Numerical Solving of Constraints of
Multivariate Polynomial Strict Inequalities

Teimuraz Kutsia, Josef Schicho

Research Institute of Symbolic Computation
Johannes Kepler University
A-4040 Linz, Austria

October 31, 1999

Abstract

We consider the problem of safe numerical solving of constraints in
a form of disjunctions and/or conjunctions of multivariate polynomial
strict inequalities with real coefficients. We use a modified bisection
method and present an algorithm that computes a solution of the
problem.

1 Introduction

Solving of polynomial equations and inequalities is a known and important
problem in scientific computing. Numerous methods have been developed to
solve this problem. A symbolic method for finding a real solution of a sys-
tem of integral polynomial (non-strict) inequalities is described by Grigor’ev
and Vorobjov [3]. McCallum [4] uses another symbolic method - cylindrical
algebraic decomposition to solve the problem of determining the consistency
over the real numbers of a system of integral polynomial strict inequalities.

However, pure symbolic methods are expensive, e.g. because of the costly
arithmetic of algebraic numbers. Fast numerical methods (and other ap-
proaches, like e.g. subdefinite calculations [1]) can be considered as an alter-
native way for solving the problem. But, because of non-safe approximation,

1

not all algorithms guarantee correctness of the results which would be es-
sential in some applications. A good compromise is to use safe numerical
methods like, for example, the exclusion method for computing real roots of
polynomials (Dedieu and Yakobsohn [2]).

In this paper we present a solution of the problem for polynomial inequal-
ities in this spirit, using a safe numerical method. We consider constraints in
a form of disjunctions and/or conjunctions of multivariate polynomial strict
inequalities with real coefficients and present an algorithm that computes a
solution of a constraint in a given parallelepiped. The algorithm is based
on the bisection method. Moreover, we give a precise interpretation of the
approximation error using the concept of e-solution set. The solution com-
puted by the algorithm contains e-solution set of the constraint on a given
parallelepiped and approximates the set of exact solutions from inside.

The paper is organized as follows: Section 2 contains some preliminaries
and a statement of the problem. In section 3 the solving method is described.
Section 4 contains a detailed description of the algorithm.

2 Definitions and Problem Statement
We consider constraints defined as follows:

constraint :: polynomial relation 0
constraint V constraint
constraint A constraint

relation :: >
<

where 'polynomial’ means a polynomial with real coefficients.

A constraint is called atomic with a polynomial p(zy,...,z,) if it has a
form p(xy,... ,2z,) >0 or p(x1,...,2,) <O0.

Below by an n-dimensional parallelepiped we mean a subset R”

[(11, bl]X[CLQ, bQ]X te X[(ln, bn]

of n-dimensional real space.
The problem to be solved can be stated as follows:

(General Problem:
Gliven:

e n-variate constraint
o n-dimenstonal parallelepiped

e precision (a real number)
Find:

A solution of the constraint in the parallelepiped by the given pre-
ciston.

Statement of the problem is very general and needs to be specified. In
order to specify what a solution of a constraint in a parallelepiped by a given
precision means we need the following definitions:

Definition 1 Given a constraint C' and a precision ¢ an e-solution set for

C, denoted by Sol(e,C) is defined as follows:

o IfC has a form p(xy,...,x,) > 0, where p(x1,...,2,) is an n-variate
polynomial, then

Sol(e,C') =
{(ri,.c o) | (r1y o) €R™ plr, oo yrn) > €}

o IfC has a form p(z1,...,x,) <0, where p(x1,...,x,) is an n-variate
polynomial, then

Sol(e,C) =
{(ri,...rp) | (r1,.c.mn) €R? p(ry, ...y) < —€}

o [fC has a form Cy A Cy, where Cy and Cy are n-variate constraints,
then

Sol(e,C) =
{(ri,...rn) | (r1,...1) € R™ (rq,...1,) € Sol(e,C1) N Sol(e,Cy)}

o IfC has a form CyV Uy, where Cy and Cy are n-variate constraints,
then

Sol(e,C) =
{(ri,...r)| (ri,...orn) € R, (r1,...1n) € Sol(e,Cy) U Sol(e,C2)}

Definition 2 By an exact solulion of a constraint C we mean Sol(0,C').

Now the general problem stated above can be specified as follows:

Specified Problem:
Given:

o n-variate constraint C
o n-dimensional parallelepiped D

® precision €

Find a subset S of D such that

Sol(e,C)ND C S CSol(0,C)ND

3 Solving Method

3.1 Solution Idea - Bisection

Below we use the letters ', D, I, ¢ to denote respectively a constraint, a
parallelepiped, a sequence of parallelepipeds and a precision.

The idea of bisection method is the following: given C', I, ¢ compute a
solution sequence of parallelepipeds S as follows:

S is empty from the beginning.

While I is not empty do:

Take the first parallelepiped D from I;

o if C'is true on D then add D to S;
e otherwise, if C is false on D, then let I be I — {D};

e otherwise, bisect D, add obtained parallelepipeds to the beginning of
I — {D} and denote the obtained sequence by [

Return S.

We will discuss the role of ¢ in this method a bit later. To carry out the
idea of bisection one needs to know

e how to compute the truth value of a constraint and
e how to bisect a parallelepiped

These problems are subject of discussion in the subsections below.

3.2 Computing the Truth Value of a Constraint on a
Parallelepiped

We consider three truth values - true, false and undefined and order them
as false < undefined < true.

Idea of Computing of the Truth Value of a Constraint on a Paral-
lelepiped:
Let C be an n-variate constraint and D = [ay, bi]x- - - X[ay,, b,].

1. If C is an atomic constraint with a polynomial p(z1,... ,z,) then:

e if p(zy,...,2,) has no roots in D and the point (ai,... ,a,)
satisfies (', then the truth value of C' on D is true

e if p(zy,...,z,) has no roots in D and the point (a,... ,a,)
does not satisfy ', then the truth value of C' on D is false

o if p(z1,...,2,) has roots in D then truth value of C' on D is
unde fined

2. if C has a form Cy A Cy, then the truth value of C' on D is a minimum
of truth values of C; and Cy on D

3. if C' has a form C; V Cy, then the truth value of C' on D is a maximum
of truth values of C; and Cy on D

Thus, the problem of computing the truth value of a constraint on a
parallelepiped is reduced to a problem of existence of roots of a polynomial
on the parallelepiped. We have the following sufficient condition:

Sufficient Condition for Non-existence of Roots of a Polynomial
in a Parallelepiped: Given n-variate polynomial p(z1,...,z,) and n-
dimensional parallelepiped D = [ay,b1]x - - - X[an, by], if

- Op(x1,... ,xp)
|p<a1,...,an>|>§|@-—aiw< L)

where U (M) is an upper bound of i-th partial derivative of the

dx;
polynomial p(z1,...,z,) on D, then p(z1,...,z,) has no roots in D.

Since this is only sufficient condition for non-existence of roots of a poly-
nomial we are not always able to solve the problem of computing truth values.
Instead, we introduce a weaker concept of e-truth value of a constraint on a
parallelepiped that can be computed using the sufficient condition: For C,
D = [ay,bi]x- - X[an,b,] and ¢

1. If C is an atomic constraint with a polynomial p(z1,...,z,) then
o if p(zy,...,x,) satisfies the sufficient condition and the point
(a1,...,a,) satisfies C', then the e-truth value of C' on D is true
o if p(xy,...,x,) satisfies the sufficient condition and the point
(a1,...,a,) does not satisfy C', then the e-truth value of C' on D
is false
e if p(zy,...,2,) does not satisfy the sufficient condition and

D (L) P
i—1 8:@

then the e-truth value of C' on D is false
e otherwise e-truth value of C' on D is undefined

2. if C' has a form C; A Cy, then e-truth value of C' on D is a minimum of
e-truth values of C'; and C5 on D

3. if C' has a form C V Cy, then e-truth value of C' on D is a maximum
of e-truth values of C; and C5 on D

Thus, computing an e-truth value of a constraint we overcome the first
problem related with the bisection method. The other problem - bisection
of a parallelepiped is considered in the next subsection.

3.3 Bisection of a Parallelepiped

The idea of bisecting of a parallelepiped is quite simple: Halve all faces of
(n-dimensional) parallelepiped and obtain 2" new parallelepipeds of less size
hoping that e-truth value of a constraint (which was unde fined on the initial
parallelepiped) will become true or false on new parallelepipeds. But it has
disadvantages, namely:

o It is not guaranteed that the e-truth value of the constraint is {rue or
false on the first new parallelepiped and thus, one needs to continue
the same procedure (computing-bisecting) until the e-truth value of the
constraint is not either true or false on the first parallelepiped;

o All faces will be bisected every time while in some cases it is enough to
bisect only some of them to obtain desired result.

We refine the idea of bisection to overcome these difficulties. The refine-
ment is based on the following ideas:

o Instead of halving a face divide it in such two parts that truth value of
the constraint on the first new parallelepiped is true or false.

e Try to keep unbisected as much faces as possible.

To implement these ideas we need to extract additional information from the
sufficient condition of non-existence of roots of a polynomial. Note that for a
given precision € an e-truth value of an atomic constraint ' with a polynomial
p(x1,...,2,) is undefined on a parallelepiped D = [a1, bi]x- - - x[ay, b,] iff

n ap(lla ,l‘n)
|p(a17'-' 7an)| §;|b2_a2|U< 8552)

and
- 0 s, Ty
Z|bi—a¢|U< Pl ’)) > €.
: Oz;
=1
Refinement:
1. Suppose |p(a,...,a,)| <e.

Divide each face of the parallelepiped on the value

Sy { b — U (2o)

e

called division coefficient. Denote by D’ the first parallelepiped ob-
tained after the division. lLet ly,...,l, be lengths of faces of D’ and

U (87’%’733’“)) be the upper bound of i-th partial derivative of the

polynomial p(zq,...,z,) on D'. Then for each 1,1 <i <n

Op(zy,...,xp) Op(xy,... ,xn)

! < 7 7

v (oz; > U (ox; ’
|b2 — CI,Z'|€

“ op(z1,... ,xp)
E b — a.
= | J (I]|U< axj >

I =

and the sum

& o (Op(xns @)
ZZZU< Ox; >_

=1

™ ° Z|bz_az|Ul (ap(mhaxn>> S&
S (Pt o

ey Ox;

Therefore,

o il plar,...,a,) < Zl U’ <ap I]’d. — ’$n>> then e-truth value of
;

C' on D"is false
e otherwise,

— if (ai,...,a,) satisfies C, then e-truth value of C' on D’ is
true,

— otherwise false.

2. Suppose |p(ai, ... ,a,)| > ¢. Then represent the sum

- ap(zy,...,x,)

as a sum of two summands L + G where

: Jp(x Tn)
L:Z|bmi—amiU<p SLARRE n><|p(a1,...,an)|—1
=1 M

ox
~ op(xy,... ,xp)
i=k+1 ¢

k>0,{my,...,m,} ={l,... ,n}. Then the sufficient condition can
be written as

and

Ip(as,... ,a,)| < L+ G.
Let M = |p(ay,...,a,)| — L. Then M < @. Define division coefficient

as

G+e
M
st)s e o [@mps Om,) o0 DivCoef. Let D' be the

first parallelepiped obtained after the division and U’ <M> be

DiwwCoef =

Divide all faces [ap,,,,,b

dx;
the upper bound of i-th partial derivative of the polynomial p(zy, ..., z,)
on D'. Then we obtain
1 - op(zy,...,x,)
L+ - bon: — apm, |U' o <
t DivC’oef_Z (b, — am, U < 0T . -
1=k+1 !
1
L+
i DivC’oefG <
L+ M=
Ip(ai, ... a.)
It means that the sufficient condition is satisfied on D’. Then, if
(a1, ... ,an) satisfies C, then the e-truth value of C' on D' is true,

otherwise false.

Thus, the refinement guarantees that the e-truth value of the constraint is
either true or false on the first parallelepiped obtained after bisection. Also,
it allows to keep unbisected as much faces of the parallelepiped as possible.

9

4 Algorithm

In this section we describe an algorithm to solve the given problem. First
we compute an e-truth value of a constraint ' on a parallelepiped D by a
precision &, a division coefficient and a set of faces of D to bisect by the
coeflicient.

Function Value(C, D, ¢)
>
Input n-variate constraint ', n-dimensional parallelepiped
D = [a1,b1]x - - X[ay, by], real number ¢ - precision
Output Triple (T, F, DivCocf), where T is a e-truth value
of C'on D, F is a set of faces of D that should be

bisected, DivCoef is a division coeflicient

if C'is an atom with polynomial p(zq,... ,z,) then

if [p(ay,... an)| > Z |b; — a;|U <8p(l‘1,a-7:'- 7$n)) then
— T

DiwwCoef = 1;
F =
T := True

else if S (b — a,|U (ap(“’a'x'_' ’x”)> < ¢ then

=1
DivCoef :=1;
F = {;
T = False
else if [p(ay,... ,a,)| < ¢ then
{1 — U (22t |
DivCoef := i ;
&
F:=all faces of D;
T:=Undefined;

else if |p(a1’ .. 7an)| = Z |bZ . CL2|U <ap(l'17 Ca ,Tn>) then
=1

oz,
DivCoef = 2;
F:=largest face of D;
T:=Undefined;

else

10

Represent the sum Z Ib; — a;|U <8p(x1, . 7$n>>

T
=1 a v
as a sum of two summands I, + G where

I :Ele by, — . |U <3p(x1,...,a:n)) <

AT,
< |plar,... a,)] =1,
= op(z1,...,2,)
= b, — Q.
G Z | ms a’mz|U< axml 9
1=k+1
k>0, {my,...,m,} ={1,... ,n}.
. G+e
DivCoef = ;
lp(ar,... a,)| — L
F:=all faces of D from G;
T:=Undefined;

else if C has a form C; A Cy
(Ty, Fi, DivCoe fi) := Value(Cy, D, ¢);
if 7} =False then

T :=False;

F = Fi;

DivCoef := DivCoefi;
else

(T3, Fy, DivCoefy) := Value(Cy, D, ¢);
T :=min(T, Ty);
if T'=Undefined,;
F = F U Fy;
DivCoef = max(DivCoef, DivCoef,);
else
DivCoef :=1;
F =1
else if C' has a form C; Vv C,
(Ty, Fy, DivCocefy) := Value(Cy, D, ¢);
if 7Ty} =True then

T :=True;

F = F;

DivCoef := DivCoefi;
else

(T, Fy, DivCoefy) := Value(Cy, D, ¢);
T := ma:I:(Tl,Tg);

11

if T'=Undefined,;
F = F1 U FQ,
DivCoef = max(DivCoefi, DivCoefs);
else
DivCoef :=1;
F =0
Return (7', F, DivCoef)

This function playes a key role in the main algorithm below:

Algorithm Solver(C, D, ¢)
>
Input n-variate constraint ', n-dimensional parallelepiped
D = [a1,bi]x - - - X[an, b,], real number ¢ - precision
Output Subset S of D such that
Sol(e,CYND C S C Sol(0,C)Nn D
N
Initialize I :=< D >;
Initialize S := 0;
while 7 is not empty do
take the first parallelepiped D from [;
(T, F, Divcoef) := Value(C, D, ¢);
if T"=True
S:=S5UD;
I:=1—-{D};
else if T'=False
I:=1—{D};
else
Bisect each face [a;, b;] of F'in two parts:
o -+ 2 and [os+ 22
I := sequence obtained by adding all new
parallelepipeds in head of I;
Return S;

12

5 Implementation

The algorithm is implemented on C. Polynomials, constraints, parallelepipeds
and sequences of parallelepipeds are represented as structures. GNU multi-
ple precision arithmetic library is used to represent and operate on floating
point real numbers. Since this representation is quite costly, running some
examples faced the following problem:

Cannot allocate gmp: resource temporary unavailable.

Abort

Since the algorithm is exponential, number of bisected parallelepipeds in-
creases fast. Keeping them with the ends represented in multiple precision
floats needs big amount of memory. Trying to reduce the number of par-
allelepipedss kept we put the following condition on a minimal border of a
parallelepiped: if the length of a minimal border is less than e* (provided
that ¢ < 1) then discard the parallelepiped. Therefore, there are some paral-
lelepipeds with a 'rather small” minimal border which should be in a solution
set but because of the condition they have been discarded from there.

Example 1 Consider the following constraint
et =22y +y? <0 A 24312y — 3301y — 24312 + 2685 > 0.

To solve it in the parallelepiped [—1, 1] [—1, 1] with precision ¢ = 0.1 the
algorithm needs 2388 bisection steps and produces the solution set consisting
of 1107 parallelepipeds. Part of this solution is given below:

Parallelepiped 1

[-0.94€0 , -0.910101856023035106€0 |

[-0.94€0 , -0.9297676401230769231e0]

Parallelepiped 2

[-0.910101856023035106€0 , -0.8863579028230337432¢0]
[-0.9398957245546097634€0 , -0.9297676401230769231e0]
Parallelepiped 3

[-0.8863579028230337432¢0 , -0.8585468715726248084€0]
[-0.9397698251100384274€0 , -0.9396223604752369086¢0]
Parallelepiped 4

[-0.94€0 , -0.9297676401230769231e0]

[-0.9297676401230769231e0 , -0.9038218619887260361€0]

13

Parallelepiped 5
[-0.9398624256446021927¢0 , -0.9397261992981452871e0 |
[-0.9038218619887260361e0 , -0.8781303110379416136€0 |
Parallelepiped 6
[-0.9297676401230769231e0 , -0.8958268036233072827¢0]
[-0.9297676401230769231e0 , -0.9181117231810328071e0]
Parallelepiped 7
[-0.8958268036233072827e0 , -0.8693170774107198618€0]
[-0.9296322198718549521e0 , -0.9181117231810328071e0]
Parallelepiped 8
[-0.8693170774107198618e0 , -0.8388258042364510827¢0]
[-0.9294711264573494585e0 , -0.9181117231810328071e0]
Parallelepiped 9
[-0.8388258042364510827e0 , -0.8050760130551304362¢0]
[-0.9292858381118994622¢0 , -0.9181117231810328071e0]
Parallelepiped 10

[-0.8050760130551304362¢0 , -0.769254055260403876¢0]
[-0.929080748513589511e0 , -0.9181117231810328071e0]

Parallelepiped 1097

[0.7353320614290356468e0 , 0.7354662569350640448€0]
[0.5917564248543491003€0 , 0.5919634180150821817€0]
Parallelepiped 1098

[0.7354662569350640448€0 , 0.7355678792004077423€0]
[0.5919634180150821817€0 , 0.5921201677791159822¢0]
Parallelepiped 1099

[0.7355678792004077423e0 , 0.7356448412773256948e0]
[0.5921201677791159822¢0 , 0.592238879828642129¢0]
Parallelepiped 1100

[0.7356448412773256948e0 , 0.7357031310967890102¢0]
[0.592238879828642129¢0 , 0.5923287903951458915€0]
Parallelepiped 1101

[0.7357031310967890102e0 , 0.7357472810109998242¢0]
[0.5923287903951458915e0 , 0.5923968905168195404€0]
Parallelepiped 1102

[0.7357472810109998242¢0 , 0.7357807223063301916€0]

14

[0.5923968905168195404e0 , 0.5924484728657692612¢0]
Parallelepiped 1103

[0.7357807223063301916€0 , 0.7358060530822229943€0]
[0.5924484728657692612e0 , 0.5924875449444181766€0 |
Parallelepiped 1104

[0.7358060530822229943e0 , 0.7358252407908614865€0]
[0.5924875449444181766€0 , 0.5925171414978039992¢0]
Parallelepiped 1105

[0.7358252407908614865e0 , 0.7358397754456859496€0 |
[0.5925171414978039992e0 , 0.592539560833825902¢0]
Parallelepiped 1106

[0.7358397754456859496€0 , 0.7358507855547343995¢0 |
[0.592539560833825902¢0 , 0.5925565436474789335€0 |
Parallelepiped 1107

[0.7358507855547343995e0 , 0.7358591258711289268€0]
[0.5925565436474789335e0 , 0.5925694083737511516€0]

15

References

1]

2]

3]

[4]

Babichev A.B., Kadyrova O.B., Kashevarova T.P., Leshchenko A.S. and
Semenov A.L. (1993). UniCalc, a Novel Approach to Solving Systems
of Algebraic Equations. Proceedings of the International Conference

on Numerical Analysis with Automatic Result Verifications, Lafayette,
Louisiana, USA, 1993. Interval Computations, 2, 29-47.

Dedieu, J.P. and Yakobsohn, J.C. (1993). Computing the Real Roots
of a Polynomial by the Exclusion Algorithm. Numerical Algorithms 4,
1-24.

Grigor’ev, D. Yu. and Vorobjov N. N. (Jr) (1988). Solving Systems of
Polynomial Inequalities in Subexponential Time. J. Symbolic Computa-

tion 5, 37-64.

McCallum, S. (1993). Solving Polynomial Strict Inequalities Using
Cylindrical Algebraic Decomposition. The Computer Journal, Vol.36,
No.5, 432-438.

16

