Running qZeil as follows (cf. Riese [37] or Ap-
pendix B for more details on how to use the qZeil package) we obtain:

In[1]:= (* first of all load the package *)

<<qZeil.m

Out[1]= Axel Riese’s qZeilberger implementation version 1.8 loaded

In[2]:= (* tell qZeil to compute the companion identity, too *)

Companion = True;

qZeil[qBinomial[n,k,q] qBinomial[b,k,q] q^(k^2) / qBinomial[b+n,n,q],

{k, 0, n}, n, 1, {b}]

Out[3]= SUM[n] == 1
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In[4]:= (* the companion identity is assigned to CompId *)

CompId

2

1 + k + k + n 2

q qBinomial[n, k, q] qfac[q, q, b] qfac[q, q, n]

Out[4]= Sum[−(−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−),

qfac[q, q, −1 + b − k] qfac[q, q, k] qfac[q, q, 1 + b + n]

{n, 0, ∞}] == −If[k >= 0, 1, 0] +

2

jj

q qBinomial[b, b − jj, q] qfac[q, q, b]

Sum[−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−, {jj, 0, k}]

qfac[q, q, jj]

Thus, we automatically find that for b ≥ 0 and k ≥ 0 the companion identity reads as

qk2+k+1 (1− qk+1)
(1− qb+1)

[
b

k + 1

]

q

∞∑

n=k

[
n
k

]
q[

b+n+1
n

]
q

qn = 1− (q; q)b

k∑

j=0

[
b

j

]

q

qj2

(q; q)j
.

For k = 0 this identity becomes

q (1− qb)
1− qb+1

∞∑
n=0

qn

[
b+n+1

n

]
q

= 1− (q; q)b. (2.5)

Surprisingly, in many instances the k = 0 case of the companion identity turns out to be
the limiting case of a Gosper-summable identity. The only counterexample we have found so
far is the companion identity of Ramanujan’s bilateral sum (2.22) in Section 2.4.11 below.
For instance, we obtain by q-hypergeometric telescoping

q (1− qb)
1− qb+1

m−1∑
n=0

qn

[
b+n+1

n

]
q

= 1−
[
b + m

b

]−1

q

,

which for m →∞ reduces to identity (2.5).
For the special case b = n of the q-Chu-Vandermonde identity we get the result spelled

out in Wilf and Zeilberger [45] with its k = 0 case

q

∞∑
n=0

(2− qn − q2n+1) (q; q)2n
(1 + qn+1) (q; q)2n+1

qn = 1− (q; q)∞,

the m →∞ case of

q

m−1∑
n=0

(2− qn − q2n+1) (q; q)2n
(1 + qn+1) (q; q)2n+1

qn = 1−
[
2m

m

]−1

q

.

This shows that the companion identity of some special case of an identity is not the same
as the specialization of the companion identity in general.

For further applications of companion identities see Section 2.4.
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2.3 Dual Identities

Another method for discovering new identities is based on the fact that to any qWZ-pair
one can associate a dual pair that may produce new identities. Once we have found a qWZ-
pair, we can easily construct other ones in a way as listed in the following theorem due to
Gessel [22] and Wilf and Zeilberger [44]. Since during the process of dualization the domain
of n is temporarily transformed to the negative integers, we shall assume that now both
parameters of double-indexed sequences run through all integers. However, this is done only
for technical reasons concerning intermediate steps. For the final result n will be non-negative
again.

Theorem 2.2. Let (f, g) form a qWZ-pair.

(i) For integers a and b, (f∗n,k, g∗n,k) := (fn+a,k+b, gn+a,k+b) is a qWZ-pair.

(ii) For any c ∈ F , (f∗n,k, g∗n,k) := (c·fn,k, c·gn,k) is a qWZ-pair.

(iii) (f∗n,k, g∗n,k) := (f−n,k,−g−n+1,k) is a qWZ-pair.

(iv) (f∗n,k, g∗n,k) := (fn,−k,−gn,−k−1) is a qWZ-pair.

(v) (f∗n,k, g∗n,k) := (gk,n, fk,n) is a qWZ-pair.

(vi) Let R1(n, k) := fn,k/fn−1,k, R2(n, k) := fn,k/fn,k−1, and R3(n, k) := gn,k/fn,k for all
n and k where all quotients are well-defined. Any pair of sequences (f∗n,k, g∗n,k) which
produces the same R1, R2, R3 over some suitable domain for n and k is a qWZ-pair
over this domain.

Proof. (i) – (v) Straightforward by plugging in f∗ and g∗ into the qWZ-equation (2.4).
(vi) Dividing the qWZ-equation (2.4) by fn,k we get

1− fn−1,k

fn,k
=

gn,k

fn,k
− gn,k−1

fn,k
=

gn,k

fn,k
− gn,k−1

fn,k−1
· fn,k−1

fn,k
.

By our assumptions we may replace f and g by f∗ and g∗, respectively. Multiplying through
by f∗n,k proves that (f∗, g∗) forms a qWZ-pair.

As in the q = 1 case one introduces the operation of shadowing (see the work of Wilf
and Zeilberger, e.g., [43,44,45,49]). Let us consider a sequence defined on N, for instance,
an = (q; q)n. Then the defining property of an is that it satisfies the first order recurrence
equation an = (1 − qn) an−1 together with the initial condition a0 = 1. Trying to extend
this sequence to the “opposite side”, one could ask for a sequence ān defined on the negative
integers such that ān = (1− qn) ān−1. A sequence that satisfies this condition is

ān =
(−1)n q(

n+1
2 )

(q; q)−n−1
for n < 0.

We call ān the shadow of an. More generally, for an,k = (α; q)an+bk+c, where α is free of n
and k, the shadow is defined by

ān,k =
(−1)an+bk+c αan+bk+c q(

an+bk+c
2 )

(q2/α; q)−an−bk−c−1
, (2.6)

with the property that an,k (n > 0) and ān,k (n < 0) produce the same R1 and R2, defined in
Theorem 2.2 (vi). The reason for choosing the denominator of ān,k as shown above instead
of simply taking (q/α; q)−an−bk−c is that we want to include the case α = q directly.
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The shadow f̄n,k of a summand term fn,k is then defined to be the result of formally
replacing each factor of the form (α; q)an+bk+c in f according to the shadowing rule (2.6).
Since fn,k (n > 0) and f̄n,k (n < 0) also produce the same R1 and R2, the sequences f and f̄
are in a certain sense equivalent. Thus, it follows from Theorem 2.2 (vi) — the assumption
on R3 is trivially satisfied, because the certificate (a rational function) is invariant under
taking the shadow — that, if f and g form a qWZ-pair for n > 0, then so do f̄ and ḡ for
n < 0.

Evidently, one is free to shadow only some of the factors of fn,k and fixing the others,
this way getting different shadow pairs. A strategy that gives fruitful results, i.e., non-trivial,
well-defined dual qWZ-pairs with finite support in the end, is the following:

Algorithm qShadow. Input: a qWZ-pair (f, g); Output: the shadow pair (f̄ , ḡ).

(S1) Let c1, . . . , cm denote all non-negative integer parameters that f and g depend on.
Define f1 and g1 to be the result of replacing each ci 6= n by −ci − 1 in f and g,
respectively, to preserve non-negativity under shadowing.

(S2) Let f2 denote the result of rewriting all terms of the form (α′; q)a′n+b′k+c′ in f1, for
which α′ depends on n or k, using the rule†

(αqd; q)e =
(α; q)d+e

(α; q)d
for all d, e ∈ Z,

because the shadowing rule is then also applicable to those factors.

(S3) Since we are dealing with terminating identities, the upper summation bound is typi-
cally induced by factors of f like (q; q)−1

ln−mk+d, (q−ln+d; q)mk+e, or
[

ln+d
mk+e

]
q
, for some

l, m ∈ N+ and d, e ∈ Z. Let f̄ denote the result of applying the shadowing rule (2.6)
to all terms of f2 except to those of the form (q; q)an+bk+c, for which a+(l/m) · b = 0
(but not a = 0 = b).

(S4) Put ḡn,k := cert1(n, k) · f̄n,k, where cert1(n, k) denotes the certificate after performing
step (S1), i.e., cert1(n, k) = g1

n,k/f1
n,k.

This is a powerful generalization of the shadowing strategy described by Wilf and Zeil-
berger [44], who only considered parts of the l = m case. Beginning with version 1.6 of the
author’s package qZeil, also step (S1) is performed automatically. Furthermore, the shad-
owing strategy can now be changed manually by calling qZeil with the option Shadow->s,
where s = l/m ∈ Q as in (S3) above. For example, if in the original identity the upper
summation bound is induced by the factor

[
n
k

]
q

or (q−n; q)k, then for computing the dual
identity qZeil has to be called with qZeil[. . . , Shadow->1], since l = m = 1 in this case.
Because the default value for Shadow is 1, the option could also be omitted here. On the other
hand, if the factor in consideration is

[
2n
k

]
q

or (q−2n; q)k, then the corresponding call should
be qZeil[. . . , Shadow->2], since l = 2 and m = 1. This will prevent shadowing of factors
of the form (q; q)an−ak+c for a 6= 0 in the first case and of factors of the form (q; q)2an−ak+c

for a 6= 0 in the second case. We will take a closer look at the main idea behind step (S3)
below.

The final step in dualization is to pass from the shadow pair (f̄ , ḡ) to the dual pair (f ′, g′)
by a flip of variables and sequences, transforming the domain of n back to the non-negative
integers. The dual pair is defined as follows.

†cf. Gasper and Rahman [20, (I.17)]
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Definition 2.2. With the notation introduced above, the dual pair of a qWZ-pair (f, g) is
given by

(f ′n,k, g′n,k) := (ḡ−k,−n−1, f̄−k−1,−n).

It is easily seen from Theorem 2.2 (iii), (iv), (v), and (i) that (f ′, g′) again forms a
qWZ-pair. Note that its certificate is altered via the same change of variables.

Now we shall investigate step (S3) of our shadowing strategy more closely. Suppose that
the summand fn,k contains the factor

hn,k =
(q; q)in+jk+d1

(q; q)ln−mk+d2 (q; q)on+pk+d3

,

where i, l, m, p ∈ N+, j, o ∈ N with o = 0 if j 6= 0, and d1, d2, d3 ∈ Z. This is usually true for
terminating q-hypergeometric identities, however, hn,k might appear in an equivalent form
such as (q−n; q)k/(q; q)k,

[
n
k

]
q
,
[

2n
n−k

]
q
,
[
n+k
2k

]
q
, etc. Since gn,k is a rational function multiple

of fn,k, we may conclude that gn,k = hn,k · an,k for some q-hypergeometric sequence an,k.
Thus, by fixing the term (q; q)ln−mk+d2 in hn,k, according to (S3), the shadow of gn,k is then
given by

ḡn,k =
(q; q)−on−pk−d3−1

(q; q)ln−mk+d2 (q; q)−in−jk−d1−1
· bn,k,

where bn,k equals ān,k multiplied with a power of −1 and a power of q. This means, we end
up with the dual summand

f ′n,k =
(q; q)pn+ok+p−d3−1

(q; q)mn−lk+m+d2 (q; q)jn+ik+j−d1−1
· b−k,−n−1,

which again has finite support. Note that f ′n,k is well-defined for all n and k satisfying
p(n + 1) + ok − d3 > 0, a condition that cannot be guaranteed to hold for all n and k in
general. However, for the case j 6= 0 and o = 0 it is immediately clear that p(n + 1)− d3 > 0
holds for sufficiently large n and all k. On the other hand we find that for j = 0 the lower
summation bound a := d(d1 + 1)/ie in the dual identity does not depend on n. Thus, it is
easily seen that p(n + 1) + ok − d3 > 0 is satisfied for sufficiently large n and all k ≥ a. In
other words, after substituting n + n0 for n in the dual pair, with n0 ∈ N sufficiently large,
the dual summand is well-defined for all n ∈ N over the whole summation range. However, in
practice we did not find an application up to now which actually needs this transformation.

On the other hand, suppose our shadowing strategy is to regardlessly shadow all factors
in fn,k. Then the shadow of gn,k becomes

ḡn,k =
(q; q)−ln+mk−d2−1 (q; q)−on−pk−d3−1

(q; q)−in−jk−d1−1
· cn,k

for some q-hypergeometric sequence cn,k. Consequently, we are lead to

f ′n,k =
(q; q)−mn+lk−m−d2−1 (q; q)pn+ok+p−d3−1

(q; q)jn+ik+j−d1−1
· c−k,−n−1,

which neither has finite support nor is well-defined over reasonable domains for n and k.
As with companion identities, note that dualization does not commute with specialization

in general, i.e., the dual identity of some special case of an identity is not the same as the
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specialization of the dual identity. Hence, we get substantially different results by specializing
parameters, for instance, to non-zero integer multiples of n, respectively powers of qn, or,
by replacing n by 2n, etc., as shown below. However, the dualization operation itself is an
involution up to constant factors.

For the q-Chu-Vandermonde identity above one gets the following result (cf. Riese [37]):

In[5]:= (* tell qZeil to compute the dual identity, too *)

Dual = True;

qZeil[qBinomial[n,k,q] qBinomial[b,k,q] q^(k^2) / qBinomial[b+n,n,q],

{k, 0, n}, n, 1, {b}, Shadow->1]

Out[6]= SUM[n] == 1

In[7]:= (* the dual pair is assigned to DualPair *)

DualPair

2 2

k + n -k/2 - b k + k /2 + n/2 + b n - n /2

Out[7]= {((-1) q qBinomial[n, k, q]

qfac[q, q, b + k] qfac[q, q, b - n] qfac[q, q, n]) / qfac[q, q, k],

2 2

k + n -1 - b - k/2 - b k + k /2 + (3 n)/2 + b n - n /2

((-1) q

qBinomial[-1 + n, k, q] qfac[q, q, 1 + b + k] qfac[q, q, b - n]

qfac[q, q, -1 + n]) / qfac[q, q, k]}

In[8]:= (* compute the dual identity from the dual pair *)

DualId[{k, 0, n}, n]

2

k -k/2 - b k + k /2

(-1) q qBinomial[n, k, q] qfac[q, q, b + k]

Out[8]= Sum[-------------------------------------------------------------, {k, 0, n}]

qfac[q, q, k]

2

n -n/2 - b n + n /2

== (-1) q qBinomial[b, b - n, q] qfac[q, q, b]

Therefore the dual identity reads as
n∑

k=0

(−1)k

[
n

k

]

q

[
b + k

k

]

q

q(
k
2)−bk = (−1)n

[
b

n

]

q

q(
n
2)−bn,

which is the same as the original identity modulo a renaming of the parameters. An identity
satisfying this property is called self-dual.

As mentioned above, for the special case b = n we do not obtain just the dual identity
with b replaced by n, but

n∑

k=0

qn−k + qn − 2qk

1 + qk

[
n

k

]2

q

[
2k

k

]

q

= 0,



2.4. APPLICATIONS 29

presented by Wilf and Zeilberger [45].
Next, let us consider the q-Saalschütz identity in the form

n∑

k=0

[
r − s + m

k

]

q

[
s− r + n

n− k

]

q

[
s + k

m + n

]

q

q(n−k)(r−s+m−k) =
[
r

n

]

q

[
s

m

]

q

.

The program computes the following dual identity (cf. Riese [37]):

n∑

k=0

[
m + k

k

]

q

[
s

r − k

]

q

[
m− s

n− k

]

q

q(n−k)(r−k) =
[
m + r − s

n

]

q

[
n + s

r

]

q

.

Renaming the parameters we find the q-Saalschütz identity also to be self-dual.
For the special case m = n and r = s, the process of dualization leads to the following

result (cf. Riese [37]):

n∑

k=0

(2qn − qk − qk+n−s − q2k − q2k+n−s + 2q3k−s) (q; q)n+s−2k−1

(1 + qk) (q; q)2s−k

[
n

k

]2

q

[
2k

k

]

q

q−2k = 0,

where s ≥ n + 1.
Further applications of dual identities are given in the following section.

2.4 Applications

In the following we shall present several dual and companion identities of “standard” ter-
minating q-identities taken from Appendix II of Gasper and Rahman [20]. Unfortunately,
it turned out that the full power of Gessel’s [22] method for systematically producing dual
identities in the q = 1 case cannot be carried over to the q-case completely, since factoriza-
tion of q-polynomials (where the variables occur as exponents of q) is much harder to handle
algorithmically than the q = 1 case.

Recall the usual definitions of an rφs basic hypergeometric series

rφs(a1, a2, . . . , ar; b1, . . . , bs; q, z) ≡ rφs

[
a1, a2, . . . , ar

b1, . . . , bs
; q, z

]

:=
∞∑

k=0

(a1, a2, . . . , ar; q)k

(q, b1, . . . , bs; q)k

(
(−1)k q(

k
2)

)1+s−r

zk,

and an rψs basic bilateral hypergeometric series

rψs(a1, a2, . . . , ar; b1, b2, . . . , bs; q, z) ≡ rψs

[
a1, a2, . . . , ar

b1, b2, . . . , bs
; q, z

]

:=
∞∑

k=−∞

(a1, a2, . . . , ar; q)k

(b1, b2, . . . , bs; q)k

(
(−1)k q(

k
2)

)s−r

zk.

All finite versions of companion identities for k = 0 have been found algorithmically by
q-hypergeometric telescoping. Krattenthaler [26] kindly pointed out many connections be-
tween several identities to me.
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2.4.1 The q-Binomial Theorem

From the q-binomial theorem [20, (II.4)],

1φ0(q−n,—; q, z) = (zq−n; q)n, (2.7)

we obtain the dual identity

2φ1(q−n, z; 0; q, q) = zn,

which is a special case of the q-Chu-Vandermonde identity [20, (II.6)]. The companion
identity after replacing z by −q/z is a special case of the 1φ1 summation formula (2.8) below,

(−q/z)k

(q; q)k

∞∑

n=k

zn (q−n; q)k

(−z; q)n+1
q(

n
2) = 1 (k ≥ 0),

which for k = 0 reduces to the m →∞ case of

m−1∑
n=0

zn q(
n
2)

(−z; q)n+1
= 1− zm q(

m
2 )

(−z; q)m
.

For z = −q and z = q we immediately get

m∑
n=0

(−1)n q(
n
2)

(q; q)n
=

(−1)m q(
m+1

2 )

(q; q)m
and

m∑
n=0

q(
n
2)

(−q; q)n
= 2− q(

m+1
2 )

(−q; q)m
,

respectively, with the limiting cases

∞∑
n=0

(−1)n q(
n
2)

(q; q)n
= 0 and

∞∑
n=0

q(
n
2)

(−q; q)n
= 2,

respectively. The first identity is a special case of Euler’s q-analogue of the exponential
function (cf. Andrews [7]), whereas the second one was derived by Andrews [5] in the context
of mock-theta-functions. The dual identity of (2.7) for z = q−n reads as

2
n∑

k=0

(−1)k (qk + q2k − qn)
(1 + qk) (q; q)n−k

[
2k

k

]

q

q(
k
2)−2nk =

qn

(q; q)n
.

The companion identity of (2.7) for z = q−n is

q−k

(q; q)k

∞∑

n=k

(−1)n (qk + qn+k+1 − q2n+1) (q−n; q)k

(qn+2; q)n+1
qn(3n−2k+1)/2 = 1 (k ≥ 0),

which for k = 0 reduces to the m →∞ case of

m−1∑
n=0

(−1)n (1 + qn+1 − q2n+1)
(qn+2; q)n+1

qn(3n+1)/2 = 1− (−1)m qm(3m+1)/2

(qm+1; q)m
.
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2.4.2 The Sum of a 1φ1 Series

The sum of a 1φ1 series [20, (II.5)],

1φ1(a; c; q, c/a) =
(c/a; q)∞
(c; q)∞

, (2.8)

turns out to be self-dual for a = q−n. The companion identity in this case is

(−1)k ck+1 q(
k+1
2 )

(c, q; q)k

∞∑

n=k

(q−n; q)k (c; q)n qn(k+1) =

1− (c; q)∞
k∑

j=0

cj qj(j−1)

(c, q; q)j
(k ≥ 0), (2.9)

which for k = 0 reduces to the m →∞ case of

c

m−1∑
n=0

(c; q)n qn = 1− (c; q)m. (2.10)

Apparently, identity (2.10) — despite its simplicity — has not been included into the q-hyper-
geometric database in this form up to now. However, this result can also be derived from
the original 1φ1 summation formula. Letting k →∞ in (2.9) we obtain

∞∑

j=0

cj qj(j−1)

(c, q; q)j
=

1
(c; q)∞

,

which is known as Cauchy’s formula (cf., for instance, Andrews [7]). Note that letting k →∞
in the companion identity, in general corresponds to letting n → ∞ in the original identity.
The dual identity of (2.8) for a = q−n and c = qn reads as

n∑

k=0

(1− q2k+2 − q2k+n+2 + q3k+2) (q; q)k+n+1

(q; q)2k+2

[
n

k

]

q

qk(2k+1) = 1,

which for n →∞ becomes
∞∑

k=0

qk(2k+1)

(q; q)2k+1 (q; q)k
=

1
(q; q)∞

− q2
∞∑

k=0

q2k(k+2)

(q; q)2k+2 (q; q)k
.

The companion identity does not exist in this case because the limit involved is not finite.

2.4.3 The q-Chu-Vandermonde Identity

From the q-Chu-Vandermonde identity [20, (II.7)],

2φ1(a, q−n; c; q, cqn/a) =
(c/a; q)n

(c; q)n
, (2.11)

we obtain the dual identity

2φ1(aq/c, q−n; q2/c; q, q1+n/a) =
(q/a; q)n

(q2/c; q)n
,
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which is again q-Chu-Vandermonde. The companion identity is

ak+1 (c/a; q)k+1

(c, q; q)k

∞∑

n=k

(q−n; q)k (c; q)n

(a; q)n+1
qn(k+1)

=
(c; q)∞
(a; q)∞

k∑

j=0

(−1)j aj (c/a; q)j

(c, q; q)j
q(

j
2) − 1 (k ≥ 0),

which for k → ∞ turns into the 1φ1 summation formula (2.8) above and for k = 0 reduces
to the m →∞ case of

a (1− c/a)
m−1∑
n=0

(c; q)n qn

(a; q)n+1
=

(c; q)m

(a; q)m
− 1.

For a = 0 this identity again gives equation (2.9), whereas the case c = 0 leads to the likewise
simple result

a
m−1∑
n=0

qn

(a; q)n+1
=

1
(a; q)m

− 1, (2.12)

an extended version of the well-known identity

m∑
n=0

qn

(q; q)n
=

1
(q; q)m

.

The dual identity of (2.11) for a = qn reads as

n∑

k=−n−1

ck (q2/c; q)k

(c; q)k

[
2n + 1
n− k

]

q

qk(k−1) =
(qn+1; q)n+1

(c; q)n
, (2.13)

a special case of Carlitz’ [18] summation formula

3φ2

[
q−2n−1, b, c

q−2n/b, q−2n/c
; q,

q2−n

bc

]
=

(bq, cq; q)n (q2, bcq; q)2n

(q2, bcq; q)n (bq, cq; q)2n
. (2.14)

Identity (2.13) turns out to be of special interest in the frame of Bailey chains (see, e.g.,
Andrews [10], or Paule [30]). For instance, for c = 0 we obtain

n∑

k=−n−1

(−1)k

[
2n + 1
n− k

]

q

qk(3k+1)/2 = (qn+1; q)n+1,

the unsymmetric counterpart of the Bailey pair identity (cf. Paule [30])

n∑

k=−n

(−1)k

[
2n

n− k

]

q

qk(3k+1)/2 = (qn+1; q)n.

In the limit n → ∞ both identities turn into Euler’s pentagonal number theorem (see, e.g.,
Andrews [7])

∞∑

k=−∞
(−1)k qk(3k+1)/2 = (q; q)∞.
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For c = q identity (2.13) turns into

n∑

k=0

(1− q2k+1)
[
2n + 1
n− k

]

q

qk2
=

(qn+1; q)n+1

(q; q)n
,

the (2n + 1) counterpart of the trivial Bailey pair identity (see Chapter 3)

n∑

k=0

[
2n

n− k

]

q

δk,0 =
[
2n

n

]

q

.

Similarly, by putting c = −q in equation (2.13) we obtain

n∑

k=−n−1

(−1)k

[
2n + 1
n− k

]

q

qk2
= (q; q2)n+1,

corresponding to the Bailey pair identity (cf. Paule [30])

n∑

k=−n

(−1)k

[
2n

n− k

]

q

qk2
= (q; q2)n.

For n →∞ both identities become
∞∑

k=−∞
(−1)k qk2

=
(q; q)∞

(−q; q)∞
,

a special case of Jacobi’s triple product identity (see, e.g., Andrews [6,7]). The companion
identity of (2.11) for a = qn is a limiting case of the 6φ5 summation formula (2.21) below,

ck

(c; q)k

∞∑

n=k

(−1)n (1− q2n+1) (q−n; q)k (c; q)n

cn (q/c; q)n+1

[
n + k

k

]

q

q(
n+1

2 ) = 1 (k ≥ 0),

which for k = 0 reduces to the m →∞ case of

m−1∑
n=0

(−1)n (1− q2n+1) (c; q)n

cn (q/c; q)n+1
q(

n+1
2 ) = 1 +

(−1)m (c; q)m

cm (q/c; q)m
q(

m+1
2 ).

The dual identity of (2.11) for a = q−n reads as

n∑

k=0

(cqn − cq2k − q2k+1 − q2k+n+1 + 2q3k+1) (qk+2/c; q)k−1

(q2/c; q)k

[
n

k

]2

q

q−k = 0,

which for c = 0 becomes
n∑

k=0

(1 + qn − 2qk)
[
n

k

]2

q

qk(k−1) = 0.

For n →∞ this identity turns into

∞∑

k=0

qk(k−1)

(q; q)2k
= 2

∞∑

k=0

qk2

(q; q)2k
. (2.15)
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Observing that the right hand side is summable by a result due to Euler (cf. Andrews [7], or
Slater [41]) we get

∞∑

k=0

qk(k−1)

(q; q)2k
=

2
(q; q)∞

.

Moreover, equation (2.15) turns out to be the m →∞ case of the Gosper-summable identity

m∑

k=0

1− 2qk

(q; q)2k
qk(k−1) = −qm(m+1)

(q; q)2m
.

The companion identity of (2.11) for a = q−n is

ck+1

(c, q; q)k

∞∑

n=k

(2qk − qn − cqn+k − qn+k+1 + cq3n+1) (q−n; q)2k (c; q)n

(cqn; q)n+2
qn(2k+1)

= 1− (c; q)∞
k∑

j=0

cj qj(j−1)

(c, q; q)j
(k ≥ 0),

which for k = 0 reduces to the m →∞ case of

c

m−1∑
n=0

(2− qn − cqn − qn+1 + cq3n+1) (c; q)n

(cqn; q)n+2
qn = 1− (c; q)m

(cqm; q)m
.

The dual identity of (2.11) for c = qn reads as

n∑

k=0

(−1)k (1− aqk+1 − qk+n+2 + aq3k+3 + aq3k+n+3 − aq4k+3)

× (q; q)n+k+1 (aqk+2; q)k−1

ak (q; q)2k+2

[
n

k

]

q

q(
k+1
2 ) = (q/a; q)n.

For n →∞ and a = 1 this identity becomes

∞∑

k=0

(−1)k (1− qk+1 + q3k+3 − q4k+3)
(1− q2k+1) (1 + qk+1) (q; q)2k+1

q(
k+1
2 ) = 1.

The companion identity of (2.11) for c = qn does not exist.

2.4.4 The Bailey-Daum Summation Formula

From the Bailey-Daum summation formula [20, (II.9)],

2φ1(a, q−n; aqn+1; q,−qn+1) =
(−q; q)n (aq; q2)n

(aqn+1; q)n
, (2.16)

we obtain the dual identity

n∑

k=0

(−1)k (−1, qn+1/a; q)k

(q2/a; q2)k

[
n

k

]

q

q(
k+1
2 )−nk = (−1)n,
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a special case of the q-Saalschütz formula (2.19) below, which for a = 0 turns into the
following known q-analogue of the binomial theorem

n∑

k=0

(−1)k (−1; q)k

[
n

k

]

q

= (−1)n.

The companion identity of (2.16) is

(−1)k (a; q)k+1 qk+1

(q; q)k

∞∑

n=k

(q−n; q)k (aqn+2; q)n

(−q; q)n+1 (aq; q2)n+1 (aqn+2; q)k
qn(k+1)

= 1− 1
(−q; q)∞ (aq; q2)∞

k∑

j=0

(a; q)j q(
j+1
2 )

(q; q)j
(k ≥ 0),

which for k →∞ turns into Ex. 1.16 of Gasper and Rahman [20],

∞∑

j=0

(a; q)j q(
j+1
2 )

(q; q)j
= (−q; q)∞ (aq; q2)∞,

and for k = 0 reduces to the m →∞ case of

(1− a)
m−1∑
n=0

(aqn+2; q)n qn+1

(−q; q)n+1 (aq; q2)n+1
= 1− (aqm+1; q)m

(−q; q)m (aq; q2)m
.

For a = 0 this identity becomes
m∑

n=1

qn

(−q; q)n
= 1− 1

(−q; q)m
,

the a = −q case of equation (2.12).

2.4.5 The q-Analogue of Bailey’s 2F1(−1) Sum

From the terminating q-analogue of Bailey’s 2F1(−1) sum [20, (II.10)],

2φ2(q−2n, q2n+1;−q, b; q,−b) =
(bq−2n; q2)n

(bq; q2)n
, (2.17)

we obtain the dual identity
n∑

k=−n

(−1)k (1− q4k+1) (b; q2)k

bk (q3/b; q2)k

[
4n + 1
2n− 2k

]

q

qk(3k+1) =
(q; q2)2n+1

(q2/b; q)2n
,

which for b = 0 becomes
n∑

k=−n

1− q4k+1

1− q

[
4n + 1
2n− 2k

]

q

qk(2k−1) = δn,0.

The companion identity does not exist. The dual identity of (2.17) for b = q2n+1 reads as

bn/2c∑

k=0

1 + q2k+n+1 − q4k+1 − q4k+2

(q2; q2)2k+1 (q; q)n−2k
q4k2

=
1

(q2; q2)n
.
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The companion identity for b = q2n+1 is

qk(k+3)/2

(q2; q2)k

∞∑
n=0

(qk + qk+1 − q2n+1 − q4n+k+3)
(q−2n; q)k−1 (q2n+2; q2)n

(q; q2)n
q2nk

= 1− 1
(q; q2)∞

k∑

j=0

(−1)j qj2

(q2; q2)j
(k ≥ 0),

which for k = 0 reduces to the m →∞ case of

m−1∑
n=0

(1 + q + q2n+2)
(q2n+2; q2)n

(q; q2)n
q2n+1 =

(q2m+2; q2)m

(q; q2)m
− 1.

2.4.6 The q-Analogue of Gauss’ 2F1(−1) Sum

From the terminating q-analogue of Gauss’ 2F1(−1) sum [20, (II.11)],

2φ2(q−2n, b; q1/2−n
√

b,−q1/2−n
√

b; q,−q) =
(q1−2n; q2)n

(bq1−2n; q2)n
, (2.18)

we obtain the dual identity

bn/2c∑

k=0

(−1)k (q; q2)k (q/b; q2)n−k

bk

[
n

2k

]

q

qk(k+1) = (q/b; q)n,

a special case of the q-Chu-Vandermonde identity, which for b = 0 reduces to

bn/2c∑

k=0

(q; q2)k

[
n

2k

]

q

qk(2k−2n+1) = q−(n
2),

and for n →∞ turns into Euler’s q-analogue of the exponential function (cf. Andrews [7])

∞∑

k=0

bk q(
k
2)

(q; q)k
= (−b; q)∞.

The companion identity of (2.18) is

(b; q)k+1

(q; q)k
qk(k+3)/2

∞∑
n=0

bn (q−2n−1; q)k (q/b; q2)n

(bq1−2n; q2)k (q; q2)n+1
= 1 (k ≥ 0, |b| < 1),

which for k = 0 reduces to the m →∞ case of

(1− b)
m−1∑
n=0

bn (q/b; q2)n

(q; q2)n+1
= 1− bm (q/b; q2)m

(q; q2)m
.

For b = 0 this identity becomes

m−1∑
n=0

(−1)n qn2

(q; q2)n+1
= 1− (−1)m qm2

(q; q2)m
.
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Letting m →∞ we obtain

∞∑
n=0

(−1)n qn2

(q; q2)n+1
= 1,

the s = q and x = −1 case of Andrews’ [5] transformation formula

∞∑
n=0

xn qn2

(s; q2)n+1
=

∞∑
n=0

(−xq/s; q2)n sn.

The dual identity of (2.18) for b = q−2n reads as

bn/2c∑

k=0

(2q2n − q2k+n − q2k+n+1 − q2k+2n + q6k+1) (q; q2)n−2k−1 (q; q2)2k

[
n

2k

]2

q

q−4k = 0,

which for n →∞ becomes

(q; q2)∞
∞∑

k=0

(1 + q − 2q2k) (q; q2)2k−1

(q; q)22k

q2k = q

∞∑

k=0

q2k

(q2; q2)2k
.

The companion identity does not exist in this case. The dual identity of (2.18) for b = q2n

reads as
n∑

k=−n−1

(−1)k

[
4n + 2
2n− 2k

]

q

qk(3k+1) = (1− q4n+2) (−q; q)2n,

which for n → ∞ again turns into Euler’s pentagonal number theorem. The companion
identity of (2.18) for b = q2n is

qk(k+3)/2

(q; q)k (q; q2)k

∞∑
n=0

(−1)n (1 + q2n+1) (q−1−2n, q2n+1; q)k qn2
= 1 (k ≥ 0),

which for k = 0 reduces to the m →∞ case of the trivial identity

m−1∑
n=0

(−1)n (1 + q2n+1) qn2
= (−1)m−1 qm2

+ 1.

2.4.7 The q-Saalschütz Formula

The q-Saalschütz (or q-Pfaff-Saalschütz) formula [20, (II.12)],

3φ2(a, b, q−n; c, abc−1q1−n; q, q) =
(c/a, c/b; q)n

(c, c/ab; q)n
, (2.19)

turns out to be self-dual. The companion identity is

c

ab

(a, b; q)k+1

(c, q; q)k

∞∑

n=k

(q−n; q)k (c, c/ab; q)n

(c/a, c/b; q)n+1 (abq1−n/c; q)k
qn

= 1− (c, c/ab; q)∞
(c/a, c/b; q)∞

k∑

j=0

cj (a, b; q)j

aj bj (c, q; q)j
(k ≥ 0),



38 CHAPTER 2. AUTOMATIC GENERATION OF q-IDENTITIES

which for k →∞ turns into the q-Gauss sum [20, (II.8)] and for k = 0 reduces to the m →∞
case of

c (1− a) (1− b)
ab

m−1∑
n=0

(c, c/ab; q)n

(c/a, c/b; q)n+1
qn = 1− (c, c/ab; q)m

(c/a, c/b; q)m
.

The dual identity of (2.19) for a = qn reads as

n∑

k=−n−1

(−1)k (bq/c, c; q)k

bk (q2/c, cq/b; q)k

[
2n + 1
n− k

]

q

q(
k+1
2 ) =

(q/b; q)n (qn+1; q)n+1

(cq/b, q2/c; q)n
,

a generalization of identity (2.13) but still a special case of (2.14). The companion identity
does not exist in this case. The dual identity of (2.19) for a = q−n reads as

n∑

k=0

(2c2qn − c2qk − c2qk+n − cqk+n+1 − bcqk+n+1 + cq3k+1 + bcq3k+1 + bq3k+2 +

bq3k+n+2 − 2bq4k+2)
c2k (c/bq; q)n−2k (bq/c)2k (qk+2/c; q)k−1

b2k (q2/c; q)k

[
n

k

]2

q

qk(k−3) = 0.

The companion identity of (2.19) for a = q−n is

c

b2

(b; q)k+1

(c, q; q)k

∞∑

n=k

(−2bqk + bqn + cqn+k + bcqn+k + bqn+k+1 − c2q3n − cq3n+1 −

bcq3n+1 − c2q3n+k+1 + 2c2q4n+1)
(q−n; q)2k (c; q)n (cqn+1/b; q)n−1

(c/b; q)n+1 (cqn; q)n+2 (bq1−2n/c; q)k
qn

= 1− (c; q)∞
(c/b; q)∞

k∑

j=0

(−1)j cj (b; q)j

bj (c; q)j
q(

j
2) (k ≥ 0),

which for k = 0 reduces to the m →∞ case of

c (1− b)
b2

m−1∑
n=0

(−2b+bqn+cqn+bcqn+bqn+1−c2q3n−cq3n+1−bcq3n+1−c2q3n+1+2c2q4n+1)

× (c; q)n (cqn+1/b; q)n−1

(c/b; q)n+1 (cqn; q)n+2
qn = 1− (c, cqm/b; q)m

(c/b, cqm; q)m
.

Since the case c = qn leads to a rather lengthy dual identity involving a polynomial of
degree 7, we do not state the result here.

2.4.8 The q-Dixon Formula

For the q-Dixon sum [20, (II.14)],

4φ3

[
a2,−aq, b, q−n

−a, a2q/b, a2q1+n
; q,

aqn+1

b

]
=

(a2q, aq/b; q)n

(aq, a2q/b; q)n
, (2.20)
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the dual identity is a special case of the q-Saalschütz identity. The companion identity is

(aq/b)k+1

(b; q)k+1 (q, a2q/b; q)k

∞∑

n=k

(q−n; q)k (a; q)n+1 (a2q/b; q)n

(a2qk+1, aq/b; q)n+1
qn(k+1)

=
(a, a2q/b; q)∞
(a2, aq/b; q)∞

k∑

j=0

(−1)j aj (1 + aqj) (a2, b; q)j

bj (q; q)j
q(

j+1
2 ) − 1 (k ≥ 0),

which for k = 0 leads to the same identity as the q-Saalschütz companion identity. The dual
identity of (2.20) for b = qn reads as

n∑

k=−n−1

(−1)k ak (aq, qn+1/a2; q)k

(q/a, a2q1−n; q)k

[
2n + 1
n− k

]

q

q(
k
2)−nk = (aq)−n (qn+1; q)n+1

(1/a2; q)n
,

which is again a special case of identity (2.14). For a = 0 this identity becomes

n∑

k=−n−1

(−1)kq(
k
2)

(q; q)n−k (q; q)n+k+1
= δn,0,

the unsymmetric counterpart of the Bailey pair identity (cf. Paule [30])

n∑

k=−n

(−1)kq(
k
2)

(q; q)n−k (q; q)n+k
= δn,0.

The companion identity of (2.20) for b = qn is again a special case of the 6φ5 summation
formula (2.21) below,

ak+1 qk
∞∑

n=k

an (1− q2n+1) (q−n; q)k (aq, 1/a2; q)n

(a2qk+1; q)n+1 (q/a; q)n (a2q1−n; q)k

[
n + k

k

]

q

= −1 (k ≥ 0, |a| < 1),

which for k = 0 reduces to the m →∞ case of
m−1∑
n=0

an+1 (1− q2n+1) (aq, 1/a2; q)n

(a2q; q)n+1 (q/a; q)n
=

am (aq, 1/a2; q)m

(a2q, 1/a; q)m
− 1.

2.4.9 The Sum of a 6φ5 Series

For the terminating sum of a very-well-poised 6φ5 series [20, (II.21)],

6φ5

[
a, q

√
a,−q

√
a, b, c, q−n

√
a,−√a, aq/b, aq/c, aqn+1

; q,
aqn+1

bc

]
=

(aq, aq/bc; q)n

(aq/b, aq/c; q)n
, (2.21)

we obtain the dual identity
n∑

k=0

(−1)k (qn+1/a, bc/a; q)k

(bq/a, cq/a; q)k

[
n

k

]

q

q(
k+1
2 )−nk = (bc/a)n (q/b, q/c; q)n

(bq/a, cq/a; q)n
,

a special case of the q-Saalschütz formula, which for a = 0 turns into the following well-known
q-analogue of the binomial theorem

n∑

k=0

(−1)k

[
n

k

]

q

q(
k
2) = δn,0.
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For a = 1 and b = 0 = c we get

n∑

k=0

(−1)k (q; q)n+k

(q; q)n−k (q; q)k
q(

k+1
2 )−nk = qn(n+1),

which is a special case of the “reversed” q-Chu-Vandermonde sum [20, (II.6)]. The companion
identity of (2.21) is

(aq/bc)k+1 (a, b, c; q)k+1

(aq/b, aq/c, q; q)k

∞∑

n=k

(aq/b, aq/c; q)n (q−n; q)k

(aq/bc; q)n+1 (a; q)n+k+2
qn(k+1)

=
(aq/b, aq/c; q)∞
(a, aq/bc; q)∞

k∑

j=0

(−1)j aj (1− aq2j) (a, b, c; q)j

bj cj (aq/b, aq/c, q; q)j
q(

j+1
2 ) − 1 (k ≥ 0),

which for k = 0 leads to the same identity as the q-Saalschütz companion identity.

2.4.10 Jackson’s q-Analogue of Dougall’s 7F6 Sum

For Jackson’s q-analogue of Dougall’s 7F6 sum [20, (II.22)],

8φ7

[
a, q

√
a,−q

√
a, b, c, d, e, q−n

√
a,−√a, aq/b, aq/c, aq/d, aq/e, aqn+1

; q, q
]

=
(aq, aq/bc, aq/bd, aq/cd; q)n

(aq/b, aq/c, aq/d, aq/bcd; q)n
,

where a2q = bcdeq−n, we find rather lengthy dual and companion identities. Since simple
special cases of them can also be derived from other identities, we do not present the results
here.

2.4.11 Ramanujan’s Bilateral Sum

For the terminating version of Ramanujan’s bilateral sum [20, (II.29)],

1ψ1(q−n; qn+1; q, z) =
(q, zq−n, qn+1/z; q)n

(qn+1; q)n
, (2.22)

we obtain the dual identity

n∑

k=0

(qn − qk + zq3k − zq4k+n+1) (z; q)2k

zk (1− q2k+1)

[
n + k

2k

]

q

q−k(2n+1) = qn zn+1.

The companion identity is

zk−1
∞∑

n=k

(−1)n (z − zqn+k+1 + q3n+k+3 − q4n+3) (q−n; q)k

zn (qn+1; q)k+1 (q/z; q)2n+2

[
2n

n

]

q

q(
n+1

2 ) = 1 (k ≥ 0).

For this identity, the k = 0 case is not Gosper-summable!

2.4.12 Bailey’s Sum of a 3ψ3 Series

For Bailey’s sum of a well-poised 3ψ3 series [20, (II.31)],

3ψ3

[
q−n, c, d

qn+1, q/c, q/d
; q,

qn+1

cd

]
=

(q, q/cd; q)n

(q/c, q/d; q)n
,
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we obtain (with creative symmetrizing) the same dual identity as for the terminating sum of
a very-well-poised 6φ5 series (2.21) above. The companion identity is

(q/cd)k+1 (c, d; q)k+1

(q/c, q/d; q)k

∞∑

n=k

(q/c, q/d; q)n (q−n; q)k

(q/cd; q)n+1 (q; q)n+k+1
qn(k+1)

=
(q/c, q/d; q)∞
(q, q/cd; q)∞

k∑

j=−∞

(−1)j (1 + qj) (c, d; q)j

cj dj (q/c, q/d; q)j
q(

j+1
2 ) − 2 (k ≥ 0).

Note that for k = 0 the left hand side is Gosper summable by the k = 0 case of the
q-Saalschütz companion identity.
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Chapter 3

Walking Along Bailey Chains

Based on a fundamental q-series transform due to Bailey [15], whose potential for itera-
tion was independently observed by Andrews [9,10] and Paule [27,28], we shall describe in
this chapter how the concept of Bailey pairs and Bailey chains can be used to easily prove
q-identities by reducing them to more elementary ones as well as — by reversing this process
— to successively construct (infinitely many) identities from a certain class of existing ones,
so-called Bailey pair identities. In particular we shall demonstrate how the author’s imple-
mentation of a q-analogue of Gosper’s and Zeilberger’s algorithm (cf. Paule and Riese [33])
together with the new extension package Bailey can be used both to produce computer
proofs for certain (classical and new) results and to find new identities.

3.1 Basic Definitions and Tools

Let Z denote the set of all integers, N the set of all non-negative integers, and let F be a
field of characteristic 0. In the following we consider q as an indeterminate which could be
specialized to a non-zero complex number (with |q| < 1 for limit considerations). Let the
q-shifted factorial of a ∈ F be defined as usual (see, e.g., Gasper and Rahman [20]) by

(a; q)k :=





(1− a) (1− aq) · · · (1− aqk−1), if k > 0,
1, if k = 0,[
(1− aq−1) (1− aq−2) · · · (1− aqk)

]−1
, if k < 0,

and

(a; q)∞ :=
∞∏

k=0

(1− aqk),

where products of q-shifted factorials will be abbreviated by

(a1, a2, . . . , am; q)k := (a1; q)k (a2; q)k · · · (am; q)k.

The q-binomial coefficients (also called Gaussian polynomials) are then given by

[
n

k

]

q

:=





(q; q)n

(q; q)k (q; q)n−k
, if 0 ≤ k ≤ n,

0, otherwise.
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Without proof we state the following well-known version of the q-binomial theorem.

Theorem 3.1. For x 6= 0 we have

n∑

k=−n

(−1)k xk

[
2n

n− k

]

q

q(
k
2) = (x, q/x; q)n. (3.1)

If we put x = −z
√

q in equation (3.1), replace q by q2, and let n → ∞, we are led to
Jacobi’s triple product identity (see, e.g., Andrews [6,7]).

Theorem 3.2. For z 6= 0 we have

∞∑

k=−∞
qk2

zk = (q2,−qz,−q/z; q2)∞. (3.2)

3.2 Bailey Pairs and Bailey Chains

The notion of Bailey pairs and Bailey chains was introduced in full generality 1984 by An-
drews [9], inspired by Bailey’s [14,15] work on Rogers-Ramanujan type identities. Important
special cases were discovered independently by Paule [27]. In our presentation of the funda-
mental notions we shall follow Paule’s survey article [30].

3.2.1 Ordinary and Bilateral Bailey Pairs

Definition 3.1. We say that two sequences a = (an)n∈N and b = (bn)n∈N form an (ordinary)
Bailey pair relative to x if

n∑

k=0

ak

(q; q)n−k (xq; q)n+k
= bn (3.3)

for all n ≥ 0.

With this notation Bailey’s [15] fundamental result can be stated as following.

Lemma 3.3 (Bailey’s Lemma). For any Bailey pair (a, b) relative to x we have

∞∑

k=0

(ρ1, ρ2; q)k

(
xq

ρ1ρ2

)k

bk =
(xq/ρ1, xq/ρ2; q)∞
(xq, xq/ρ1ρ2; q)∞

∞∑

k=0

(ρ1, ρ2; q)k

(xq/ρ1, xq/ρ2; q)k

(
xq

ρ1ρ2

)k

ak. (3.4)

Proof. See Andrews [10].

With Bailey’s Lemma in hands a straightforward way to prove identities is then to find
a suitable Bailey pair (a, b) and parameters ρ1, ρ2 such that substituting (a, b) into equa-
tion (3.4) gives the desired identity. This is exactly how Slater [40] skillfully constructed a
list of 130 identities of this type. However, the full power of Bailey’s Lemma lies in its poten-
tial for iteration, which was obviously missed by Bailey himself, but observed independently
by Andrews [9,10] and Paule [27,28,30]. For this we consider the special case ρ1 = q−m

and ρ2 = q−n with m,n ∈ N in Bailey’s Lemma,

∞∑

k=0

(q−m, q−n; q)k

(
xqm+n+1

)k
bk =

(xqm+1; q)n

(xq; q)n

∞∑

k=0

(q−m, q−n; q)k

(xqm+1, xqn+1; q)k

(
xqm+n+1

)k
ak,
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which in the limit m →∞ turns into
n∑

k=0

qk2
xk

(q; q)n−k
bk =

n∑

k=0

qk2
xk

(q; q)n−k (xq; q)n+k
ak,

where we made use of the rewriting rule (see, e.g., Gasper and Rahman [20] or Slater [41])

(q−n; q)k =
(q; q)n

(q; q)n−k
(−1)k q(

k
2)−nk.

Since a and b form a Bailey pair we finally obtain after replacing ak by q−k2
x−k ak

n∑

k=0

ak

(q; q)n−k (xq; q)n+k
=

n∑

j=0

qj2
xj

(q; q)n−j

j∑

k=0

q−k2
x−k ak

(q; q)j−k (xq; q)j+k
. (3.5)

A short proof of key-equation (3.5) using merely an operator version of the q-binomial
theorem was given by Paule [29].

Now the iteration mechanism becomes evident. Since the inner sum on the right hand
side is more or less of the same form as the sum on the left hand side, we may successively
replace the inner sum on the right by the corresponding result of (3.5) with ak replaced by
q−k2

x−k ak until we end up with a simpler or known identity. Vice versa, equation (3.5) tells
us how to pass from one Bailey pair to another as formulated in the following theorem.

Theorem 3.4. If (a, b) form a Bailey pair relative to x then so do (a′, b′), where

a′n = qn2
xn an and b′n =

n∑

j=0

qj2
xj

(q; q)n−j
bj

for all n ≥ 0.

Proof. The assertion follows immediately from equation (3.5).

In practice Bailey pair identities frequently appear in symmetrized form. This gives rise
to the following definition (see Paule [30]).

Definition 3.2. We say that two sequences (an)n∈Z and (bn)n∈N form a d-bilateral Bailey
pair if

n∑

k=−n−d

ak

(q; q)n−k (q; q)n+k+d
= bn

for d ∈ {0, 1} and all n ≥ 0.

Andrews and Hickerson [11] call pairs arising in this symmetrized form simply “bilateral”,
we use the name “d-bilateral” instead to explicitly distinguish between both cases.

The corresponding iteration rules for d = 0 and d = 1 can be derived by specializing
x = 1, a0 = c0 and ak = ck + c−k for k ≥ 1, respectively x = q and ak = (ck + c−k−1)/(1− q)
for k ≥ 0, in equation (3.5) which then reduces to

n∑

k=−n−d

ck

(q; q)n−k (q; q)n+k+d
=

n∑

j=0

qj2+dj

(q; q)n−j

j∑

k=−j−d

q−k2−dk ck

(q; q)j−k (q; q)j+k+d
. (3.6)

Thus, we have:
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Corollary 3.5. Theorem 3.4 holds true for d-bilateral Bailey pairs (a, b) and (a′, b′) with
x = qd, where the relation between an and a′n is extended to hold for all n ∈ Z.

In the limit n →∞, equation (3.6) becomes

1
(q; q)∞

∞∑

k=−∞
ck =

∞∑

j=0

qj2+dj

j∑

k=−j−d

q−k2−dk ck

(q; q)j−k (q; q)j+k+d
. (3.7)

Example 3.1. Let us apply the iteration machinery to ck = (−1)k qk(5k−1)/2 with d = 0:

1
(q; q)∞

∞∑

k=−∞
(−1)k qk(5k−1)/2 (3.7)

=
∞∑

j=0

qj2
j∑

k=−j

(−1)k qk(3k−1)/2

(q; q)j−k (q; q)j+k

(3.6)
=

∞∑

j=0

qj2
j∑

l=0

ql2

(q; q)j−l

l∑

k=−l

(−1)k qk(k−1)/2

(q; q)l−k (q; q)l+k

(3.1)
=

∞∑

j=0

qj2

(q; q)j
.

Using Jacobi’s triple product identity (3.2) we finally obtain

∞∑

j=0

qj2

(q; q)j
=

1
(q; q5)∞ (q4; q5)∞

. (3.8)

This is an easy proof of the famous first Rogers-Ramanujan identity. For more information
about these celebrated identities see, for instance, Andrews [7].

3.2.2 Bailey Chains

Suppose we are given a Bailey pair. By repeated application of Theorem 3.4 one is able to
construct a sequence of Bailey pairs forming the constituents of a so-called Bailey chain.

Definition 3.3. The sequence of ordinary Bailey pairs

(
a(0), b(0)

) → (
a(1), b(1)

) → (
a(2), b(2)

) → · · ·

is called an (ordinary) Bailey chain, where (a(i), b(i)) is constructed from (a(i−1), b(i−1)) by
applying Theorem 3.4 once.

Since d-bilateral Bailey pairs can be viewed as special cases of ordinary Bailey pairs, we
call a sequence of d-bilateral Bailey pairs constructed by applications of Corollary 3.5 also a
Bailey chain.

Moving in a Bailey chain as described above — we say that in this case one moves to the
right — can be done algorithmically with the Bailey package, an add-on for the author’s
Mathematica implementation of the q-Zeilberger algorithm (cf. Paule and Riese [33]). The
corresponding command is

BaileyForw[{a, b}, n, x, opts]
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where the ordinary Bailey pair (an, bn) relative to x is specified by a, b, n, and the optional
parameter x with default value 1. For d-bilateral Bailey pairs, x must be set to qd. The
only option we describe here is Base->qc, where c is a non-zero integer. In this case, all
expressions are considered to be in base qc instead of the default value q. Further options
will be presented below.

Example 3.2. Let us again consider the first Rogers-Ramanujan identity above and its
corresponding Bailey chain. We start with the 0-bilateral Bailey pair (a(0), b(0)), where

a(0)
n = (−1)n q(

n
2) and b(0)

n = δn,0,

which forms a Bailey pair because of equation (3.1) with x = 1. Here δn,0 denotes the
Kronecker symbol. Then, by Corollary 3.5, (a(1), b(1)) is given by

a(1)
n = qn2

a(0)
n = (−1)n qn(3n−1)/2 and b(1)

n =
n∑

j=0

qj2

(q; q)n−j
b
(0)
j =

1
(q; q)n

,

and (a(2), b(2)) by

a(2)
n = qn2

a(1)
n = (−1)n qn(5n−1)/2 and b(2)

n =
n∑

j=0

qj2

(q; q)n−j
b
(1)
j =

n∑

j=0

qj2

(q; q)n−j (q; q)j
.

Proceeding algorithmically, i.e., by using the Bailey package, we get:

In[1]:= (* first of all load the package *)

<<qZeil.m

Out[1]= Axel Riese’s qZeilberger implementation version 1.8 loaded

In[2]:= BaileyForw[{(-1)^n q^(n(n-1)/2), Delta[n,0]}, n]

2

n -n/2 + (3 n )/2 1

Out[2]= {(-1) q , -------------}

qfac[q, q, n]

In[3]:= BaileyForw[%, n]

2

2 jj

n -n/2 + (5 n )/2 q

Out[3]= {(-1) q , Sum[----------------------------------, {jj, 0, n}]}

qfac[q, q, jj] qfac[q, q, -jj + n]

The corresponding Bailey pair identities for (a(i), b(i)), i ∈ {0, 1, 2}, are then
n∑

k=−n

(−1)k qk(k−1)/2

(q; q)n−k (q; q)n+k
= δn,0, (3.9)

n∑

k=−n

(−1)k qk(3k−1)/2

(q; q)n−k (q; q)n+k
=

1
(q; q)n

, (3.10)

n∑

k=−n

(−1)k qk(5k−1)/2

(q; q)n−k (q; q)n+k
=

n∑

j=0

qj2

(q; q)n−j (q; q)j
, (3.11)
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where the last one turns into the first Rogers-Ramanujan identity for n → ∞ and using
Jacobi’s triple product identity (3.2).

Next, we shall show that an ordinary Bailey pair (a, b) is uniquely determined by only
one of the sequences a or b. Indeed, if a is given, then b is explicitly determined by (3.3).
Conversely, by inverting relation (3.3) the following theorem tells us how to compute a when
b is given.

Theorem 3.6. If (a, b) form an ordinary Bailey pair relative to x then

an = (1− xq2n)
n∑

k=0

(−1)n−k q(
n−k

2 ) (xq; q)n+k−1

(q; q)n−k
bk (3.12)

for all n ≥ 0, and vice versa. (For x = 1 and n = 0, eq. (3.12) should be interpreted as
a0 = b0.)

Proof. For a “classical” proof see Andrews [8]. We give a computer proof here, where we use
the fact that for proving an assertion of the form

(∀n) an =
n∑

k=0

cn,k bk if and only if (∀n) bn =
n∑

k=0

dn,k ak

it is sufficient to show that the (infinite) triangular matrices C = (cn,k) and D = (dn,k) are
inverse to each other, or in other words

n∑

k=m

cn,k dk,m = δn,m.

However, this can be done with q-hypergeometric telescoping (cf. Paule and Riese [33]):

In[4]:= qTelescope[(1-x q^(2n)) (-1)^(n-k) q^Binomial[n-k,2] qfac[x q,q,n+k-1] /

(qfac[q,q,n-k] qfac[q,q,k-m] qfac[x q,q,k+m]), {k, m, n}]

2 2

-k + n k/2 + k /2 - n/2 - k n + n /2 2 n

Out[4]= {Sum[((-1) q (1 - x q )

qfac[x q, q, -1 + k + n]) / (qfac[q, q, k - m] qfac[q, q, -k + n]

qfac[x q, q, k + m]), {k, m, n}] == 0, {m - n != 0}}

In[5]:= (* check the m = n case using that the input summand

of the last computation has been assigned to FF *)

qSimplify[FF /. {k -> m, n -> m}]

Out[5]= 1

For d-bilateral Bailey pairs (a, b), note that a is not uniquely determined by b, but —
for instance in case of d = 0 — only the sequence of sums (an + a−n) together with a0.
Trivially, for any d-bilateral Bailey pair (a, b), also (ã, b) is a d-bilateral Bailey pair, where
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ãn = a−n−d for all n ∈ Z. However, in most applications it is obvious how to construct a
from (an + a−n−d) such that the an neither vanish for all n ≤ 0 nor for all n ≥ 0.

The fact that Bailey’s transform (3.4) can be viewed as a matrix inversion was observed
by Gessel and Stanton [23] in the more general context of q-Lagrange inversion. One of the
results given there contains Theorem 3.6 as a special case.

Computing a from b as described above can be done algorithmically with the Bailey via
the command

BaileyInv[b, n, x, opts],

as shown in the following example. Note that if x = 1, the output of BaileyInv is of the
form {a0, an}, n ≥ 1, since a0 must be treated separately then. This will happen also with
other Bailey pair related functions below. Also be aware of the fact that the Bailey package
in general does not evaluate sums automatically, unless the summand contains the Kronecker
symbol.

Example 3.3. We again consider the Bailey chain from Example 3.2 above. From b
(0)
n = δn,0

we obtain

In[6]:= BaileyInv[Delta[n,0], n]

2

n -n/2 + n /2 n

Out[6]= {1, (-1) q (1 + q )}

which is simply the unsymmetrized version of a
(0)
n . For b

(1)
n = (q; q)−1

n we are led to the
following result:

In[7]:= BaileyInv[1/qfac[q,q,n], n]

2

n -n/2 + n /2 2 n

Out[7]= {1, (-1) q (1 - q )

2

jj jj/2 + jj /2 - jj n

(-1) q qfac[q, q, -1 + jj + n]

Sum[----------------------------------------------------, {jj, 0, n}]}

qfac[q, q, jj] qfac[q, q, -jj + n]

Thus, the corresponding inverse relation is given by

(1− qn)
n∑

k=0

(−1)k q(
n−k

2 ) (q; q)n+k−1

(q; q)k (q; q)n−k
= qn(3n−1)/2 (n ≥ 1),

which could be checked independently with qZeil. Finally, for b
(2)
n we get

In[8]:= BaileyInv[Sum[q^(k^2) / (qfac[q,q,k] qfac[q,q,n-k]), {k, 0, n}], n]

2 2

n -n/2 + n /2 2 n jj jj/2 + jj /2 - jj n

Out[8]= {1, (-1) q (1 - q ) Sum[((-1) q
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2

k

q

qfac[q, q, -1 + jj + n] Sum[--------------------------------, {k, 0, jj}]) /

qfac[q, q, jj - k] qfac[q, q, k]

qfac[q, q, -jj + n], {jj, 0, n}]}

with the inverse double sum relation

(1− qn)
n∑

j=0

(−1)j q(
n−j

2 ) (q; q)n+j−1

(q; q)n−j

j∑

k=0

qk2

(q; q)j−k (q; q)k
= qn(5n−1)/2 (n ≥ 1).

So far we have seen how to find new identities from existing ones by walking along a Bailey
chain. However, to find a proof for a given Bailey pair identity we have to work backwards.
This means, we need a way to move back in a Bailey chain, i.e., to extend our Bailey chain
also to the left as

· · · ← (
a(−2), b(−2)

) ← (
a(−1), b(−1)

) ← (
a(0), b(0)

)
.

From Theorem 3.4, respectively Corollary 3.5, we see that a can be uniquely (and easily) re-
constructed from a′. Hence, also b is uniquely determined. The following inversions explicitly
tell us how to move to the left in a Bailey chain.

Theorem 3.7. For Bailey pairs (a, b) and (a′, b′) as in Theorem 3.4 we have for all n ≥ 0

an = q−n2
x−n a′n and bn = q−n2

x−n
n∑

j=0

(−1)n−j q(
n−j

2 )

(q; q)n−j
b′j .

The same holds true for d-bilateral Bailey pairs (a, b) and (a′, b′) as in Corollary 3.5 with
x = qd, where the relation between an and a′n is extended to hold for all n ∈ Z.

Proof. The relation between a and a′ is obvious. For constructing b from b′ we again give an
algorithmic proof of the underlying inverse relation.

In[9]:= qTelescope[(-1)^(k-m) q^Binomial[k-m,2] / (qfac[q,q,n-k] qfac[q,q,k-m]),

{k, m, n}]

2 2

k - m -k/2 + k /2 + m/2 - k m + m /2

(-1) q

Out[9]= {Sum[-----------------------------------------, {k, m, n}] == 0,

qfac[q, q, k - m] qfac[q, q, -k + n]

{-m + n != 0}}

In[10]:= (* check the m = n case; FF is the input summand of the last computation *)

qSimplify[FF /. {k -> m, n -> m}]

Out[10]= 1
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The command in the Bailey package for moving to the left in a Bailey chain according
to Theorem 3.7 is

BaileyBack[{a, b}, n, x, opts].

Example 3.4. Let us consider identity (3.9) and its associated Bailey pair (a(0), b(0)). Mov-
ing to the left, by Theorem 3.7 with x = 1, then leads to

a(−1)
n = q−n2

a(0)
n = (−1)n q−n(n+1)/2,

b(−1)
n = q−n2

n∑

j=0

(−1)n−j q(
n−j

2 )

(q; q)n−j
b
(0)
j =

(−1)n q−n(n+1)/2

(q; q)n
,

and

a(−2)
n = q−n2

a(−1)
n = (−1)n q−n(3n+1)/2,

b(−2)
n = q−n2

n∑

j=0

(−1)n−j q(
n−j

2 )

(q; q)n−j
b
(−1)
j = (−1)n q−n(n+1)/2

n∑

j=0

q−nj

(q; q)n−j (q; q)j
,

which is comfortably checked with the computer:

In[11]:= BaileyBack[{(-1)^n q^(n(n-1)/2), Delta[n,0]}, n]

2

2 n -n/2 - n /2

n -n/2 - n /2 (-1) q

Out[11]= {(-1) q , ------------------}

qfac[q, q, n]

In[12]:= BaileyBack[%, n]

2 2

n -n/2 - (3 n )/2 n -n/2 - n /2

Out[12]= {(-1) q , (-1) q

1

Sum[----------------------------------------, {jj, 0, n}]}

jj n

q qfac[q, q, jj] qfac[q, q, -jj + n]

The corresponding identities are

n∑

k=−n

(−1)k q−k(k+1)/2

(q; q)n−k (q; q)n+k
=

(−1)n q−n(n+1)/2

(q; q)n
, (3.13)

n∑

k=−n

(−1)k q−k(3k+1)/2

(q; q)n−k (q; q)n+k
= (−1)n q−n(n+1)/2

n∑

j=0

q−nj

(q; q)n−j (q; q)j
. (3.14)
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3.3 From Bailey Chains to Bailey Lattices

For effective use of our iteration mechanism we shall now present other techniques to construct
new Bailey pairs from given ones. This enables us to walk along Bailey chains in several ways
which leads to the more general concept of a Bailey lattice introduced by Agarwal, Andrews,
and Bressoud [2] (cf. also Bressoud [17]). More precisely, this means that one leaves a Bailey
chain at a certain step (respectively pair) and continues walking along a different Bailey
chain.

3.3.1 Binomial Bailey Pairs

As we saw above, d-bilateral Bailey pairs correspond more or less directly to taking x = qd in
ordinary Bailey pairs. More generally, we shall now treat the case x = qd for d ∈ N. Clearly,
for arbitrary d ∈ N we are dealing with sums of (2n + d + 1) terms of the form

n∑

k=−n−d

ck

(q; q)n−k (q; q)n+k+d
= bn.

However, the d-bilateral Bailey pair (c, b) cannot be transformed into an ordinary Bailey pair
(a, b) relative to qd in general, because after identifying an with (c−n−d + cn)/(q; q)d, an−1

with (c−n−d+1 + cn−1)/(q; q)d, etc., the remaining terms c0, c−1, . . . , c−d need to be covered
all by a0, which is impossible for d ≥ 2. For instance, for d = 2 we obtain

c0

(q; q)n (q; q)n+2
+

c−1

(q; q)n+1 (q; q)n+1
+

c−2

(q; q)n+2 (q; q)n
=

a0

(q; q)n (q3; q)n
,

or equivalently

a0 =
1

(1− q)(1− q2)

(
c0 +

1− qn+2

1− qn+1
c−1 + c−2

)
.

Since a0 is not free of n, this approach fails. Therefore we introduce the following definition
(cf. Paule [30]) which avoids this problem completely.

Definition 3.4. We say that two sequences (An)n∈N and (Bn)n∈N form a binomial Bailey
pair relative to d if

n∑

k=0

[
2n + d

n− k

]

q

Ak = Bn

for some fixed d ∈ N and all n ≥ 0.

Trivially, for any ordinary Bailey pair (a, b) relative to x = qd the corresponding binomial
Bailey pair (A, B) relative to d is given by An = an and Bn = (qd+1; q)2n bn, and vice versa.
Thus, the corresponding inverse relation for binomial Bailey pairs follows immediately from
Theorem 3.6.

Corollary 3.8. If (A,B) form a binomial Bailey pair relative to d then

An = (1− q2n+d)
n∑

k=0

(−1)n−k q(
n−k

2 )

1− qn+k+d

[
n + k + d

n− k

]

q

Bk (3.15)

for all n ≥ 0, and vice versa. (For n = 0 = d, eq. (3.15) should be interpreted as A0 = B0.)
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The analogue of the function BaileyInv for binomial Bailey pairs is

BaileyInvBinom[B, n, d, opts],

as demonstrated in the following example.

Example 3.5. From the q-binomial theorem, Theorem 3.1, we obtain:

In[13]:= BaileyInvBinom[qfac[x,q,n] qfac[q/x,q,n], n, 0]

2

n -n/2 + n /2 2 n

Out[13]= {1, (-1) q (1 - q )

2

jj jj/2 + jj /2 - jj n

Sum[((-1) q qBinomial[jj + n, -jj + n, q]

q jj + n

qfac[-, q, jj] qfac[x, q, jj]) / (1 - q ), {jj, 0, n}]}

x

The corresponding inverse identity is therefore given by

(1− q2n)
n∑

k=0

(−1)k q(
k+1
2 )−nk

1− qn+k

[
n + k

2k

]

q

(x, q/x; q)k = (1 + qnx−2n)xn (n ≥ 1).

Furthermore, it is possible to pass from a binomial Bailey pair relative to d to a binomial
Bailey pair relative to d− 1, i.e., to change the parameter x to x/q.

Lemma 3.9. For all n, k, d ∈ N with d ≥ 1 we have
[
2n + d

n− k

]

q

=
1− q2n+d

1− q2k+d

([
2n + d− 1

n− k

]

q

− q2k+d

[
2n + d− 1
n− k − 1

]

q

)
.

Proof.

1− q2n+d

1− q2k+d

([
2n + d− 1

n− k

]

q

− q2k+d

[
2n + d− 1
n− k − 1

]

q

)

=
1− q2n+d

1− q2k+d

(q; q)2n+d−1

(q; q)n−k (q; q)n+k+d

[
(1− qn+k+d)− q2k+d(1− qn−k)

]

=
(q; q)2n+d

(q; q)n−k (q; q)n+k+d
=

[
2n + d

n− k

]

q

.

Theorem 3.10. If (A,B) form a binomial Bailey pair relative to d ≥ 1, then (A′, B′) form
a binomial Bailey pair relative to d− 1, where

A′n =





A0/(1− qd), if n = 0,

An

1− q2n+d
− q2n+d−2 An−1

1− q2n+d−2
if n ≥ 1,

and B′
n =

Bn

1− q2n+d

for all n ≥ 0.
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Proof. From the assumption on (A,B) and Lemma 3.9 we obtain

B′
n =

Bn

1− q2n+d
=

1
1− q2n+d

n∑

k=0

[
2n + d

n− k

]

q

Ak

=
n∑

k=0

[
2n + d− 1

n− k

]

q

Ak

1− q2k+d
−

n∑

k=1

[
2n + d− 1

n− k

]

q

q2k+d−2 Ak−1

1− q2k+d−2

=
n∑

k=0

[
2n + d− 1

n− k

]

q

A′k.

Invoking the Bailey package with the command

BaileyBackBinom[{A, B}, n, d, opts]

we obtain, for instance, for d = 1, An = (−1)n (1 − q2n+1) q(c+1)n2+cn, c ∈ R, and arbi-
trary Bn:

In[14]:= BaileyBackBinom[{(-1)^n (1-q^(2n+1)) q^((c+1)n^2+c n), B}, n, 1]

2 2

n -(c n) + n + c n 2 c n B

Out[14]= {{1, (-1) q (1 + q )}, ------------}

1 + 2 n

1 - q

From this we may conclude after symmetrizing the corresponding identity that any 0-bilateral
Bailey pair (a, b), where an = (−1)n q(c+1)n2+cn is also a 1-bilateral Bailey pair and vice versa,
or in other words:

Corollary 3.11. For all c ∈ R we have

n∑

k=−n

(−1)k q(c+1)k2+ck

(q; q)n−k (q; q)n+k
=

n∑

k=−n−1

(−1)k q(c+1)k2+ck

(q; q)n−k (q; q)n+k+1
. (3.16)

This relation, for instance, was used by Paule [30] for proving multiple series generaliza-
tions of the Rogers-Ramanujan identities.

Example 3.6. The second Rogers-Ramanujan identity can be computed as follows (d = 1):

1
(q; q)∞

∞∑

k=−∞
(−1)k qk(5k+3)/2 (3.7)

=
∞∑

j=0

qj2+j

j∑

k=−j−1

(−1)k qk(3k+1)/2

(q; q)j−k (q; q)j+k+1

(3.6)
=

∞∑

j=0

qj2+j

j∑

l=0

ql2+l

(q; q)j−l

l∑

k=−l−1

(−1)k qk(k−1)/2

(q; q)l−k (q; q)l+k+1

(3.16)
=

∞∑

j=0

qj2+j

j∑

l=0

ql2+l

(q; q)j−l

l∑

k=−l

(−1)k qk(k−1)/2

(q; q)l−k (q; q)l+k

(3.1)
=

∞∑

j=0

qj2+j

(q; q)j
.
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Next, we shall show that it is also possible to change the parameter x to xq, i.e., to switch
from a binomial Bailey pair relative to d to a binomial Bailey pair relative to d + 1.

Theorem 3.12. If (A′, B′) form a binomial Bailey pair relative to d, then (A,B) form a
binomial Bailey pair relative to d + 1, where

An = (1− q2n+d+1) qn2+dn
n∑

j=0

q−j2−dj A′j and Bn = (1− q2n+d+1)B′
n

for all n ≥ 0.

Proof. The relation between B and B′ is obvious from Theorem 3.10 with d replaced by d+1.
For the computation of A we define fn := q−n2−dn A′n and gn := q−n2−dn An/(1− q2n+d+1)
with g−1 := 0, since then the relation between A′ and A in Theorem 3.10 can be written as
fn = gn− gn−1. However, this is equivalent to gn =

∑n
j=0 fj , which completes the proof.

The algorithmic counterpart of Theorem 3.12 is the function

BaileyForwBinom[{A, B}, n, d, opts]

as demonstrated in the following example.

Example 3.7. From the trivial binomial Bailey pair identity

n∑

k=0

[
2n

n− k

]

q

δk,0 =
[
2n

n

]

q

,

we are led to:

In[15]:= BaileyForwBinom[{Delta[n,0], qBinomial[2n,n,q]}, n, 0]

2

n 1 + 2 n qfac[q, q, 1 + 2 n]

Out[15]= {q (1 - q ), -------------------}

2

qfac[q, q, n]

It turns out that the corresponding identity

n∑

k=0

(1− q2k+1)
[
2n + 1
n− k

]

q

qk2
= (1− q2n+1)

[
2n

n

]

q

was found to be a dual identity of the q-Chu-Vandermonde identity in Chapter 2.

Since for binomial Bailey pairs (A,B), the value of A0 often has to be defined separately,
the functions BaileyBackBinom and BaileyForwBinom can be called with the option A0->a0

for explicitly specifying A0 := a0.

3.3.2 Dual Bailey Pairs

As Andrews [9] pointed out, another important way to produce new Bailey pairs is to switch
from x and q to x−1 and q−1, respectively.
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Theorem 3.13. If (a, b) form an ordinary Bailey pair relative to x with an = an(x, q) and
bn = bn(x, q), then so do (a′, b′), where

a′n(x, q) = qn2
xn an(x−1, q−1) and b′n(x, q) = q−n2−n x−n bn(x−1, q−1)

for all n ≥ 0.

Proof. The assertion is an immediate consequence of the rewriting rule

(a; q−1)k = (a−1; q)k (−a)k q−(k
2).

The pair (a′, b′) constructed as above is called the dual Bailey pair. Note that dualization
in this context is completely different from qWZ-dualization introduced in Chapter 2. While
0-bilateral Bailey pairs fit perfectly well into Theorem 3.13 with x = 1, for 1-bilateral Bailey
pairs with x = q we additionally have to divide the resulting b′n by (1− q)/(1− q−1) = −q.
This is again easily seen by applying the rewriting rule used in the proof of Theorem 3.13.

Corollary 3.14. If (a, b) form a d-bilateral Bailey pair with an = an(q) and bn = bn(q),
then so do (a′, b′), where

a′m(q) = qm2+dm am(q−1) and b′n(q) = (−1)d q−n2−(d+1)n−d bn(q−1)

for all m ∈ Z and n ∈ N.

Passing from a Bailey pair (a, b) to the dual Bailey pair (a′, b′) as described in Theo-
rem 3.13 and Corollary 3.14 can be carried out automatically with the Bailey package by
calling the function

BaileyDual[{a, b}, n, x, opts],

where x is either an integer power of q or an indeterminate (i.e., a certain Mathemat-
ica symbol). For 1-bilateral Bailey pairs, BaileyDual must be called with the option
Bilateral1->True. In this case the program automatically assumes x = q.

Example 3.8. Recall the Bailey pair identities from Example 3.2 and Example 3.4, which
were obtained by walking to the right, respectively to the left in the corresponding Bailey
chain. Alternatively, identities (3.13) and (3.14) could be derived directly from (3.10) and
(3.11), respectively, by application of Corollary 3.14. For instance, running BaileyDual on
the pair (a(1), b(1)) from Example 3.2 gives:

In[16]:= BaileyDual[{(-1)^n q^(n(3n-1)/2), 1/qfac[q,q,n]}, n]

2

2 n -n/2 - n /2

n n/2 - n /2 (-1) q

Out[16]= {(-1) q , -------------------}

qfac[q, q, n]

This is one of the underlying Bailey pairs of identity (3.13) from Example 3.4.

Now we are able to give an alternative proof for another Bailey pair generation due to
Paule [28] by a 4-step Bailey lattice walk.
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Theorem 3.15. For all c ∈ R we have
n∑

k=−n

(−1)k qck2+ck

(q; q)n−k (q; q)n+k
= qn

n∑

k=−n

(−1)k qck2+(c−1)k

(q; q)n−k (q; q)n+k
. (3.17)

Proof. Let bn(c, q) denote the left hand side of equation (3.17). Then, by Corollary 3.14 and
Corollary 3.11, we have

q−n2−n bn(c, q−1) =
n∑

k=−n

(−1)k q(−c+1)k2−ck

(q; q)n−k (q; q)n+k
=

n∑

k=−n−1

(−1)k q(−c+1)k2−ck

(q; q)n−k (q; q)n+k+1
,

which after dualizing once more turns into

−q−n−1 bn(c, q) =
n∑

k=−n−1

(−1)k qck2+(c+1)k

(q; q)n−k (q; q)n+k+1
.

Replacing k by −k − 1 in the sum on the right hand side and applying Corollary 3.11 again
yields

q−n bn(c, q) =
n∑

k=−n−1

(−1)k qck2+(c−1)k

(q; q)n−k (q; q)n+k+1
=

n∑

k=−n

(−1)k qck2+(c−1)k

(q; q)n−k (q; q)n+k
,

which completes the proof.

3.3.3 c-Step Bailey Pairs

Finally we once more extend the notion of Bailey pairs.

Definition 3.5. We say that two sequences (an)n∈N and (bn)n∈N form a c-step Bailey pair
relative to x if

∑

k≥0

ak

(q; q)n−ck (xq; q)n+ck
= bn

for some fixed c ∈ N with c ≥ 1 and all n ≥ 0.

The iteration mechanism in this case works as follows.

Theorem 3.16. If (a, b) form a c-step Bailey pair relative to x then so do (a′, b′), where

a′n = q(cn)2xcn an and b′n =
n∑

j=0

qj2
xj

(q; q)n−j
bj

for all n ≥ 0.

Proof. We define ãk := am if k = m · c for some m ∈ N, and ãk := 0 otherwise. Since (a, b)
form a c-step Bailey pair, it is immediately clear that (ã, b) form an ordinary Bailey pair.
Thus, by Theorem 3.4, the same holds true for (ã′, b′), where

ã′n = qn2
xn ãn and b′n =

n∑

j=0

qj2
xj

(q; q)n−j
bj .
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The proof is completed by observing that

b′n =
n∑

k=0

ã′k
(q; q)n−k (xq; q)n+k

=
∑

k≥0

q(ck)2xck ak

(q; q)n−ck (xq; q)n+ck
.

From Theorem 3.16 and Theorem 3.7 it is easily seen how to move to the left in a c-step
Bailey chain.

Corollary 3.17. For c-step Bailey pairs (a, b) and (a′, b′) as in Theorem 3.16 we have

an = q−(cn)2x−cn a′n and bn = q−n2
x−n

n∑

j=0

(−1)n−j q(
n−j

2 )

(q; q)n−j
b′j

for all n ≥ 0.

The functions BaileyForw and BaileyBack can be applied also to c-step Bailey pairs
with the option Step->c, i.e.,

BaileyForw[{a, b}, n, x, Step->c, opts]
and

BaileyBack[{a, b}, n, x, Step->c, opts],

respectively.
The next step in extending the Bailey pair database is to combine the notion of c-step

and binomial Bailey pairs.

Definition 3.6. We say that two sequences (An)n∈N and (Bn)n∈N form a c-step binomial
Bailey pair relative to d if

∑

k≥0

[
2n + d

n− ck

]

q

Ak = Bn

for some fixed c, d ∈ N with c ≥ 1 and all n ≥ 0.

Unfortunately, the only useful generalization of Lemma 3.9 seems to exist for c = 2.
In other cases it turns out that the resulting recurrence relation for

[
2n+d
n−ck

]
q

does not factor
appropriately. Thus, we will restrict ourselves to this case here, where again the corresponding
functions

BaileyForwBinom[{A, B}, n, d, Step->2, opts]
and

BaileyBackBinom[{A, B}, n, d, Step->2, opts]

are available.

Lemma 3.18. For all n, k, d ∈ N with d ≥ 2 we have
[
2n + d

n− 2k

]

q

=
1− q2n+d

1− q4k+d

([
2n + d− 2

n− 2k

]

q

− q4k+d

[
2n + d− 2
n− 2k − 2

]

q

)
.
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Proof.

1− q2n+d

1− q4k+d

([
2n + d− 2

n− 2k

]

q

− q4k+d

[
2n + d− 2
n− 2k − 2

]

q

)

=
1− q2n+d

1− q4k+d

(q; q)2n+d−2

(q; q)n−2k (q; q)n+2k+d

× [
(1− qn+2k+d−1)(1− qn+2k+d)− q4k+d(1− qn−2k−1)(1− qn−2k)

]

=
1− q2n+d

1− q4k+d

(q; q)2n+d−2

(q; q)n−2k (q; q)n+2k+d
(1− q4k+d)(1− q2n+d−1)

=
(q; q)2n+d

(q; q)n−2k (q; q)n+2k+d
=

[
2n + d

n− 2k

]

q

.

Theorem 3.19. If (A,B) form a 2-step binomial Bailey pair relative to d ≥ 2, then (A′, B′)
form a 2-step binomial Bailey pair relative to d− 2, where

A′n =





A0/(1− qd), if n = 0,

An

1− q4n+d
− q4n+d−4 An−1

1− q4n+d−4
if n ≥ 1,

and B′
n =

Bn

1− q2n+d

for all n ≥ 0.

Proof. From the assumption on (A,B) and Lemma 3.18 we obtain

B′
n =

Bn

1− q2n+d
=

1
1− q2n+d

∑

k≥0

[
2n + d

n− 2k

]

q

Ak

=
∑

k≥0

[
2n + d− 2

n− 2k

]

q

Ak

1− q4k+d
−

∑

k≥1

[
2n + d− 2

n− 2k

]

q

q4k+d−4 Ak−1

1− q4k+d−4

=
∑

k≥0

[
2n + d− 2

n− 2k

]

q

A′k.

Example 3.9. In Chapter 2 a dual identity of the q-Gauss sum was found to be

∞∑

k=−∞
(−1)k

[
2n + 2
n− 2k

]

q

qk(3k+1) = (1− q2n+2) (−q; q)n.

The underlying 2-step binomial Bailey pair relative to 2 is given by

An = (−1)n (1− q4n+2) qn(3n+1) and Bn = (1− q2n+2) (−q; q)n.

Hence, by Theorem 3.19, we have:

In[17]:= BaileyBackBinom[{(-1)^n (1-q^(4n+2)) q^(n(3n+1)), (1-q^(2n+2)) *

qfac[-q,q,n]}, n, 2, Step->2]

2

n -n + 3 n 2 n

Out[17]= {{1, (-1) q (1 + q )}, qfac[-q, q, n]}
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The corresponding identity reads as

∞∑

k=−∞
(−1)k

[
2n

n− 2k

]

q

qk(3k−1) = (−q; q)n. (3.18)

As with ordinary (1-step) binomial Bailey pairs also in this case it is possible to walk into
the opposite direction, i.e., to switch from a 2-step binomial Bailey pair relative to d to a
2-step binomial Bailey pair relative to d + 2.

Theorem 3.20. If (A′, B′) form a 2-step binomial Bailey pair relative to d, then (A,B)
form a 2-step binomial Bailey pair relative to d + 2, where

An = (1− q4n+d+2) q2n2+dn
n∑

j=0

q−2j2−dj A′j and Bn = (1− q2n+d+2)B′
n

for all n ≥ 0.

Proof. We apply the same argumentation as in the proof of Theorem 3.12, where now
fn := q−2n2−dn A′n and gn := q−2n2−dn An/(1− q4n+d+2) with g−1 := 0.

Analogously to the proof of Theorem 3.16 it is easily shown how dualization works for
c-step Bailey pairs.

Theorem 3.21. If (a, b) form a c-step Bailey pair relative to x with an = an(x, q) and
bn = bn(x, q), then so do (a′, b′), where

a′n(x, q) = q(cn)2xcn an(x−1, q−1) and b′n(x, q) = q−n2−n x−n bn(x−1, q−1)

for all n ≥ 0.

Example 3.10. Recall identity (3.18) from the example above. The corresponding 2-step
Bailey pair relative to 1 is given by A0 = 1, An = (−1)n (1 + q2n) qn(3n−1), n ≥ 1, and
Bn = (−q; q)n/(q; q)2n.

In[18]:= BaileyDual[{(-1)^n (1+q^(2n)) q^(n(3n-1)), qfac[-q,q,n] / qfac[q,q,2n]},

n, Step->2]

2

2 -n/2 + n /2

n n + n -2 n q qfac[-q, q, n]

Out[18]= {(-1) q (1 + q ), ---------------------------}

qfac[q, q, 2 n]

Therefore, we obtain the dual identity

∞∑

k=−∞
(−1)k

[
2n

n− 2k

]

q

qk(k+1) = (−q; q)n q(
n
2).



3.4. SLATER’S TABLE OF BAILEY PAIRS 61

3.4 Slater’s Table of Bailey Pairs

In 1951, Slater [39] (see also Slater [40]) derived a list of 70 Bailey pairs by specializing
parameters in a sum of a very-well-poised 6ψ6 series due to Bailey [13]. The following table
illustrates that many of them are related to other ones by short walks in the Bailey lattice.
Furthermore, errata in the original list are corrected in the footnotes. To illustrate how to
read the table, let us consider, for instance, the fifth line. It states that Bailey pair B (1),
which corresponds to

n∑

k=−n

(−1)k qk(3k−1)/2

(q; q)n−k (q; q)n+k
=

1
(q; q)n

is the underlying Bailey pair of identity (3.10) above, whereas Bailey pair B (2) corresponding
to

n∑

k=−n

(−1)k q3k(k−1)/2

(q; q)n−k (q; q)n+k
=

qn

(q; q)n

can be derived from B (1) by application of Theorem 3.15. Entries with a “—” in both the
second and third column, such as A (1)–A (4), serve as “starting” Bailey pairs, i.e., we start
a walk in the Bailey lattice from such a pair but cannot derive it from another one.

# from by using

A (1) — —
A (3) — —
A (5) A (1) Thm. 3.13
A (7) A (3) Thm. 3.13

B (1) — eq. (3.10)
B (3) B (1) Cor. 3.11

C (1) — —
C (3) C (1) Thm. 3.20
C (5) C (1) Thm. 3.13
C (7) C (3) Thm. 3.13

E (1) — —
E (3) E (1) Cor. 3.11
E (5) H (8) —
E (7)2 E (3) Thm. 3.13

F (1) — —
F (3) F (1) Thm. 3.13

# from by using

A (2) — —
A (4) — —
A (6) A (4) Thm. 3.13
A (8) A (2) Thm. 3.13

B (2) B (1) Thm. 3.15
B (4) B (2) Thm. 3.12

C (2) C (1), C (3) addition
C (4) C (6) Thm. 3.13
C (6) C (5) Thm. 3.20

E (2) E (1) Thm. 3.13
E (4) E (5) Thm. 3.13
E (6)1 E (3) Cor. 3.11, Thm. 3.15

F (2) — —
F (4) F (2) Thm. 3.13

1αr = (−1)r qr2
(qr + q−r), x = q

2αr = (−1)r (q−r − qr+1)/(1− q)
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# from by using

G (1) — —
G (3) G (1) Thm. 3.15
G (5)4 G (2) Thm. 3.13

H (1)5 — —
H (3) B (2) Thm. 3.13
H (5) — —
H (7) E (7) Cor. 3.11, Thm. 3.15
H (9) H (5) Thm. 3.13
H (11) H (10) Thm. 3.13
H (13) — trivial
H (15) — —

I (1) — —
I (3) I (2) Thm. 3.13
I (5) — —
I (7) — —
I (9) — —
I (11) I (10) Thm. 3.13
I (13) I (12) Thm. 3.13

K (1)8 — —
K (3) — —
K (5) — —

# from by using

G (2)3 G (1) Cor. 3.11
G (4) G (1) Thm. 3.13
G (6) G (3) Thm. 3.13

H (2) — —
H (4) H (3) Thm. 3.15
H (6) — trivial
H (8) H (7) Thm. 3.15
H (10) — —
H (12) H (5) Thm. 3.12
H (14) H (12) Thm. 3.13
H (16) H (15) Thm. 3.13

I (2)6 — —
I (4) I (1) Thm. 3.13
I (6) I (5) Thm. 3.13
I (8)7 I (7) Thm. 3.13
I (10) H (6) Thm. 3.20
I (12) — —

K (2)8 K (1) Thm. 3.13
K (4) K (3) Thm. 3.13
K (6) K (5) Thm. 3.13

How to Find Slater’s Pairs Automatically

We want to emphasize that all of these Bailey pairs can be verified algorithmically. Moreover,
many of them, namely those of groups B, C, F, and H can also be found automatically with
the Extended q-Zeilberger Algorithm (see Appendix B). For this we will make use of the new
option PolyMult. With this option enabled, qZeil automatically finds polynomial multipliers
of the input summand for which a q-Zeilberger recurrence of the specified order exists. A
more detailed description of this feature can be found in Appendix B.7.6.

The reason for the fact that we cannot find all Bailey pairs in this way is that we are not
able to apply our machinery to Bailey pairs (a, b) where the definition of an splits into several
cases. For this we would have to find a rational function multiplier of the input summand
that might depend on both qk and qn. Besides the question whether this is actually possible
from theoretic point of view, one would at least end up with huge systems of non-linear
equations which most probably exceed the capabilities of today’s computer algebra systems.

3α2r+1 = q3r2+11r/2+5/2 (1− q−2r−3/2)/(1− q1/2)
4α2r = qr2−r/2 (1− q2r+1/2)/(1− q1/2), α2r+1 = qr2+5r/2+3/2 (1− q−2r−3/2)/(1− q1/2)
5αr = qr2/2 (qr/2 + q−r/2)
6α2r+1 = (−1)r+1 qr2

(qr/2 − q(3r+1)/2)
7α2r+1 = (−1)r q2r2

(q3r+1 − qr)
8β0 = 1
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As an example, let us first consider multiples of an = 1 with x = 1. Since the program
cannot find Laurent polynomials, e.g. (q−k + qk) = q−k (1 + q2k), we simply multiply the
summand by q−k and then look for polynomials of degree 2. Note that in this case we succeed
even with q-hypergeometric telescoping.

In[19]:= qTelescope[q^(-k) / (qfac[q,q,n-k] qfac[q,q,n+k]), {k, 1, n}, PolyMult->2]

k k

(-1 + q ) (1 + q )

Out[19]= Sum[---------------------------------------, {k, 1, n}] ==

k

q qfac[q, q, -k + n] qfac[q, q, k + n]

1

-(-----------------------------------)

n

q qfac[q, q, -1 + n] qfac[q, q, n]

This corresponds to the Bailey pair H (5) in Slater [39].

Similarly, for multiples of an = (−1)n with x = 1 we obtain the following (where
SUMX[n, P (k)] in the output stands for

∑
k fn,k ·P (k) with fn,k being the original summand

and P (k) the polynomial multiplier found by the program; see Appendix B).

In[20]:= qZeil[(-1)^k q^(-k) / (qfac[q,q,n-k] qfac[q,q,n+k]),

{k, -Infinity, Infinity}, n, 1, PolyMult->{2,2}]

Out[20]=

k 2 k

k SUMX[-1 + n, q ] 2 k SUMX[-1 + n, 1 + q ]

{SUMX[n, q ] == -(----------------), SUMX[n, 1 + q ] == -(----------------------),

2 n 2 n

1 - q q (1 - q )

k k

k k SUMX[-1 + n, (-1 + q ) (1 + q )]

SUMX[n, (-1 + q ) (1 + q )] == -(--------------------------------),

-1 + 2 n

q (1 - q )

k 2

k 2 SUMX[-1 + n, (1 + q ) ]

SUMX[n, (1 + q ) ] == -(------------------------),

-1 + n n

q (1 + q ) (1 - q )

k 2

k 2 SUMX[-1 + n, (-1 + q ) ]

SUMX[n, (-1 + q ) ] == -(------------------------)}

-1 + n n

q (1 - q ) (1 + q )
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The first solution corresponds to H (7), the second one to H (8), the third one is trivial,
and the last two ones are linear combinations of H (7) and H (8), which is easily seen after
expanding the corresponding polynomial multipliers.

3.5 Discovering New Bailey Pairs

By proceeding as described in the previous section we are not only able to find many Bailey
pairs presented in Slater [39], we can even go beyond this list. As we saw above, in most steps
of a Bailey lattice walk, an is multiplied with powers of qn2

and qn but not with a power of qn

alone. This might be the reason why several families of Bailey pairs {(a(d), b(d))}d∈N, whose
first members a(d)

n differ by powers of qn, do not appear in literature up to now. The object
of this section is to list some typical examples of this kind where we will restrict ourselves to
0- and 1-bilateral Bailey pairs determined by an of the type

an = (±1)n qn(αn+β)/2, (3.19)

with α, β being specific non-negative integers. Note that the β < 0 case is implicitly covered
by changing the order of summation in the corresponding Bailey pair identity. For each
choice of α we start with a sequence a(0)

n obtained by putting β = 0 or β = 1 in (3.19). Then
we use the Extended q-Zeilberger Algorithm to check for which d ∈ N there exist closed form
Bailey pairs (a(d), b(d)), where a(d)

n = qdn a(0)
n . For all the results shown below this seems

to happen either for no d or for all d. In the latter case, the complexity of b(d)
n in general

increases rather fast with d. Thus, we only state the results for d ≤ 3.

Case α = 0:

• For a(0)
n = 1, there seems to exist no closed form Bailey pair (a(d), b(d)). Since we cannot

check for all d ∈ N whether a polynomial multiplier of the summand exists, we state this
result as a conjecture.

• For a(0)
n = (−1)n, i.e., Slater’s Bailey pair H (7) and its corresponding identity

n∑

k=−n

(−1)k

(q; q)n−k (q; q)n+k
=

(−1)n

(q2; q2)n
,

we find that the “next” Bailey pair (a(1), b(1)) is still in Slater’s list, namely H (8) or

n∑

k=−n

(−1)k qk

(q; q)n−k (q; q)n+k
=

(−1)n

qn (q2; q2)n
,

which is obtained easily from H (7) by application of Theorem 3.15. However, thanks to
qZeil we find that (a(2), b(2)) is characterized by

n∑

k=−n

(−1)k q2k

(q; q)n−k (q; q)n+k
=

(−1)n
(
1 + q − q2n+1)

)

q2n (q2; q2)n
,

a Bailey pair no longer appearing in Slater’s list. The dual identity reads as

n∑

k=−n

(−1)k qk(k+2)

(q; q)n−k (q; q)n+k
=

q2n+1 + q2n − 1
q (q2; q2)n

,
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where we again want to emphasize that dualization in the context of Bailey pairs has
nothing to do with qWZ-dualization. By Theorem 3.10, the 1-bilateral counterpart of this
identity is given by

n∑

k=−n−1

(−1)k (1− q2k+1) qk(k+2)

(q; q)n−k (q; q)n+k+1
=

(1 + q2) (q2n+1 + q2n − 1)
q3 (q2; q2)n

.

Similarly, for (a(3), b(3)) we obtain

n∑

k=−n

(−1)k q3k

(q; q)n−k (q; q)n+k
=

(−1)n
(
1 + q(1 + q + q2) (1− q2n)

)

q3n (q2; q2)n
,

with the dual identity

n∑

k=−n

(−1)k qk(k+3)

(q; q)n−k (q; q)n+k
=

(
q3n+1 + (qn + qn−1 + qn−2) (q2n − 1)

)

q (q2; q2)n
,

and the 1-bilateral counterpart

n∑

k=−n−1

(−1)k (1− q2k+1) qk(k+3)

(q; q)n−k (q; q)n+k+1

=
(1 + q) (1− q + q2)

(
q3n+1 + (qn + qn−1 + qn−2) (q2n − 1)

)

q4 (q2; q2)n
.

Summarizing, if (a(d), b(d)) is a closed form Bailey pair, we may conclude, by dualization,
that the same is true for (α(d), β(d)), where α(d)

n = qn2
a(d)

n , and also, by Theorem 3.10, for
(A(d), B(d)), where A(d)

n = (1− q2n+1) qn2
a(d)

n .

• It turns out that proceeding as above also works for the corresponding 1-bilateral Bailey
pairs, i.e., for the same a(d)

n with x = q instead of x = 1. The Bailey pairs for d = 0 and
d = 1 are H (13) and E (7), or equivalently

n∑

k=−n−1

(−1)k

(q; q)n−k (q; q)n+k+1
= 0,

and
n∑

k=−n−1

(−1)k qk

(q; q)n−k (q; q)n+k+1
=

(−1)n+1

qn+1 (q2; q2)n
,

respectively, whereas for d = 2 we are led to

n∑

k=−n−1

(−1)k q2k

(q; q)n−k (q; q)n+k+1
=

(−1)n+1 (1 + q)
q2n+2 (q2; q2)n

. (3.20)

Moving one step to the right from this identity according to Corollary 3.5 we obtain

n∑

k=−n−1

(−1)k qk(k+3)

(q; q)n−k (q; q)n+k+1
= q−2

n∑

j=0

qj(j−1) (−1)j+1 (1 + q)
(q; q)n−j (q2; q2)j

,
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which for n →∞ turns into

1
(q; q)∞

∞∑

k=−∞
(−1)k qk(k+3) = q−2

∞∑

j=0

qj(j−1) (−1)j+1 (1 + q)
(q2; q2)j

.

Since the left hand side vanishes by Jacobi’s triple product identity (3.2), we finally get

∞∑

j=0

(−1)j qj(j−1)

(q2; q2)j
= 0,

which is a special case of Euler’s q-analogue of the exponential function (cf. Andrews [7]).
The dual identity of (3.20) reads as

n∑

k=−n−1

(−1)k qk(k−1)

(q; q)n−k (q; q)n+k+1
=

qn (1 + q)
(q2; q2)n

.

Again, moving one step to the right, letting n → ∞ and using Jacobi’s triple product
identity we get

∞∑

j=0

qj(j+2)

(q2; q2)j
=

(q4; q4)2∞ (q2; q4)∞
(q2; q)∞

.

This identity does not appear in Slater’s [40] list. Similarly, for (a(3), b(3)) we obtain

n∑

k=−n−1

(−1)k q3k

(q; q)n−k (q; q)n+k+1
=

(−1)n+1 (1 + q + q2 + q3 − q2n+3)
q3n+3 (q2; q2)n

,

with the dual identity

n∑

k=−n−1

(−1)k qk(k−2)

(q; q)n−k (q; q)n+k+1
=

q2n(1 + q + q2 + q3)− 1
q (q2; q2)n

.

• On the other hand, if we start from Slater’s Bailey pair F (3), i.e., from

n∑

k=−n

qk/2

(q; q)n−k (q; q)n+k
=

1
qn/2 (q1/2, q; q)n

,

again all 0-bilateral a(d)
n seem to be summable. For instance, for d = 1 we obtain

n∑

k=−n

q3k/2

(q; q)n−k (q; q)n+k
=

1− q1/2 + qn+1/2

q3n/2 (q1/2, q; q)n
, (3.21)

and for d = 2
n∑

k=−n

q5k/2

(q; q)n−k (q; q)n+k
=

1− q1/2 − q3/2 + q2 + qn+1/2 − qn+2 + q2n+3/2

q5n/2 (q1/2, q; q)n
,

with the dual identities
n∑

k=−n

qk(k+3/2)

(q; q)n−k (q; q)n+k
=

1− qn + qn+1/2

q1/2 (q1/2, q; q)n
,
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and
n∑

k=−n

qk(k+5/2)

(q; q)n−k (q; q)n+k
=

1− qn−1/2 + qn+1 + q2n−1/2 − q2n − q2n+1 + q2n+3/2

q3/2 (q1/2, q; q)n
,

respectively. After moving one step to the right from identity (3.21), letting n → ∞ and
using Jacobi’s triple product identity we obtain

∞∑

j=0

qj(2j−3)

(q; q)2j
− q

∞∑

j=1

qj(2j−3)

(q; q2)j (q2; q2)j−1
=

(−q; q)∞
q

.

• The corresponding 1-bilateral results starting from F (4),

n∑

k=−n−1

qk/2

(q; q)n−k (q; q)n+k+1
=

1
q(n+1)/2 (q1/2; q)n+1 (q; q)n

,

are found to be
n∑

k=−n−1

q3k/2

(q; q)n−k (q; q)n+k+1
=

1− q1/2 + qn+1

q(3n+3)/2 (q1/2; q)n+1 (q; q)n
, (3.22)

and
n∑

k=−n−1

q5k/2

(q; q)n−k (q; q)n+k+1
=

1− q1/2 − q3/2 + q2 + qn+1 − qn+5/2 + q2n+5/2

q(5n+5)/2 (q1/2; q)n+1 (q; q)n
,

with the dual identities
n∑

k=−n−1

qk(k−1/2)

(q; q)n−k (q; q)n+k+1
=

1− qn+1/2 + qn+1

(q1/2; q)n+1 (q; q)n
, (3.23)

and
n∑

k=−n−1

qk(k−3/2)

(q; q)n−k (q; q)n+k+1
=

1− qn + qn+3/2 + q2n+1/2 − q2n+1 − q2n+2 + q2n+5/2

q1/2 (q1/2; q)n+1 (q; q)n
,

respectively. After moving one step to the right from identity (3.22), letting n → ∞ and
using Jacobi’s triple product identity we obtain

∞∑

j=0

qj(2j−1)

(q; q2)j+1 (q2, q2)j
− q

∞∑

j=0

qj(2j−1)

(q; q2)j (q2; q2)j
= (−q; q)∞.

The same process starting from identity (3.23) leads to

∞∑

j=0

q2j(j+1)

(q; q)2j
+ q2

∞∑

j=0

q2j(j+2)

(q; q2)j+1 (q2; q2)j
=

(q8; q8)∞ (−q5; q8)∞ (−q3; q8)∞
(q2; q2)∞

.

• Similar results can be carried out from two identities not contained in Slater’s list, namely

n∑

k=−n

(−1)k qk/2

(q; q)n−k (q; q)n+k
=

(−1)n

qn/2 (−q1/2, q; q)n
,
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and
n∑

k=−n−1

(−1)k qk/2

(q; q)n−k (q; q)n+k+1
=

(−1)n+1

q(n+1)/2 (−q1/2; q)n+1 (q; q)n
,

which we have found with the help of qZeil.

Case α = 1:

This case is completely covered by the q-binomial theorem (Theorem 3.1) and its 1-bilateral
counterpart (cf., for instance, Paule [30])

n∑

k=−n−1

(−1)k xk

[
2n + 1
n− k

]

q

q(
k
2) = (q/x; q)n (x; q)n+1.

Both identities are self-dual.

Case α = 2:

As shown above, this case is covered by dualization of the case α = 0.

Case α = 3:

• Let a(0)
n = (−1)k qk(3k+1)/2. Then (a(0), b(0)) and (a(1), b(1)) are Slater’s Bailey pairs B (1)

and B (2), or
n∑

k=−n

(−1)k qk(3k+1)/2

(q; q)n−k (q; q)n+k
=

1
(q; q)n

,

and
n∑

k=−n

(−1)k qk(3k+3)/2

(q; q)n−k (q; q)n+k
=

qn

(q; q)n
,

respectively. For d = 2 we obtain
n∑

k=−n

(−1)k qk(3k+5)/2

(q; q)n−k (q; q)n+k
=

q2n+1 + qn − 1
q (q; q)n

,

and for d = 3
n∑

k=−n

(−1)k qk(3k+7)/2

(q; q)n−k (q; q)n+k
=

q3n+2 + q2n+1 + q2n − qn+1 − 1
q2 (q; q)n

,

with the dual identities
n∑

k=−n

(−1)k q−k(k+5)/2

(q; q)n−k (q; q)n+k
=

(−1)n (1 + qn+1 − q2n+1)
qn(n+5)/2 (q; q)n

,

and
n∑

k=−n

(−1)k q−k(k+7)/2

(q; q)n−k (q; q)n+k
=

(−1)n (1 + qn+1 + qn+2 − q2n+1 − q3n+2)
qn(n+7)/2 (q; q)n

,

respectively.
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• Analogously, from the 1-bilateral counterparts B (3)

n∑

k=−n−1

(−1)k qk(3k+1)/2

(q; q)n−k (q; q)n+k+1
=

1
(q; q)n

,

and the trivial identity

n∑

k=−n−1

(−1)k qk(3k+3)/2

(q; q)n−k (q; q)n+k+1
= 0,

for d = 2 and d = 3 we are led to
n∑

k=−n−1

(−1)k qk(3k+5)/2

(q; q)n−k (q; q)n+k+1
= − 1

q (q; q)n
, (3.24)

and
n∑

k=−n−1

(−1)k qk(3k+7)/2

(q; q)n−k (q; q)n+k+1
= − 1 + qn+1

q2 (q; q)n
, (3.25)

respectively. The dual identities read as

n∑

k=−n−1

(−1)k q−k(3k+3)/2

(q; q)n−k (q; q)n+k+1
=

(−1)n

qn(n+3)/2 (q; q)n
,

and
n∑

k=−n−1

(−1)k q−k(3k+5)/2

(q; q)n−k (q; q)n+k+1
=

(−1)n (1 + qn+1)
qn(n+5)/2 (q; q)n

,

respectively. Moving one step to the right from identity (3.24), letting n → ∞ and using
Jacobi’s triple product identity we get the second Rogers-Ramanujan identity

∞∑

j=0

qj(j+1)

(q; q)j
=

1
(q2; q5)∞ (q3; q5)∞

.

Starting from identity (3.25) the same process leads to the first Rogers-Ramanujan iden-
tity (3.8).

Case α ≥ 4:

No (non-trivial) closed form Bailey pairs could be found in this case.
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Appendix A

A Note on q-Binomial
Coefficients

Since q-binomial coefficients
[
n
k

]
q

play a fundamental role in q-hypergeometric summation,
we shall briefly outline in this chapter how to generalize them to arbitrary integers n and
k as well as to complex parameters. The former is needed, for instance, in the q-Zeilberger
algorithm for evaluating q-hypergeometric sequences involving q-binomial coefficients at the
boundary points of the summation interval.

Definition A.1. For n, k ∈ Z, let the q-binomial coefficient of n and k be given by

[
n

k

]

q

:= lim
δ→1

(δq; q)n

(q; q)k (δq; q)n−k
. (A.1)

Clearly, if n ≥ 0, equation (A.1) reduces to the usual definition of q-binomial coefficients,

[
n

k

]

q

=
(q; q)n

(q; q)k (q; q)n−k
.

Note that the symmetry property for q-binomial coefficients,

[
n

k

]

q

=
[

n

n− k

]

q

only holds for non-negative n. For instance, we have
[
n
0

]
q

= 1, but
[
n
n

]
q

= 0 for all nega-
tive n. However, the well-known recurrences for q-binomial coefficients are still satisfied for
all integers n and k as stated in the following theorem.

Theorem A.1. For n, k ∈ Z, we have

[
n + 1

k

]

q

=
[
n

k

]

q

qk +
[

n

k − 1

]

q

=
[
n

k

]

q

+
[

n

k − 1

]

q

qn+1−k.
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Proof.
[
n

k

]

q

qk = lim
δ→1

(δq; q)n

(q; q)k (δq; q)n−k

1− δqn+1−k

1− δqn+1−k
qk

= lim
δ→1

(δq; q)n

(q; q)k (δq; q)n+1−k

(
(1− δqn+1)− (1− qk)

)

=
[
n + 1

k

]

q

−
[

n

k − 1

]

q

;

[
n

k − 1

]

q

qn+1−k = lim
δ→1

(δq; q)n

(q; q)k−1 (δq; q)n+1−k

1− qk

1− qk
δqn+1−k

= lim
δ→1

(δq; q)n

(q; q)k (δq; q)n+1−k

(
(1− δqn+1)− (1− δqn+1−k)

)

=
[
n + 1

k

]

q

−
[
n

k

]

q

.

Furthermore, the q-binomial coefficients might also be generalized to complex parame-
ters. This has been already done by Gasper and Rahman [20], however, with the definition
presented there,

[
α

β

]

q

=
(qβ+1, qα−β+1; q)∞

(q, qα+1; q)∞
,

we get into trouble if α is a negative integer, because the denominator becomes 0 then.
To overcome this problem we first introduce a q-analogue of the gamma function (see,

e.g., Askey [12] or Gasper and Rahman [20]).

Definition A.2. For x ∈ C, the q-gamma function is given by

Γq(x) :=
(q; q)∞
(qx; q)∞

(1− q)1−x,

when 0 < q < 1.

From this definition it follows directly that Γq satisfies the functional equation

Γq(x + 1) =
1− qx

1− q
Γq(x), Γq(1) = 1, (A.2)

the q-counterpart of the well-known functional equation for the gamma function

Γ(x + 1) = xΓ(x), Γ(1) = 1.

Furthermore, for n ∈ N we have

Γq(n + 1) = [n]q!,

where [n]q! denotes the q-factorial defined as [n]q! = 1·(1+q)·(1+q+q2) · · · (1+q+· · ·+qn−1)
which trivially turns into Γ(n + 1) = n! for q = 1. Obviously, the q-gamma function has
poles at x = 0,−1,−2, etc. The q-binomial coefficient for complex parameters could then be
defined as follows.
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Definition A.3. For α, β ∈ C, the q-binomial coefficient of α and β is given by
[
α

β

]

q

:= lim
ε→0

Γq(α + 1 + ε)
Γq(β + 1)Γq(α− β + 1 + ε)

,

where it is assumed that β is an integer whenever α is a negative integer.

This is a q-analogue of the extended definition for ordinary binomial coefficients,
(

α

β

)
:= lim

ε→0

Γ(α + 1 + ε)
Γ(β + 1)Γ(α− β + 1 + ε)

,

which has been used, for instance, by Wegschaider [42].

Theorem A.2. For α, β ∈ C, we have
[
α + 1

β

]

q

=
[
α

β

]

q

qβ +
[

α

β − 1

]

q

=
[
α

β

]

q

+
[

α

β − 1

]

q

qα+1−β .

Proof. This is easily seen by proceeding as in the proof of Theorem A.1 and using rela-
tion (A.2).



74



75

Appendix B

How to Use qZeil

In the following we shall describe the usage of the author’s Mathematica implementation of
the Extended q-Zeilberger Algorithm. Parts of this manual have been taken from an article
by Paule and Riese [33] and the author’s diploma thesis [37]. The latest version is available
by email request to the author†. Additional information can be retrieved via the World Wide
Web from the qZeil homepage‡.

B.1 Package Structure and Installation

The package consists of five files named qZeil.m, qTelescope.m, qInput.m, qSimplify.m,
and LinSolve.m, which have to be copied into one directory. After starting a Mathematica
session from this directory and typing <<qZeil.m all files (including the add-on package
Bailey.m described in Chapter 3) are loaded automatically.

The whole package has been adapted for Mathematica 3.0. Since notebooks are now
machine independent, the collection of examples (formerly known as qZeilExamples.txt) is
distributed in notebook format as qZeilExamples.nb. At the moment this notebook contains
input for about 500 identities. This also means that this set serves as a test suite for each
update of the package. Furthermore, the package is accompanied by the file WhatsNew.txt
which describes all the changes since version 1.4.

The source files qTelescope.m and qSimplify.m may be renamed to qtelesco.m and
qsimplif.m, respectively, if the system has troubles with file names not matching the “8.3”
(MS-DOS) naming scheme.

B.2 Interfaces

The package has two interfaces. The user can invoke q-hypergeometric telescoping to find
a closed form for a sum, or Zeilberger’s algorithm to come up with a recurrence for a sum.
The corresponding commands are given by

qTelescope[summand, range, intconst, opts]
and

qZeil[summand, range, n, order, intconst, opts],

†Axel.Riese@risc.uni-linz.ac.at
‡http://www.risc.uni-linz.ac.at/research/combinat/risc/software/qZeil
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where the parameters intconst and opts are optional arguments.

B.3 The Summand

Let K = Q(κ1, . . . , κm) denote the field of rational functions over the rational numbers Q in a
fixed number of indeterminates κ1, . . . , κm all different from q, k, and qk. The transcendental
extension of K by the indeterminate q is denoted by F , i.e., F = K(q).

In the present implementation we allow as summand for qTelescope any q-hypergeomet-
ric sequence (fk)k∈Z of the form

fk =
∏

r(Cr q(crir)k+dr ; qir )ark+br∏
s(Ds q(vsjs)k+ws ; qjs)tsk+us

·R(qk) · qα(k
2) · zk, (B.1)

with
Cr, Ds power products in K,
ar, ts specific integers (i.e., integers free of any parameters),
br, us integers, which may depend on parameters free of k,
cr, dr, vs, ws specific integers,
ir, js specific non-zero integers,
R a rational function in F (qk) such that the denominator factors completely

into a product of terms of the form (1−D qvk+w),
α specific integer, and
z a rational function in F .

As summand for qZeil we allow any q-hypergeometric sequence (fn,k)n∈N,k∈Z (where we
additionally assume that the κi are different from n and qn) of the form

fn,k =
∏

r(Cr q(drir)n+(erir)k+lr ; qir )arn+brk+cr∏
s(Ds q(fsjs)n+(gsjs)k+ms ; qjs)usn+vsk+ws

·R(qn, qk) · qα(k
2)+βnk · zk, (B.2)

with
Cr, Ds power products in K,
ar, br, us, vs specific integers (i.e., integers free of any parameters),
cr, ws integers, which may depend on parameters free of n and k,
dr, er, fs, gs specific integers,
lr,ms integers free of n and k,
ir, js specific non-zero integers,
R a rational function in F (qn, qk) such that the denominator factors

completely into a product of terms of the form (1−D qfn+gk+m),
α, β specific integers, and
z a rational function in F .

The q-shifted factorial (a; qi)m has to be typed as qfac[a,q^i,m]. In addition we al-
low terms of the form qBrackets[a,q] for [a]q := (1 − qa)/(1 − q), qFactorial[a,q] for
[a]q! := [1]q [2]q · · · [a]q, and qBinomial[a,b,q] for

[
a
b

]
q
, provided that those expressions can

be translated correctly — with respect to (B.1) or (B.2) — into terms of q-shifted factorials.
Note that also for these forms powers q^i are admitted.
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B.4 The Summation Range

The range of summation has to be specified in the form

range := {k, low, upp}.

In qTelescope, low and upp may be arbitrary integers free of k satisfying low ≤ upp. In
qZeil, low and upp are linear integer functions in the recurrence variable n being free of k
such that low ≤ upp.

In Zeilberger’s algorithm the user may specify one or both bounds to be ±Infinity.
In this case, the bounds are assumed to be naturally induced by the finite support. The
algorithm runs considerably faster in this Turbo-mode, since no inhomogeneous part of the
recurrence has to be computed.

B.5 The Optional Argument intconst

Since Mathematica is not able to handle typed variables, it is necessary to simulate them by
telling the system explicitly which indeterminates should be treated as non-negative integer
constants. If one assigns to the optional argument intconst a list of Mathematica symbols
representing those indeterminates, the program will assume them to be non-negative integers.
This also improves the simplification abilities of the program.

Consider the following example. Suppose we want to find a closed form for the indefinite
sum

n∑

k=0

[
m + k

k

]

q

qk.

Without any knowledge about m the program is not able to recognize m and m+k in (q; q)m

and (q; q)m+k, respectively, as integers. The problem disappears if we make the assignment
intconst := {m}.

In[1]:= <<qZeil.m

Out[1]= Axel Riese’s qZeilberger implementation version 1.8 loaded

In[2}:= qTelescope[qBinomial[m+k,k,q] q^k, {k, 0, n}, {m}]

Out[2]= qBinomial[1 + m + n, 1 + m, q]

Note that in qZeil and qTelescope all indeterminates appearing in the bounds as well
as the recursion variable n (in qZeil) are assumed to be elements of intconst automatically.

B.6 Global Variables

The (simplified) certificate cert(n, k), i.e., the rational function from Chapter 2 such that
gn,k = cert(n, k) · fn,k, is delivered by calling the function Cert without any parameters.

The values of the global variables FF and GG correspond to fn,k and gn,k, respectively, of
the last computation.

The output behavior of the program can be influenced by the global Boolean variables
Talk and Output. If Talk is set to True, the user can see explicitly which step of the
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algorithm is executed at the moment. This is mainly thought for time-consuming examples.
Default value for Talk is False. If Output is set to True, then running qTelescope or
qZeil generates the file GoOut, where some intermediate results of the actual computation
are written to. Default value for Output is True. For an example, see Paule and Riese [33].

As shown in Chapter 2, the program computes the companion identity, if the global
variable Companion is set to True, and f and g in fact form a qWZ-pair. Default value for
Companion is False, the result is assigned to the variable CompId.

The program computes the dual qWZ-pair, if the global variable Dual is set to True, and
f and g actually form a qWZ-pair. The result is assigned to the variable DualPair. Default
value for Dual is False. The dual identity can be computed from the dual pair by calling
the function DualId as shown in Section B.8 below.

B.7 Options

Beginning with version 1.5, qZeil and qTelescope can be called with several options de-
scribed in the following, where for sake of simplicity fn,k denotes the input summand for
qZeil as well as for qTelescope (where the recurrence variable n is completely insignifi-
cant).

B.7.1 Option EquationSolver

In the setting EquationSolver->NullSpace, the procedures qZeil and qTelescope use the
built-in Mathematica function NullSpace for solving systems of linear equations. Default
value for EquationSolver is Automatic, which invokes the null space algorithm provided
with the package (cf. Section B.9). The main difference between these methods is that
NullSpace is faster in general but does not put the elements in the result over a common
denominator. In practice one should use NullSpace only for showing that a system of linear
equations has no solution, because even for rather simple examples the output of NullSpace
cannot be brought over common denominators in reasonable time.

B.7.2 Option OnlySummand

With OnlySummand->True, calling qZeil only computes

d∑

i=0

σi(n) fn−i,k = fn,k ·
d∑

i=0

σi(n)
fn−i,k

fn,k

as a rational function multiple of fn,k with undetermined σi, where d is the order of the recur-
rence specified by the user. This feature, for instance, allows to perform and check all steps of
the qWZ-method (cf. Chapter 2) “by hand”: call qZeil with d = 1 and OnlySummand->True,
replace σ0 and σ1 by 1 and −1, respectively, and finally run qTelescope on the output as
demonstrated in the following example generating a qWZ-proof of a special case of the q-Chu-
Vandermonde identity

n∑

k=0

[
n

k

]2

q

qk2
=

[
2n

n

]

q

.
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In[3]:= qZeil[qBinomial[n,k,q]^2 q^(k^2) / qBinomial[2n,n,q], {k, 0, n}, n, 1,

OnlySummand->True]

2

-2 k + k 4 2 k n 4

Out[3]= (q qfac[q, q, n] (q (1 - q ) Sigma[0] +

2 n k - n 2 2 n -1 + 2 n

q (1 - q ) (1 - q ) (1 - q ) Sigma[1])) /

n 4 2 2

((1 - q ) qfac[q, q, k] qfac[q, q, 2 n] qfac[q, q, -k + n] )

In[4]:= qTelescope[% /. {Sigma[0]->1, Sigma[1]->-1}, {k, 0, n}]

2

-2 k + k 2 k n 4

Out[4]= {Sum[(q (q (1 - q ) -

2 n k - n 2 2 n -1 + 2 n 4

q (1 - q ) (1 - q ) (1 - q )) qfac[q, q, n] ) /

n 4 2 2

((1 - q ) qfac[q, q, k] qfac[q, q, 2 n] qfac[q, q, -k + n] ),

{k, 0, n}] == 0, {n != 0}}

Checking the original identity for n = 0 completes the proof. Note that proceeding as above
might cause problems if the rational function involved is very “large”, because factorization
in qTelescope might take several hours then.

B.7.3 Option MagicFactor

The option MagicFactor automatically applies Paule’s [31] method of creative symmetrizing
(cf. also Paule and Riese [33]) for decreasing the order of the recurrence in qZeil. Let
µ = µ(k) denote a non-constant linear integer function of k with the property that

∑

k

fn,k =
∑

k

fn,µ(k).

Typical examples for µ are −k, −k − 1, −k + 1, n − k, 2n − k, etc., which pop up, e.g., by
symmetry reasons or by operations like reversing the order of summation. In this case we
have

∑

k

fn,k =
∑

k

fn,k + fn,µ(k)

2
=

∑

k

fn,k

1 + fn,µ(k)/fn,k

2
=

∑

k

fn,k ·MF (n, k),

for some function MF (n, k). Now, if MF is actually rational in qn and qk satisfying the input
restrictions for qZeil or qTelescope, option MagicFactor->µ automatically multiplies the
original summand fn,k with MF (n, k).
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As an example let us consider Jackson’s terminating q-analogue of Dixon’s sum (see, e.g.,
Gasper and Rahman [20]),

3φ2

[
q−2n, b, c

q1−2n/b, q1−2n/c
; q,

q2−n

bc

]
=

(b, c; q)n (q, bc; q)2n

(q, bc; q)n (b, c; q)2n
,

for which no recurrence of order 1 and order 2 can be found directly:

In[5]:= fnk = qfac[q^(-2n),q,k] qfac[b,q,k] qfac[c,q,k] (q^(2-n)/(b c))^k *

qfac[q,q,n] qfac[b c,q,n] qfac[b,q,2n] qfac[c,q,2n] /

(qfac[q^(1-2n)/b,q,k] qfac[q^(1-2n)/c,q,k] qfac[q,q,k] *

qfac[b,q,n] qfac[c,q,n] qfac[q,q,2n] qfac[b c,q,2n]);

In[6]:= qZeil[fnk, {k, 0, 2n}, n, 1]

Out[6]= No solution: Increase order by 1

In[7]:= qZeil[fnk, {k, 0, 2n}, n, 2]

Out[7]= No solution: Increase order by 1

When trying to compute a recurrence of order 3, it turns out that the underlying system of
equations cannot be solved within 90 minutes.

In[8]:= TimeConstrained[ qZeil[fnk, {k, 0, 2n}, n, 3], 90*60, $Failed ]

Out[8]= $Failed

However, observe that for µ(k) = 2n− k we have

MF (n, k) =
1 + fn,2n−k/fn,k

2

=
1
2

(
1 +

(q−2n, b, c; q)2n−k (q1−2n/b, q1−2n/c, q; q)k

(q1−2n/b, q1−2n/c, q; q)2n−k (q−2n, b, c; q)k

b2k c2k q2(2−n)(n−k)

b2n c2n

)
.

Thus, by using the rules (cf. Gasper and Rahman [20])

(a; q)2n−k =
(a; q)2n

(q1−2n/a; q)k
(−q/a)k q(

k
2)−2nk

and

(aq−2n; q)2n = (q/a; q)2n a2n q−n(2n+1)

we end up with

MF (n, k) = (1 + qn−k)/2.

Applying qZeil to the new summand (1 + qn−k)/2 · fn,k now indeed delivers the recurrence
of expected order 1.

In[9]:= qZeil[(1+q^(n-k))/2 fnk, {k, 0, 2n}, n, 1]

Out[9]= SUM[n] == 1
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Moreover, calling qZeil with option MagicFactor completely saves us from computing
MF (n, k) by hand:

In[10]:= qZeil[fnk, {k, 0, 2n}, n, 1, MagicFactor->2n-k]

-k + n

1 + q

Magic factor: -----------

2

Out[10]= SUM[n] == 1

Default value for MagicFactor is k.

B.7.4 Option Shadow

The option Shadow to change the default shadowing strategy for computing dual identities
has already been described in Chapter 2. Thus, we will not go into the details here.

B.7.5 Option FindAlphaBeta

With FindAlphaBeta->True, the procedures qZeil and qTelescope are enforced to make
suggestions for all possible choices of integers α and β such that there eventually exists a
recurrence of the specified order, respectively a closed form, for

fn,k · qα(k
2)+βk.

The result should be interpreted in the following way. For all integer pairs not being (α, β)-
candidates there in fact does not exist a solution. However, not all candidates necessarily
yield a solution.

Let us briefly outline why it is possible to make such an assertion. For this, let Fk denote
our recurrence-“Ansatz”, i.e., Fk =

∑d
i=0 σi(n) fn−i,k, which is a rational function multiple of

fn,k with undetermined σi. Since (Fk) is a q-hypergeometric sequence, there exists a rational
function ρ(x) such that Fk+1/Fk = ρ(qk) for all k. Suppose that the normal form of ρ (as
described by Paule and Riese [33]) is given by

ρ =
εP

P
· Q

εR
,

where ε denotes the q-shift operator defined by (εP )(x) = P (qx), and the polynomials P (x),
Q(x), and R(x) are normalized in a certain way satisfying gcd(P,Q) = 1 = gcd(P, R) and
gcd(Q, εkR) = 1 for all k ≥ 1.

Now, for α ∈ Z let us define fα
n,k := fn,k · Aα

k , where Aα
k = qα(k

2). To easily distinguish
between the cases α ≤ 0 and α ≥ 0, we define α+ = max(α, 0) and α− = max(−α, 0).
Clearly, the corresponding Fα is then given by Fα

k = Fk · Aα
k . Since Aα

k+1/A
α
k = qαk, our

normal form for Fα
k becomes

ρα =
εPα

Pα
· Qα

εRα
,

where Pα(x) = P (x), Qα(x) = Q(x) ·xα+ , and Rα(x) = R(x) ·xα− · q−α− . Thus, we see that
deg(Qα) = deg(Q) + α+ and deg(Rα) = deg(R) + α−, whereas deg(Pα) does not depend
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on α. But to solve the key equation Qα · εY − Rα · Y = Pα for a polynomial Y (see Paule
and Riese [33]), the degree of neither Qα nor Rα must exceed the degree of Pα unless the
degrees of Qα and Rα are equal. Note that this only happens for one specific choice of α.
From this it is immediately clear, that there are always only finitely many α-candidates.

On the other hand, if we define fβ
n,k := fn,k ·Bβ

k , where Bβ
k = qβk, things are more com-

plicated, because Bβ
k+1/Bβ

k = qβ may alter the normal form of ρβ in several ways depending
on the sign of β and the original summand fn,k itself (see again Paule and Riese [33] for
further details). More precisely, the factor Bβ

k might influence the degree of P β , but never
the degrees of Qβ and Rβ . As a consequence, we can find at most a lower or upper bound
for the β-candidates.

To illustrate this feature we consider again the special case of the q-Chu-Vandermonde
identity above with the factor qk2

dropped.

In[11]:= qZeil[qBinomial[n,k,q]^2 / qBinomial[2n,n,q], {k, 0, n}, n, 1,

FindAlphaBeta−>True]

alpha beta

−−−−− −−−−

2 Interval[{−∞, ∞}]

Thus, we may conclude that for input fn,k · qα(k
2)+βk there does not exist a q-Zeilberger

recurrence of order 1 for α 6= 2 whatever the choice for β is. Indeed, there could exist a
recurrence of order 1 which is missed by the algorithm. Running qZeil on fn,k · q2(k

2)+βk

with concrete values for β leads to the conjecture that we find a recurrence of order 1 for all
β ≤ 1.

Default value for FindAlphaBeta is False.

B.7.6 Option PolyMult

With PolyMult->c, the procedure qTelescope computes all polynomial multipliers of input
fk with maximal degree c (w.r.t. qk) which make the input Gosper-summable. Note that this
still leads to a system of linear equations. For instance, consider the Bailey pair identity

n∑

k=−n

(−1)k q(
k
2)

(q; q)n−k (q; q)n+k
= δn,0

from Chapter 3 which is not Gosper-summable. However, we can find a polynomial multiplier
of degree 1 such that q-hypergeometric telescoping succeeds.

In[12]:= qTelescope[(-1)^k q^Binomial[k,2] / (qfac[q,q,n-k] qfac[q,q,n+k]),

{k, -n, n}, PolyMult->1]

2

k -k/2 + k /2 k

(-1) q (1 + q )

Out[12]= {Sum[------------------------------------, {k, -n, n}] == 0, {n != 0}}

qfac[q, q, -k + n] qfac[q, q, k + n]

Clearly, the polynomial 1 + qk comes from creative symmetrizing and could have been found
also with the MagicFactor->-k option.
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Beginning with version 1.8, option PolyMult also works in connection with qZeil in the
following way. Our goal is to find all polynomials P (k) of maximal degree c and being free
of n such that there exists a q-Zeilberger recurrence of order d for f ′n,k := fn,k · P (k), i.e., to
compute polynomials σ0(n), . . . , σd(n) in qn and a q-hypergeometric sequence gn,k such that

d∑

j=0

σj(n) f ′n−j,k = gn,k − gn,k−1. (B.3)

For this, we first observe that Zeilberger’s algorithm can be used more or less directly (as
shown below) to compute recurrences with polynomial coefficients that may depend on qk,
too. More precisely, our Extended q-Zeilberger Algorithm computes in the first step polyno-
mials τj(n, k) in qn and qk with maximal degree c (w.r.t. qk) and a q-hypergeometric sequence
hn,k, such that

d∑

j=0

τj(n, k) fn−j,k = hn,k − hn,k−1. (B.4)

To illustrate how to find such a recurrence, let us first recall the main steps of the (ordi-
nary) q-Zeilberger algorithm very briefly (for the details see Paule and Riese [33]). In order
to determine polynomials σ0(n), . . . , σd(n) in qn and a q-hypergeometric sequence gn,k such
that a given summand fn,k satisfies the recurrence

d∑

j=0

σj(n) fn−j,k = gn,k − gn,k−1, (B.5)

we apply q-hypergeometric telescoping to the left hand side of (B.5), a rational function
multiple of fn,k, say Fk, with undetermined σj . This means, we compute the normal form
for the rational function Fk+1/Fk, solve the corresponding key equation for the σj and the
coefficients y0, . . . , ym of the solution polynomial Y = y0 + y1q

k + · · · + ymqmk, and finally
compute gn,k from fn,k and Y .

To come up with a recurrence of the form (B.4) we proceed as follows. We simply
put τj(n, k) =

∑c
l=0 τj,l(n) qlk with τj,l being undetermined polynomials in qn, and solve

the resulting key equation in qTelescope for the τj,l and the coefficients y0, . . . , ym of the
solution polynomial Y = y0 + y1q

k + · · ·+ ymqmk being polynomials in qn, too. This is done
as usual by comparing the coefficients of each power of qk, which still leads to a homogeneous
system of linear equations.

Now, suppose we have found a solution and suppose in addition that the τj split into

τj(n, k) = σj(n) · P (k) for all 0 ≤ j ≤ d, (B.6)

where the σj are polynomials in qn and P is a polynomial in qk. In this case we would be
done, since recurrence (B.3) is satisfied for f ′n,k = fn,k · P (k) and gn,k = hn,k computed as
usual from fn,k and Y .

Unfortunately, the separation of variables (B.6) is not possible in general for one single
choice of the τj . However, we can overcome this problem by using a null space algorithm to
compute a set of vectors for the unknowns τj,l and yi, i.e., a set of vectors of the form

{(
τ

(i)
0,0, . . . , τ

(i)
0,c, τ

(i)
1,0, . . . , τ

(i)
1,c, . . . , τ

(i)
d,0, . . . , τ

(i)
d,c, y

(i)
0 , . . . , y(i)

m

)T
}

1≤i≤I
, (B.7)
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that form a basis for the I-dimensional solution space of the underlying key equation, a
vector space over the polynomials in qn. With this basis in hands, any linear combination of
its elements gives then rise to a solution τj(n, k) and hn,k of recurrence (B.4), where hn,k is
computed from fn,k and the linear combination of the corresponding Y (i). Thus, our problem
reduces to finding a linear combination of the basis elements which fulfills (B.6). In other
words, we have to find polynomials λ1, . . . , λI , σ0, . . . , σd in qn, and a polynomial P in qk of
maximal degree c such that

I∑

i=1

λi(n) τ
(i)
j (n, k) = σj(n) · P (k) for all 0 ≤ j ≤ d, (B.8)

since then the recurrence looked for is given by

d∑

j=0

σj(n) f ′n−j,k = gn,k − gn,k−1,

where f ′n,k = fn,k ·P (k) and gn,k denotes the sequence computed from fn,k and
∑I

i=1 λi Y (i).

Finally, for solving (B.8) we need an upper bound for the degree of the σj and λi first,
which has to be specified explicitly by the user. Comparing coefficients of powers of qn and
qk in (B.8) then leads to a system of non-linear equations, though being rather close to a
linear system. Nevertheless, it turns out that Mathematica is not capable of solving even
small examples, whereas Maple does the job excellently. Therefore, for an implementation of
a first prototype version we decided to implement an interface between both systems, where
Mathematica sets up the equations, hands them over to Maple, which solves the system and
returns the solution back to Mathematica. For this, Mathematica needs to know how to start
Maple as a filter. This is done by assigning a string to the variable MapleCall specifying the
command for invoking Maple and redirecting the input from the file MapleIn, such as the
following:

In[13]:= MapleCall = "maple -f -q <MapleIn";

This extended version of the q-Zeilberger algorithm is actually applied when qZeil is called
with the option PolyMult->{c1, c2}, where c1 is the maximal degree of P (w.r.t. qk) and
c2 the maximal degree of the σj and λi (w.r.t. qn). Note that with this option enabled,
the summation bounds are automatically changed to ±∞, since inhomogeneous recurrences
cannot be handled at the moment. Therefore, fn,k must have finite support.

Let us consider a simple example, namely a terminating version of Bailey’s sum of a
well-poised 3ψ3 series (see, e.g., Gasper and Rahman [20]),

3ψ3

[
q−n, c, d

qn+1, q/c, q/d
; q,

qn+1

cd

]
=

(q, q/cd; q)n

(q/c, q/d; q)n
.

Note that for this identity we actually need creative symmetrizing to find a recurrence of
order 1. Moreover, let us slightly change the argument of the 3ψ3 series to qn/cd. Clearly,
qZeil does not find a recurrence of order 1 then:
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In[14]:= fnk = qfac[q^(-n),q,k] qfac[c,q,k] qfac[d,q,k] (q^n/(c d))^k /

(qfac[q^(1+n),q,k] qfac[q/c,q,k] qfac[q/d,q,k]);

In[15]:= qZeil[fnk, {k, -Infinity, Infinity}, n, 1]

Out[15]= No solution: Increase order by 1

However, for this example we know in advance that there exists a polynomial multiplier
P (k) = qk(1 + qk), because multiplying the summand by qk restores the original argument
and 1 + qk comes from creative symmetrizing. Therefore, we try the following:

In[16]:= qZeil[fnk, {k, -Infinity, Infinity}, n, 1, PolyMult->{2,0}]

Out[16]= No solution: Increase order by 1

In[17]:= qZeil[fnk, {k, -Infinity, Infinity}, n, 1, PolyMult->{2,1}]

Out[17]= No solution: Increase order by 1

In[18]:= qZeil[fnk, {k, -Infinity, Infinity}, n, 1, PolyMult->{2,2}]

Out[18]= No solution: Increase order by 1

In[19]:= qZeil[fnk, {k, -Infinity, Infinity}, n, 1, PolyMult->{2,3}]

n

n q k k

(1 - q ) (1 - ---) SUMX[-1 + n, q (1 + q )]

k k c d

Out[19]= SUMX[n, q (1 + q )] == --------------------------------------------

n n

q q

(1 - --) (1 - --)

c d

The last computation took about 15 seconds on a Pentium 100. Note that in the output the
symbol SUMX[n, P] is used as an abbreviation for

∑
k fn,k · P (k), where fn,k denotes the

original summand and P (k) the polynomial multiplier found by the program.

For this example we additionally stored some intermediate results and adapted them to
the notation used in this section to easily check the main steps. For instance, we find that
the basis (B.7) for the solution space of the key equation contains three elements:

In[20]:= BASIS

2

1 + S

Out[20]= {{-1, ------, -1, 0, 1, 0, 0, 0},

S

2 2 3

-(c d q) + c q S + d q S - c S - d S + S

{-------------------------------------------,

q S
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c + d - q + c d q - S + c d S - c q S - d q S -(c d) + q S

---------------------------------------------, ------------,

q q

-(c d q) + S

------------, 0, 0, 1, 0},

q

-(c d) + S -1 + c + d + c d - S - c S - d S + c d S

{----------, ----------------------------------------,

q q

2 2 3

-(c d) + c S + d S - c S - d S + S -(c d) + S

-------------------------------------, 0, 0, ----------, 0, 1}}

q S q

The symbol S stands for qn. It turns out that the resulting system of homogeneous equa-
tions (B.8) consists of 34 equations in 23 variables. However, for some of the variables we
immediately find by inspection that they have to vanish, so that we actually end up with 24
equations in 15 variables:

In[21]:= Length[EQS]

Out[21]= 24

In[22]:= Short[EQS, 7] (* don’t show all equations *)

Out[22]//Short=

{-(q P[0] SIG[1, 0]) == 0, -(q P[1] SIG[1, 0]) == 0,

-(q P[2] SIG[1, 0]) == 0, -(c d q LAM[1, 1]) - q P[0] SIG[1, 1] == 0,

q LAM[2, 1] - q P[1] SIG[1, 1] == 0,

-(c d LAM[3, 1]) - q P[2] SIG[1, 1] == 0,

LAM[1, 1] - q P[0] SIG[1, 2] == 0, <<2>>, <<12>>,

q LAM[1, 1] - q LAM[2, 2] + <<2>> - q P[2] SIG[2, 2] == 0,

LAM[1, 1] - q P[0] SIG[2, 3] == 0, q LAM[2, 2] - q P[1] SIG[2, 3] == 0,

LAM[3, 1] - q P[2] SIG[2, 3] == 0}

In[23]:= VARS

Out[23]= {LAM[1, 1], LAM[2, 1], LAM[2, 2], LAM[3, 1], SIG[1, 0], SIG[1, 1],

SIG[1, 2], SIG[1, 3], SIG[2, 0], SIG[2, 1], SIG[2, 2], SIG[2, 3],

P[0], P[1], P[2]}
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According to (B.8), the LAM[i, j] and SIG[i, j] denote the coefficients of qjn in λi and σi,
respectively, whereas the P[i] denote the coefficients of qik in P .

If we now try to solve the system of equations with the built-in Mathematica function
Solve, we do not get an answer within 10 minutes whatever the order of the variables is, for
instance:

In[24]:= TimeConstrained[ Solve[EQS, VARS], 600, $Failed ]

Out[24]= $Failed

In[25]:= TimeConstrained[ Solve[EQS, Reverse[VARS]], 600, $Failed ]

Out[25]= $Failed

On the other hand, if we first try to compute a Gröbner basis, say {g1, . . . , gm}, for the
original set of equations and then solve the new system g1 = 0, . . . , gm = 0, we find that either
the Gröbner basis cannot be computed within reasonable time or the resulting polynomial
equations gi = 0 cannot be solved then depending on the term ordering we use.

However, Maple’s built-in function solve does the job in less than 10 seconds. For this
example, we obtain three solutions. Two of them are useless, since all λi = 0, thus we
concentrate on the third one.

In[26]:= SOLU[[3]]

Out[26]= {LAM[1, 0] -> 0, LAM[1, 1] -> 0, LAM[1, 2] -> 0, LAM[1, 3] -> 0,

LAM[2, 0] -> 0, LAM[2, 1] -> -(c d P[2] SIG[1, 3]),

LAM[2, 2] -> P[2] SIG[1, 3], LAM[2, 3] -> 0, LAM[3, 0] -> 0,

LAM[3, 1] -> q P[2] SIG[1, 3], LAM[3, 2] -> 0, LAM[3, 3] -> 0,

P[0] -> 0, P[1] -> P[2], P[2] -> P[2], SIG[0, 0] -> 0,

SIG[0, 1] -> -(c d SIG[1, 3]), SIG[0, 2] -> SIG[1, 3],

SIG[0, 3] -> 0, SIG[1, 0] -> -(c d SIG[1, 3]),

SIG[1, 1] -> c SIG[1, 3] + d SIG[1, 3] + c d SIG[1, 3],

SIG[1, 2] -> -SIG[1, 3] - c SIG[1, 3] - d SIG[1, 3],

SIG[1, 3] -> SIG[1, 3]}

Looking at the coefficients P[i], it is easily seen that our polynomial multiplier is given by
P (k) = c qk (1 + qk) for an arbitrary constant c. Note that we could possibly find further
polynomial multipliers of degree 2 by enlarging the parameter c2 in PolyMult->{2, c2}.
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B.8 Additional Functions

The qZeil package comes with its own simplification procedure

qSimplify[exp]

for q-hypergeometric expressions exp. To make this highly non-trivial task powerful and
efficient, our strategy is based on collecting several rewrite rules into blocks which are applied
one after the other. Furthermore, note that this procedure does not factor at all.

In the context of qWZ-dualization (see Chapter 2), after a dual pair (f ′n,k, g′n,k) has been
computed by the program, calling

DualId[{k, a, b}, n]

evaluates SUM ′(n) :=
∑b

k=a f ′n,k provided that SUM ′ is constant, i.e., not depending on n.
DualId uses the value of the (global) variable DualPair.

The function
SameRec[rec1, rec2]

checks whether the recurrences rec1 and rec2 are equal. This is useful and very fast for higher-
order recurrences arising from transformation formulas which quite frequently yield several
pages of output. In this case, SameQ does not necessarily give True for equal recurrences and
Together[ rec1[[2]] - rec2[[2]] ] can be rather time-consuming. Similarly, the function

Check1[rec]

checks whether the recurrence rec is satisfied by 1.

Finally,
ToqHyper[rec]

converts the recurrence rec into valid input for Petkovšek’s package qHyper (see Abramov,
Paule, and Petkovšek [1]) in terms of SUM(S) := SUM(qn). Since both packages qHyper
and qZeil define the symbol q, one has to set the global variable NoContext to True and to
reload the packages which will then reside in context Global‘. This is an inelegant but very
useful hack allowing the simultaneous use of different packages defining the same symbols
provided that the packages do not define functions with the same name and the same number
of arguments. Note that the original behavior can be restored only by restarting Mathematica.

B.9 Speed-Up

With the latest version of qZeil we could achieve a significant speed-up mainly based on
two new ideas, an improved pivot search in Aichinger’s [3] null space algorithm and a new
preprocessing of the recurrence looked for. As a consequence we can now, for instance,
compute a recurrence of order 3 for the 12φ11 series on the right hand side of identity (III.25)
in Gasper and Rahman [20] within less than one minute (this was the “out-of-memory”
example listed in Paule and Riese [33]).

The new pivot search method is based on the observation that not only the size of the
pivot element plays a fundamental role in Gaussian elimination but also the number of zeros
in the corresponding row. Note that whenever we speak of the “size” of a rational function we
actually mean its “complexity” which in the present implementation is determined with the
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Mathematica function LeafCount. Thus we first look for the rows of the underlying matrix
M for which the number of zeros is maximal. Let RM = {r1, . . . , rd} denote the set of those
rows. If RM consists of only one element, we simply choose the smallest non-zero entry of
row r1 as our pivot element. Otherwise, it is obvious that the effectiveness of our method
heavily depends also on the total size of the ri from which the pivot element is chosen. Let
si and ti denote the size of the smallest non-zero entry of ri, respectively the total size of ri.
A natural way to decide that the pivot element should be the smallest non-zero element of
rn instead of rm is when

( sn

sm

)c

<
tm
tn

for some positive number c. It turns out that — at least for matrices appearing in q-hyper-
geometric summation — the choice c = 3/4 leads to highly satisfactory results. Additional
evidence for our improvement of efficiency stems from the fact that this kind of pivot search
has been also successfully integrated into Wegschaider’s [42] package MultiSum for auto-
matically proving binomial multi-sum identities resulting in a speed-up factor of 10 there.
Moreover, the approach described above could be improved once more by taking the number
of zeros in the columns into account, too.

The second idea which substantially helped to decrease the run-time, simply consists in
filtering out all factors not depending on qk in the polynomials pi(n, k) of the recurrence-
“Ansatz”

d∑

i=0

σi(n) fn−i,k = fn,k · σ0(n) p0(n, k) + σ1(n) p1(n, k) + · · ·+ σd(n) pd(n, k)
pd+1(n, k)

.

Those constant factors only blow up the system of equations unnecessarily. It is sufficient to
take them into consideration after the system of equations has been solved.
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[35] M. Petkovšek, Hypergeometric solutions of linear recurrences with polynomial coeffi-
cients, J. Symbolic Computation, 14 (1992), pp. 243–264.
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