A Rule-Based Framework for Solving
Regular Context Sequence Constraints *

* 2% % *

Temur Kutsial** and Mircea Marin

! Research Institute for Symbolic Computation
Johannes Kepler University, A-4040 Linz, Austria
tkutsia@risc.uni-linz.ac.at
2 Graduate School of Systems and Information Engineering
University of Tsukuba, Tsukuba 305-8573, Japan
mmarin@cs.tsukuba.ac. jp

Abstract. We propose a framework for solving equational and member-
ship constraints for terms built over individual, sequence, function, and
context variables and flexible arity symbols. Each membership constraint
couples a variable with a regular expression on terms or contexts. There
can be several membership constraints with the same constrained vari-
able, and expressions may contain variables themselves. A membership
constraint is satisfied if an instance of the constrained variable belongs
to the language generated by the corresponding instance of the regular
expression. We identify sufficient syntactic restrictions that allow us to
use matching techniques for solving such constraints, describe a complete
algorithm, and discuss applications.

1 Introduction

We propose a framework for solving constraint systems that consist of equa-
tions and membership constraints. Terms are built from flexible arity symbols
and individual, sequence, function, and constant variables. The equational part
of constraint systems is a unification problem. Membership constraints restrict
context and sequence variables to belong certain regular languages. We call such
systems regular context sequence constraints, RCS constraints in short, to un-
derline their most important ingredients.

The equational part of RCS constraints subsumes context unification that
is a very hard problem: It may have infinitely many incomparable solutions,

* Note: This is a full and revised version of the paper submitted to RTA’2006 in
Seattle. In particular, it corrects Example 3 on page 5, the definition of well-
moded membership constraint on page 6, and makes the formulation of the rules
SVREC,CxREC,CVREC, IORET and IOREC more accurate; see pages 8, 10, and 21.

** Supported by the Austrian Science Foundation (FWF) under the Project SFB F1302
and F1322.
*** Supported by the JSPS Grant-in-Aid no. 17700025 for Scientific Research sponsored
by the Japanese Ministry of Education, Culture, Sports, Science and Technology
(MEXT).

and decidability is still open [30]. In contrast, matching with context (and se-
quence) variables is decidable and finitary. Therefore, we identify conditions on
constraints under which unification can be replaced with iterative matching.
Such replacement problems have been studied by number of authors in different
contexts; see, e.g., [15,24,2,1,34]. Like them, we approach this problem using
the idea of modes, indicating how the arguments of equality should be used, and
define a class of well-moded context sequence unification problems. These are
the problems that can be reordered into well-moded logic program queries.

We define notions of regular terms and regular contexts. Intuitively, regular
terms are terms over the alphabet extended with the standard regular opera-
tors. Regular contexts are contexts (i.e. terms with a single hole constant) over
the same extended alphabet. Regular terms contain no holes. By regular expres-
sion we mean a regular term or a regular context. Note that we use this term
in a somewhat more liberal way than the standard definition of regular (tree)
expressions [13], because in our regular expressions variables may occur. How-
ever, when we define languages generated by regular expressions, these variables
behave like (function or individual) constants. A language generated by regular
terms contains sequences of terms (hedges), and a language generated by regular
contexts contains contexts.

Membership constraints constrain context variables with regular contexts,
and sequence variables with regular terms. Constraints are very flexible: Con-
strained variables may occur in regular expressions, may be constrained with
several regular expressions, need not occur in equations, regular expressions may
contain unconstrained variables, etc. For the decidability purposes, membership
constraints have to fulfill certain natural well-modedness condition. We define
regular well-moded context sequence constraints, RWCS constraints in short, as
RcCs constraints with well-moded equational and membership parts.

Solving an Rw(s constraint means to find a substitution that solves the equa-
tions and satisfies the membership constraints: The instance of each constrained
variable should belong to the language generated by the instance of the regu-
lar expression that constrains the variable. We propose a rule-based algorithm
that provides a sound, terminating, and complete solving method for Rwcs con-
straints. Flexibility and expressiveness of the framework suggests quite broad
range of possible applications. At the end of the paper we briefly discuss some
of them, related to constraint solving, programming, and querying.

The paper is organized as follows: Sect. 2 defines the terminology. Sect. 3
introduces regular context sequence constraints. Sect. 4 introduces the solving
framework. Sect. 5 discuses an extension of the framework with extra regular
operators and restrictions with respect to variable occurrences. Sect. 6 discusses
related work and possible applications.

2 Preliminaries

We consider the alphabet consisting of the following mutually disjoint sets of in-
dividual variables Vinq, sequence variables Vg4, function variables Vp,n, context

variables Vcon, and function symbols F. The sets Vind, Vseqs Vrun, and Vaoon

are countable. The set F is finite or countably infinite. All the symbols in F

except a distinguished constant o (called a hole) have flexible arity. We will use

x,y, z for individual variables, T, ¥, Z for sequence variables, F, G, H for function

variables, C', D, E for context variables, and a, b, ¢, f, g, h for function symbols.
Terms are constructed using the following grammar:

tu=a|T|o| flty,....tn) | F(t1,...,tn) | C().

In C(t) the term ¢ can not be a sequence variable. We will write a for the term
a() where a € F. Terms will be denoted with s,¢,r. The head of a term is its
root symbol. A ground term is a term without variables. A context is a term
with a single occurrence of the hole constant o. A context C' may be applied to
a term s that is not a sequence variable, written C[s], and the result is the term
consisting of C' with o replaced by s. We will use C' and D for contexts.

A substitution is a mapping from individual variables to those terms which are
not sequence variables and contain no holes, from sequence variables to finite,
possibly empty sequences of terms without holes, from function variables to
function variables and symbols, and from context variables to contexts, such that
all but finitely many individual and function variables are mapped to themselves,
all but finitely many sequence variables are mapped to themselves considered as
singleton sequences, and all but finitely many context variables are mapped to
themselves applied to the hole. For example, the mapping {z — f(a,7),T+— "7,
7y "a,C(f(b), 2, F — g,C — g(o)} is a substitution.> We will use o, 9, ¢,
and e for substitutions, where ¢ denotes the empty substitution.

For a substitution o, the domain is the set of variables dom(c) = {v | v €
Vind U Vseq U Vrun, v # v} U{C | Co # C(o)} and the range is the set ran(o) =
Uvedom(a){va}'

Substitutions are extended to terms: vo = o(v) for v € Vipg U Vseq, C(t)o =
o(Q)[to], F(t1,...,tn)o =c(F)(t10,...,tn0), f(t1,...,tn)o = f(ti0,...,tx0).

A substitution o is more general than 1, denoted o < 1, if there exists
a o such that o = 9. A substitution o is more general than 9 on a set of
variables V, denoted o <Y ¥, if there exists a ¢ such that vop = vd for all
v € V. A term equation is a pair of terms (s,t), written s = ¢, where s and
t contain no holes and are not sequence variables. The fact that the equation
s &~ t has to be solved is written as s ~7 t. A set of variables of a syntactic
object O is denoted by wvars(O). A context sequence unification problem, Csu
problem in short, is a finite multiset of equations. A CSU problem is called well-
moded if it can be ordered as s; ~" t1,...,8, =" t, where t; is ground and
vars(t;) C Uz;ll vars(s;) for 1 < j <n.

Substitutions are extended to equations in the usual way. A solution of a
Csu problem {s; &’ t1,...,s, ~’ t,} is a substitution o such that s;c = t;o
for all 1 < i < n. A complete set of solutions of a Csu problem I is a set of
substitutions S such that (i) each element of S is a solution of I', and (ii) for

3 To improve readability we write sequences between the symbols ™ and 7.

each solution 9 of I' there exist a substitution o € S such that o < 1. The set S
is a minimal complete set of solutions of I' if it is a complete set and two distinct
elements of S are incomparable with respect to <.

An equation s =7 t is called a matching equation, written s < t, if t is ground.
We will call s the query and ¢ the data. A CsM problem is a CSU problem where
each equation is a matching equation. A solution of CsM problem is called a
matcher. We will show that matching techniques are, in fact, sufficient to solve
well-moded unification problems.

Just as a remark, to underline expressiveness of having individual, sequence,
function, and context variables in the same language, consider the context unifi-
cation problem {C1(a) ~” C3(b)}. In the standard case solvability of this prob-
lem depends on the signature (or one has to consider n-ary context variables).
For instance, one of the solutions is {Cy — f(0,b),Ca — f(a,o)}, where f does
not occur in the problem itself. In our language the problem has a most general
unifier {C; +— F(%, D1(0),7, D2(b),z),Ca — F(Z, D1(a),7, D2(0),%)}. However,
it is not a well-moded problem and is outside the scope of the framework we con-
sider in this paper. Below we consider only well-moded CsuU problems.

Ezample 1. We want to select from the (tree form of) data term f(g(a,a,a),
g(h(b), h(b)), h(c,c)) the contexts under which there are at least two leaves (not
complex subtrees), and all those leaves are the same. We write this problem as
a matching equation C(F(G(), G(),G()*)) < f(g(a,a,a), g(h(b), h(b)), h(c,c))
that can be solved by the following two substitutions: {C +— f(o, g(h(b), h(b)),
h(c,c)), F + g,G + a} and {C — f(g(a,a,a),g(h(b),h(b)),0), F — h,G c}.
Complex subtrees are not selected: G € Vg, can not be mapped to h(b).

3 Regular Context Sequence Constraints

We would like to extend terms by allowing regular expressions in their arguments.
We write "7 for the empty sequence, “” for sequence concatenation, “.” for
context concatenation, “|” for sequence choice, “+” for context choice, “*” for
sequence repetition, and “*” for context repetition. A regular expression E is a
common name for a regular expression for hole-free terms (that we abbreviate
as regular term) T and a regular expression for contexts (abbreviated as regular
contezt) C, defined by the following grammars:

To= o |Z[f(T) | F(T) | C(T) | 7| Ty, To7 [Ta|T2 | T | C(T).
Cu= of f(T1,C,Ta) | F(T1,C,T2) | C(C) | C1.C2 | €1 +C2 | C.
The regular term T in C(T) and C(T) should satisfy the condition head(T) €

Vind U Vran U Voon U F. We assume that C(T) is C[T] if C is a context, and do not
distinguish between E;," " Es and Eq, Es.

Ezample 2. C(F(f(T)*,g(0).h(0))) + f("g(z), 2™, g(o))* is a regular context.
(C(E(f(@)",9(0)-h(0))) + flg(x),2)",9(0))*) (f(Z,a")) is a regular term.

Substitutions are extended to regular expressions in the usual way. We call a
regular term r-term if it is either Ty | T2 or T*. A regular context is an r-context
if it is either C1.Ca, C; + Ca, or C*. A regular term is a term (sometimes we also
say pure term) if it does not contain any regular operator. The same holds for
contexts.

The regular language £(T) generated by a regular term T is a set of sequences
of hole-free pure terms (or hedges, in terms of [3]) defined as follows:

L) ={v}, ifv e VpqU Vseq-
LOT)) = {h(t1, oo t0) | Thry st € £(T)}, h € Vi U F.
L(C(T)) ={C(¥) | t € L(T)}.
L) ={""
(I—Tl,TQ) = {rtl,...,tk,tk_;,_l,...,tn—l |

Tty ot € L(T1), thgt, -t € L£(T2)}
L(T1 | T3) = L£(T1) U L(Ts).
= £()
n>0
L(¢(T)) = {C[t] | C € £(C),t € L(T)}.
Here £(T)? = {77} and L(T)"" = {Tt1,.. . tisthorty-eotm ' | Tt tn ' €

L(T)", "tkt1y- - tm ' € L(T)}. The regular language £(C) generated by a regular
context C is a set of pure contexts defined as follows:

£(6) = {o}.
ﬁ(h(Tl,C7T2)) = {h(tl, ey e, C, Crg1y .- ,tn) ‘ Ce ,C(C),
Tty b8 € L(T1), gty - s tn € L£(T2)},h € Vewn U F.

L(C(c)) ={C(C) | C € L(C)}.
L(C1.C2) = {C1[Co] | C1 € L(C1), C2 € L(C2)}-
L(C1 + Cg) = L(C1) U L(C2).
L(c) = U £@©)",
n>0

where £(C)°? = {o} and L£(C)"*! = {C1[Cs] | C1 € L(C)",Cs € L(C)}.
Ezample 3. Let T be f(C(o),z*,b)*. Then

()—{O f(C(0),), £(C(0), 2,b),..., f(C(o), ;... 2,D),...,
(C(£(C(0),)),b), (7((é(0), b)), x, b) e

Variables behave like function symbols when languages are generated from reg-
ular expressions.

)

Note that a regular context C can not be applied to another regular expression
unless C is a pure context. The following example demonstrates this:

Ezample 4. The expressions f(o)*(a) and f(a)* generate different languages:

L(f(e)*(a)) ={a, f(a), f(f(a)),. ..}
L(f(a)") ={7, f(a)." F (@), f(a) ...

We write L(T); for L(T)\ {7}, £(C)y for £(C)\ {o}, L(T)p = L(T) and L(C)y =
L(C). Membership atoms are atoms of the form Ts in T or Cv in C, where Ts is
a finite, possibly empty, sequence of terms, and Cw is either a context or a con-
text variable. Membership constraints are finite multisets of pairs {(ma1,£1),...,
(man, £,)} where ma’s are a membership atoms and £’s are flags that are boolean
expressions (with the possible values 0 or 1). Sometimes, slightly abusing the
notation, we also refer to pairs (ma,f) as membership constraints. The intu-
ition behind (Ts in T,f) is that Ts € £(T);.* Similarly, the intuition behind
(Cv in C,g) is that Cv € L(C)g. It will be needed later to guarantee the ter-
mination of the algorithm. A membership constraint is called well-moded if it
can be ordered as {(v1 in E1,f1),..., (U, in E,, £,)} where T’s are sequence or
context variables (called constrained variables), and E’s are regular expressions
such that 7; ¢ vars(E;) for 1 <i < j <mn.

A regular well-moded context sequence constraint (RWCS constraint in short)
is a finite multiset

{81 %? tl»---;sn %? tn» (fl in Tl,fl),...,(fm in Tm;fm);
(61 in Clagl)v"'u(ék in Ckvgk)}v
where {s; ~" t1,...,5, =" t,,} is a well-moded CsuU problem, {(Z; in Ty, f;),

s (@ In T, £m), (C1 in C1,g1),. .., (C in Ck,gr)} is a well-moded member-
ship constraint, and the flag for each constrained variable that does not occur
in the equations is 0. We use I' and A to denote RWCS constraints. A sub-
stitution o is called a solution for such a constraint if s,oc = ¢;0, £,0 € {0, 1},
gio € {0,1}, 70 € L(T;0)s,,, and Cio € L(Ci0)go foralll <i<n,1<j<m,
and 1 <1 < k. We denote the solution set of I" with sol(I") and say that I" is
satisfiable if sol(I") # (.

We say that a variable is equational in an RWCS constraint I” if it occurs in the
equational part of I'. It is potentially equational in I" if it occurs in a membership
constraint of I" that constrains an equational or a potentially equational variable.
Otherwise a variable occurring in I is nonequational in I'. We denote the sets of
equational, potentially equational, and nonequational variables of I" respectively
with equ(I"), pequ(I), and nequ(I").

In the rest of the paper we will use the symbol < for ~” to underline that
matching techniques will be applied to solve equations.

4 The Framework
Our goal is to develop an algorithm to solve RwCS constraints. It turns out
that constrained variable occurrences have a crucial influence on the type and

4 Note that (Ts in T*,1) does not have the same meaning as (Ts in "T,T*7, 0): Just
take a* as T.

decidability of RwcCs constraints. We will consider two properties that character-
ize the constraints: Dcv (all constrained variables are distinct) and Ecv (each
constrained variable occurs in equations, i.e. is equational).

First, we describe a general rule-based solving framework and then show how
the algorithm behaves on constraints for which Dcv, ECv, or their combinations
hold. The most general case is when a RWCS constraint is not restricted with the
properties Dcv and Ecv. However, decidability of such constraints depends on
decidability of context unification: If C; and Cs are two contexts that contain
context variables and s is a term that does not contain a context variable C,
then to decide whether the constraint {s < ¢,(C in C4,0),(C in Cs,0)} is
solvable, we need to decide whether a context equation C; ~7 Cy has a solution.
Decidability of context unification is an open problem [30]. Hence decidability
of the following problem is open:

Given two regular contexts C; and Cs, find a substitution o such that the
intersection of two regular tree languages £(C10) N L(Ce0) is not empty.

In order to avoid context unification problems, we require RWCS constraints to
satisfy a weaker form of ECv: Every variable that is constrained with more that
one membership constraint should be an equational variable.

As we will see, weak ECV is indeed enough to have decidable finitary Rwcs
constraint solving. In the rest of the paper we assume that RwWCS constraints
satisfy weak ECv and do not mention this explicitly.

Now we present the inference system for our framework. It consists of five
groups of rules presented below. Rules operate on systems. A system is either
the symbol L (failure) or a pair I';o, where I' is a RWCS constraint and o is a
substitution. The indices n and m are non-negative unless otherwise stated.

The first group of rules does not affect membership constraints. It is denoted
by Req and consists of the following 11 rules:

T: Trivial

{t<t}url; o =1T; o.

IVE: Individual Variable Elimination

{z < t}UTl; o = I'Y; o0, where ¥ = {z s t}.

FVE: Function Variable Elimination
{F(515+.y8n) L f(t1,.. ., tm)}UT; o
= {f(s19,...,829) < f(t1,...,tm)} UT'Y; 0¥, where ¥ ={F — f}.
PD: Partial Decomposition
{f(s1,.- y8n) K f(t1,.. ., tm)}UT; o
- {51 Kty ey St L th—1, f(Sky vy 8n) K f(tk,...,tm)}UF; o,
if f(st,...,8n) Z f(t1,.-.,tm), Sk € Vseq for some 1 < k < min(n, m)+1, and s; ¢ Vseq
forall 1 <i<k.
TD: Total Decomposition
{f(s1,.0y8n) K f(t1,..ytn)}UT; 0= {51 K t1,...,80 Lty } UT; 0,
if f(s1,...,8n) # f(t1,...,tn) and s; & Vseq for all 1 < i < n.

SVD: Sequence Variable Deletion
{f(Z,s1,...,80) Kt}UT; 0 = {f(s19,...,s,9) Kt} UT'Y; o0,
where ¢ = {Z — "} and T is not constrained in I".
W: Widening
{f(@,s51,...,80) K ft,t1,...,tm)}UTL; o
= {f(@, 519,...,00) < f(t1,...,tm)} UTY; o0,

where & = {Z — "¢,77} and T is not constrained in I'.

CVD: Context Variable Deletion
{C(s) < tUT; 0= {s9 K t}UTY; o0,

where ¥ = {C + o} and C is not constrained in I'.

D: Deepening

{C(s) <€ f(t1,.. . tm)JUT; 0 = {C(s9) < t;}UTY; oV,
where m > 0, 9 = {C— f(t1,...,tj—1,C(0),tj+1,...,tm)} for some 1 < j < m, and
C' is not constrained in I.

SC: Symbol Clash
{f(s1,--,8n) € gltr,...,tm)}UT; 0= L, if f¢& VoonUVrun and f # g.

AD: Arity Disagreement
{f(s1,--y8n) K f(t1,.. ytm)}UT; 0 = L,
if m#nand s; € Vseq for all 1 <i < n, orm =0 and s; ¢ Vseq for some 1 < i < n.

The second group, the MR, consists of 9 rules that transform equations coupled
with constraints for regular terms, where the first argument of the left hand
side of the selected equation is a sequence variable constrained by a single mem-
bership constraint. The symbol NonEmptySeq in the rules satisfies the equalities
NonEmptySeq() = 0 and NonEmptySeq(ri,...,7,) = 1 if r; & Vgeq for some
1 <i<n,and @ is the exclusive or: 0 0=1941=0and 160=0461=1.

ESRET: Empty Sequence as a Regular Term
{f(@,s1,...,8n) < t, (T InTLE)IUT; o
{f(@,81,...,80)0 Kt} UTY; o, withd={z—""} iff=0,
— .
L if £ =1,
where 7 is not constrained in I
TRET: Term as a Regular Term
{f(@,81,...,8n) < t, (T in s, £)}UT; 0 = {f(T,51,...,8:)0 Kt} UTY; o0,

where 0 = {T — s}, s € Vscq, and T is not constrained in I".

SVRET: Sequence Variable as a Regular Term

{f(@,81,...,80) <, (T in GLE)}IUT; 0 = {f(T s51,...,80.)0 K tFUT"Y; o,
where if f = 0 then 9 = {T — g} and " = I". If £ = 1 and ¥ is not constrained in I’
then ¥ = {ZT — "2,27,5 — 2,2} where z and % are fresh, and I = I'. If £ = 1 and
7 is constrained in I" then ¥ = {Z + 7} and I" is obtained from I" by replacing each
(y,T,g) with (7, T,1). The variable T is not constrained in I".

SVAl: Sequence Variable Abstraction 1
{f(Z,s1,...,8n) < t, (T in T,£)}UT; o
= {f(@,51,...,80,) < t, (T in T,£), (g in T,0)}UT; o,
where T” occurs in T as a proper r-subterm whose no proper superterm is an r-term
and no proper supercontext is an r-context, and T’ is obtained from T by replacing the
occurrence of T with a fresh sequence variable 7. Z is not constrained in I'.

CVA1l: Context Variable Abstraction 1
{f(@,s1,...,80) <L, (T in T,E)}UT; 0
= {f(@,51,...,8,) < t, (T in T £), (Cin C,0)}UT; o,
where C occurs in T as an r-subcontext whose no proper supercontext is an r-context
and no proper superterm is an r-term, and E’ is obtained from T by replacing the
occurrence of C with a fresh context variable C. T is not constrained in I
ChRET: Choice as a Regular Term
{f (@, 81,...,8n) <ty (T in T1|T2,£)}UT; o
= {f(T,s1,...,82) < t, (T in T,E)}UT; o, fori=1,2.

T is not constrained in 1.

CRET: Concatenation as a Regular Term
{f(@,s1,...,8n) <&, (T in"T1, T2, E)}UT; o
= {f(T,51,..-,80)0 < ¢, (Y, in T1,£1),(Yy in To,f2)} ULY; o,
where 7, and 7, are fresh variables, ¥ = {Z — "7y,,7, '}, and £1 and £ are computed

as follows: If £ = 0 then f; = f5 = 0 else £f; = 0 and f2 = NonEmptySeq(y;) @ 1. The
variable T is not constrained in I

RRET1: Repetition as a Regular Term 1
{f(@, s1,...,80) <t, (T in T0)}UT; 0 = {f(T,51,...,50)0 Kt} UTY; o0,

where ¥ = {T — "} and 7 is not constrained in I".

RRET2: Repetition as a Regular Term 2
{f(@,81,...,8n) < t, (T in T E)}UT; o
= {f(T,51,...,8:)0 K t, (¥ in T,1), (T in T*,0)}UTY; o0,

where ¥ is a fresh variable, T is not constrained in I', and ¥ = {z — "3, 7 '}.

The third group of rules operates on equations and constraints on regular con-
texts. The top context variable of the left hand side of the selected equation is
constrained by a single membership constraint. This group is denoted by fRic.
The symbol NonEmptyCtx in the rules satisfies the equalities NonEmptyCtx(o) = 0
and NonEmptyCtx(C') = 1 if the context C' contains at least one symbol different
from context variables and the hole constant, and @, as above, is the exclusive
or. There are the following 10 rules in this group:

HREC: Hole as a Regular Context

{C(s) < t, (Cino,g)}UTl; o
{C(s)9 < t}UTY; ¥, with 9 = {C o} ifg=0,
€L ifg=1.

where C' is not constrained in I'.

CxREC1: Context as a Regular Context 1
{C(s) < t, (Cin C,g)}UTl; 0= {C(s)9 <t} UTY; o9,

where ¥ = {C' +— C}, C # o, and head(C) ¢ Vcon. The variable C is not constrained
in I'.

CxREC2: Context as a Regular Context 2
{C(s) < t, (Cin D(0),g)}uT; o = {C(s) <t,(C in D(0).C,g)}UT; o,

where C # o. The variable C is not constrained in I.

CVREC: Context Variable in a Regular Context

{C(s) < t, (Cin D(o),g)}UTl; 0 = {C(s)9 < t}UI"Y; o0,
where if g = 0 then ¢ :ié — 5&3)} and [" =T'.If g = 1 and éis not constrained in
I'then ¥ = {C' — F(z,E(0),y), D — F(z, E(c),y)} where F, T, E, and § are fresh, and
I"=T.1fg=1and D is constrained in I" then ¥ = {C +— D(0)} and I’ is obtained

from I' by replacing each (D,C,f) with (D,C,1). The variable C is not constrained
inI.

SVA2: Sequence Variable Abstraction 2

{C(s)<t, (CinCglul; o= {C(s)<t, (CinC,g), (T in T,00}UT; o,
where T occurs in C as an r-subterm whose no proper superterm is an r-term and
no proper supercontext is an r-cintext, and C’ is obtained from C by replacing the

occurrence of T with a fresh sequence variable Z. The variable C is not constrained
in I,

CVA2: Context Variable Abstraction 2

{C(s) < t, (Cin C,g)}UT; 0 = {C(s) < t, (Cin C,g), (DinC",0)}UTl; o,
where C” occurs in C as an r-subcontext whose no proper supercontext is an r-context
and no proper superterm is an r-term, and C’ is obtained from C by replacing the

occurrence of ¢’ with a fresh context variable D. The variable C is not constrained
in I

ChREC: Choice as a Regular Context
{C(s) < t, (Cin C1+Cag)tUl; o= {C(s) <t, (Cin Ciyg)}UT}; o,

for i = 1,2. The variable C is not constrained in I".

CREC: Concatenation as a Regular Context
{C(s) <t, (Cin C1.C2,g)}UT; 0
= {C(s)9 <« t, (D1 in C1,g1), (D2 in Ca2,g2)} UI'V; o,

where D; and D; are fresh variables, ¥ = {6 — D1 (ﬁg (o))}, and g1 and g2 are compu-
ted as follows: If g = 0 then g1 = g2 = 0 else g1 = 0 and g2 = NonEmptyCtx(D1) @ 1.
The variable C' is not constrained in I

RREC1: Repetition as a Regular Context 1
{C(s) < t, (Cin C*,0)}UT; 0 = {C(s)¥ < t}UT; ad,

where ¥ = {C + o}. The variable C is not constrained in I'.

RREC2: Repetition as a Regular Context 2
{C(s)<t, (Cincrg)}Ul 0
= {C(s)9 <« t, (D in C,1), (C in C*,0)}UTIY; o0,
where D is a fresh variable, C is not constrained in I', and ¥ = {C + D(C(0))}.

In the fourth group we have only two rules. They deal with the cases when a
variable is constrained by more than one membership constraint. This group is
denoted by fRint, underlining the fact that they are related with the intersection
of regular languages:

IRET: Intersection of Regular Terms
{f(f,sl,,..,sn) < t, (f in Tl,fl),(f in TQ,fQ)}UF; o
= {f(T,51,...,8:) € t, (T in T1,£1), f(Y) < f(@), (W in T2, £2)}UT; o,

where 7 is a fresh variable.

IREC: Intersection of Regular Contexts
{C(s) <t, (Cin C1,g1),(C in Co,ga)}UT; 0
— {C(s) <1, (C in C1,81), D(a) < C(a), (D in Ca,ga)} UT o,

where D is a fresh variable and a is a fresh constant.
The fifth group, PRqat, consists of a single rule:

SAT: Satisfiability
I'; o = 0; o,

where I is a well-moded membership constraint, with all flags 0.

We denote by R the set Req U Rt U Ric U Ring U Reat-

Lemma 1. Every rule in R preserves well-modedness.

Proof. Let I' = {s1 < t1,..., 8, K tn, (U1 in E;,£1),..., (U in Ep,Em)} be a
Rwas constraint such that ¢; is ground, vars(t;) C Uz;ll vars(s;) for 1 <j<mn
and T; ¢ vars(E;) for 1 < ¢ < j < m. If there are several equations the ground
right hand side we assume that a transformation rule selects always the first one
in the given ordering which is the leftmost one.

It is easy to observe that the rules from R, preserve well-modedness: They
either eliminate variables, or keep the set of variables and their occurrences in
terms unchanged.

The rules from R, and R, either eliminate a variable with a term or a term
sequence that does not contain this variable, or replace a regular expression with
a fresh variable, or does not change the variable set and the right hand sides of
equations at all. It implies that well-modedness is not violated. Just note that in
the case of RRET and RREC rules the constraints for fresh variables 7 and D will
come immediately after the constraints for old variables Z and C in the ordering
that verifies well-modedness.

In the intersection rules the new equalities f(y) < f(Z) and D(a) < C(a)
should be immediately after the old ones, f(Z,s1,...,5,) < t and C(s) < t
respectively, in the ordering for well-modedness. a

It is obvious that each rule in R preserves the weak Ecv property. We as-
sume that from the beginning the flag for each constrained equational vari-
able is set either to 0 or 1. It guarantees that at each step the flag of a se-
lected membership constraint is 0 or 1. We call the substitutions computed
at transformation steps (the ¥’s in the rules in PR) the local substitutions. We
may write I1;01 =>Rr,9 I2;02 to indicate that the system I;0; was trans-
formed into ;09 by applying the rule R € R with the local substitution .
A derivation is a sequence I1;01 ==R,,9, 2;02 =>R,,9, - Of system trans-
formations. Some of the subscripts will be omitted if they are not relevant.
We will sometimes use the abbreviation I7; 0y =>$ I,; 0, for the derivation
I';o1 =y, In;00 =y, -+ =9,y Ln;0n, where ¥ =91 -0y

Definition 1. A constraint solving algorithm € is any program that takes a
system I';e as input, where I' is a RWCS constraint, and uses the rules in R to
generate a complete tree of derivations in the following way:

The root of the tree is labeled with I';e.

Each branch of the tree is a derivation. The nodes in the tree are systems.
Each rule selects an equation with the ground right hand side.’?

If several rules, or different instances of the same rule are applicable to a
node, they are applied concurrently. No rules are applicable to the leaves.

T o~

The leaves of a tree are labeled either with systems of the form (J; 0 or with L. The
branches that end with 0; o are successful branches, and those that end with L
are failed branches. A substitution o is called an answer of I' computed by €,
or just a computed answer of I' if (); o is a successful branch of the solving tree
for I'. We denote by CA¢(I") the set of answers of I' computed by €. Mostly
we will be interested in the set CAe(I")|vars(ry: the restriction of CAg(I) to
vars(I).
The following lemma immediately follows from the construction of €:

Lemma 2. Let I' be a Rwcs problem. Then for every o € CAe(I")

1. vo is ground for every v € equ(I).
2. v ¢ dom(o) for every v € nequ(I).

If a potentially equational variable occurs in the domain of a computed answer
then its image is also ground. For instance, the constraint I' = {f(7,7) <
f(g(a),a), (T in ¢g(2)*,0),(Z in 7,0)}, where Z € pequ(I"), has a solution {Z —
M5 — Tg(a),a)”} that leaves Z unchanged, and has another solution {Z +—
g(a),7 — a,Z — a} which maps Z to the ground term a.

The flags prevent looping for the cases when regular expressions accept the
empty sequence or hole under star. (See also [17].)

5 Well-modedness guarantees that such an equation exists and that, in fact, the algo-
rithm can use only matching.

Ezample 5. Consider a derivation of {f(Z) < f(b,a), (T in (a*[b*)*,0)}:

{f(@) < f(ba), (@ in (a”[b7)",0)};€
= {f@,7) < f(ba), (¥ in (a”|b*), 1), (T in (a”[b")",0)};{T — 5,77}
= {f(H,7) < f(ba), (¥ in a*,1),(F in (@[b7)", 0)}; {7 — "5, 77}
If we did not have flags, in particular, the flag 1 for 3, here we could replace 7

with "7 by the RRET1 rule, obtain the initial problem and, hence, a loop. But
the flag 1 prevents this, and the derivation continues with the RRET2 rule:

= {f(z,9,7) < f(b,a),(Z in a,1),(7 in a*,0),(ZT in (a*|b*)*,0)};
{z—"z2,9,27— "2,7"}

= {f(a,y,7) < f(b,a),(y in a*,0),(T in (a”[b")",0)};
{Z+—"a,5,2,5— "a, 5,2 — a}

= {a kb, f(7,T) < f(a), (7 in a*,0),(ZT in (a*b*)*,0)};
{Z—~"a,5,2,5— "a, 5,2 — a}

= 1.

4.1 Examples

Table 1 shows a successful derivation for the system {C(z) < f(a), D(E(z)) <
C(g(z)), (D in C(0).g(0),0)}; . Table 2 shows a successful derivation for
{C(F®@) < [(bg(f(a)),G(T) < F(F), (T in f(c)*(a),0), (T in f(z)*,0),
(@ in f(w*),0)}; € where some simple steps are contracted. Selected equations
and membership constraints are framed.

4.2 Soundness of €

Lemma 3. If I';01 =y I3;02 by a rule in |\ Rt and ¢ is a solution of I
then Yy is a solution of 1.

Proof. For IREC We have

I ={C(s) < t,(C in Cy1,g1),(C in Ca,ga)}UA, ¥ =c¢,
FQ :{6(8) < t? (6 in clvgl)vb(a‘) < 6(@), (E in 027g2)} U A»

where D is a fresh variable and a is a fresh constant. Assume ¢ is a solution
of Iy, Then C(s)p =t,Cp € L(C1p)g, 4, D(a)p = C(a)p, and Dy = L(C20)g,¢-
Since a is a fresh constant, D(a)p = C(a)y implies that Dy = C'p and, hence,
Cp = L(C2)g,- Therefore, ¢ = Yy is a solution of I7.

For IRET the lemma can be proved in a similar way. For the variable ab-
straction rules the it immediately follows from the definition of solution and the
definitions of languages generated by regular terms and regular contexts. For the
other rules in R \ Rqat the lemma follows from Lemma 1 in [21]. O

{C) < 1| DE@) < Cle@)), (D in TClo).g(0).0): ¢
— {[x<a] D(E@) < f(g@), (D in £(o).9(0).0)}; {T = f(0)}
— {D(EW) < f(9(a)) |, [(D in £(0).9().0) [} (T f(o).z —a}
— (| D:i(D2(B() < f(g(@)], | D1 in £(0).0)], D2 in g(0),0)};

{C f(0),2 — a,D v Di(Ds(0))}
— {{/(D2(E())) < f(9(a) | (D in g(o),0)};

{C f(o).x 0, D [(D(0)). D = f(o))
— {|D2(B(a)) < g(@) |, | (D2 in g(),0) };

{C (o), w0, D f(D(0)), D v f(0))

= {[g(Bla) < gla) |
{C— f(o),x+ a, D+ f(g(0)), D1 f(0), D2 = g(o)}
~ Eo=d)
{C — f(0),x + a,D ~ f(g(0)), D1+ f(0), D2 = g(0)}
= {[a <]}
{C+ f(0),z+ a,D r f(g(0)), D1 = f(0), D2+ g(0), E + o}
= 0; {C'+ f(o),z+— a,D > f(g(0)), D1 f(o), D2+ g(o), £+ o}

Table 1. A successful derivation of the system {C(z) < f(a), D(E(z)) < C(g(z)),
(D in C(0).9(0),0)}; e.

Corollary 1. If I';0q :>$ Iy; 09 in R\ Rty and @ is a solution for I, then
P is a solution for I7.

Proof. By induction on the length of the derivation. ad

Theorem 1 (Soundness of €). Let I' be a RwWCS constraint and o € CA¢(I).
Then there exists a solution ¥ € sol(I') such that o < 9.

Proof. Let I';e =} 0; 0 be a derivation that corresponds to o € CA¢(I'). First
assume that Mg is not used in this derivation. Since € is a solution of (), by
Corollary 1, ec = o is a solution of I'. If Ry, is used, the derivation has a form
I'ie =71 A;0 =sat 0; 0. By Corollary 1, if ¢ is a solution of A then oy is a
solution of I'. It remains to show that such a ¢ exists. Since A is well-moded and
constrains variables maximum once, there exists (v in E,0) € A such that E does
not contain any constrained variables. Since L(E)q is nonempty, take an arbitrary
element e € L(E)y and define ¢ = {U +— e}. The constraint (A \ {7 in E,0})¢1
has all the properties of A, therefore we can construct ¢s in the similar way, and

{CF®@) < 1(b.9(f(@)]|. 6@ < F@). @ in 1(2)(a).0), @ in f(z)",0),
(@ in f(z°),0)}:e
— {{F(§) < 9(f(2)) | G(@) < F(5), @ in f(c)*(a),0), (@ in f(2)",0),
(@ in f(z°),0)} {Cr f(b,0)}
— = {G@) < g(f(a)] @ in £()*(),0), (@ in f(2)",0),
(@ in f(z%),0)}; {C = f(b,0),F = g, 5 f(a)}
(@ in f(2)*(a),0)] 9(@) < g(@), (@ in f(2)",0),
(@ in f(z%),0)}; {C = f(b,0),F = g, 5+ f(a),G > g}
— {{9(@) < 9/ (@)]| @ in D(a),0)}, (D in f(0)*,0), g(®w) < g(a),
(@ in f(2)",0), (@ in £(z),0)5{C — f(b,0),F = 9,5~ f(a),G — g}
— = (D) < f@)] |(D in 1)",0)] 9@) < 9(D(a)), @ in f(2)",0),
(@ in f(z°),0)} {C+ f(b,0),F = g,5 f(a),G — 9,7 D(a)}
= = {9@) < g(f(a) |, [@ in [(2)7,0)] @ in f(z"),0)};
{C— f(b,0),F = 9,5~ f(a),G — 9,7 — f(a), D1 — (), D > f(0)}
= = {[(@in [@"),0) [l {Tr f(b,0),F g5 fa),Gr 9.7 fla),
D1+ f(0), D= f(0), w1 = f(a), @ f(a),Z— a}
= 0; {C > f(b,0),F = g,5 f(a),G — 9,7~ f(a),
Dy f(0),D = f(0), @1 — f(a), W+ f(a),Z > a}.

u

s {’g(f) < g(f(a))

Table 2. A successful derivation for {C(F(y)) < f(b,g9(f(a))), G(@) < F(¥),
(@ in f(c)"(a),0), (T in f(2)",0), (@ in f(z),0)};e.

so on. This process ends after n steps, where n is the number of elements in A.
The substitution ¢ = 7 - - @, is a solution of A. ad

4.3 Termination of &€

Proving termination requires to define a complexity measure for Rwcs con-
straints. First we need to introduce auxiliary notions.

The size of a pure term ¢, denoted tsize(t), is defined as the number of
symbols in ¢ if ¢ is ground, and oo if ¢ contains variables. It is assumed that
oo > n for any nonnegative integer n.

The regular size of a regular expression E, denoted rsize(E), is 1 + 71 + ro +
rg + r4, where 71 is the number of occurrences of regular operators® in E, ry is
the number of context variable applications of the form C(C) where C # o, r3
is the number of context applications of the form C(E') where C is an r-context,
and r4 = 1 if head(E) € Vpyn U F and is 0 otherwise.

Ezample 6. Regular sizes of some regular expressions:

rsize(a | ™

rsize(a | f(b)*
rsize(Ta,b,c7 | f(b)*
rsize("a,b, ¢ | f(a,b)*
rsize(Ta,b, ¢ | f((a,b)¥)

rsize("(C(D(E(0))).f(F,0))(a), f(a,b57)"

2
3
5
5
7
9

)
)
)
)
)
)

The regular size of a regular expression E with respect to a membership con-
straint M, denoted regsize(E, M), is defined as the multiset union regsize(E, M) =
{rsize(E)} U R, where R is itself a multiset union of all regsize(E;, M)’s such that
(TinEp,f) € M and U € vars(E).

Ezample 7. Let E be a regular expression that is the application of a regular

context on a regular term: f(z,Z*,0)*.g(D(0)) (f(Z,g(C(a), C(f(@)), f(@)),H))-
Let M be a membership constraint of the form {(Z in 7,0),(Z in f(a*),1),
(C in D(o)*.f(a,0),1), (C in f(y*,0)*,1), (¥ in "a,b*7,1)}. Then rsize(E) =7
and regsize(E, M) ={7,1,3,3,3,3,3,3} obtained as follows:

regsize(E, M) = {rsize(E)} U regsize(y, M) U regsize(f(a*), M)
U regsize(D(0)*.f(a, 0), M) U regsize(f (7", 0)*, M)
U regsize("a, b* 7, M)

= {7} U {1,3} U {3} U {3} U (3.3} U (3}
=1{7,1,3,3,3,3,3,3}.

A position is a sequence of positive integers. For a term ¢ and a position p,
symb(t, p) denotes the symbol of t at position p: symb(t,” ") = tif t € VinaUVseq,
symb(t, I——I) = head(t) if ¢ ¢ Ving U VSe(p Symb(h(tla cee 7tn)a Ti,i1,. .. 7im_|) =
symb(t;,Ti1, ... im) if 1 <i<nand h € FUVrunUVcon (n =1 for h € Voon).
In all other cases symb(t, p) is undefined. Positions are ordered with the order-
ing > that is a lexicographic extension of the standard ordering > on positive
integers. Moreover, we assume to have a constant co such that co > p for any
position p.

6 We do not count occurrences of the comma “” between E’s in the expressions of the
form h(Ei,...,E,), where h € Vpyn UF, and assume that no E; is a concatenation of
sequences.

Let ¢ be a pure term and M be a membership constraint. A position p in ¢
is called a nonzero-constrained position in t with respect to M if symb(t,p) is
a variable constrained by M such that for all (symb(t,p) in E,e) € M the
flag e # 0. The minimal element (with respect to =) of the set of all nonzero-
constrained positions in ¢ with respect to M is denoted by miny (¢, M). If this
set is empty then min, (¢, M) = oo.

Example 8. Let t be a term f(%,u,w, g(D(a), C(f(Z)), f[#)),7)-
1. miny (¢, M) = 3 where
M ={(z in 5,0),(Tin f(a)*,1), (@ in f(a)*,0),

(w in C(a),NonEmptySeq(u) ® 1), (C in D(o)*.f(a,0),1),
(Cin f(g*,0)*,1), (7 in "a,b"7, 1)}
2. ming (¢, M) ="4,27 where
M = {(Z in 3,0),(T in f(a)*,1),(@in f(a)*,0),(®w in C(a),0),
(C in D(o)*.f(a,0),1),(C in f(y*,0)*,1),(y in "a,b*7,1)}.
3. miny (¢, M) ="4,3,17 where
M ={(in 3,0),(% in f(a)*,1),(win f(a)*,0),(w in C(a),0),
(@ in D(o)*-f(a;0),0),(C in fF",0)*,1), (7 in "a, b7, 1)},

The constrained variable prefixr of a term t with respect to a membership con-
straint M, denoted cup(t, M), is the multiset of all regsize(Ez, M)’s such that ©
is a constrained variable occurring in a position p < miny (¢, M), Fz =70 if U is
a sequence variable, and Ey = v(o) if T is a context variable.

Example 9. Let t be a term f(Z,u,w, g(D(a), C(f(T)), f@)),7)-

1. cop(t, M) = {regsize(xT, M), regsize(u, M), regsize(w, M)} = {{1,1, 3,3}, {1,
2}, {1,2,3,3,3}} where

M = {(f in g, 0)7 (E in f(a*)v 1)7 (H in f(a)*ao)a
(w in C(a),NonEmptySeq(w) © 1), (C in D(o)*.f(a,0),1),
(C in f(y*,0)*,1),(¥ in"a,b*7,1)}.

2. cop(t, M) = {regsize(T, M), regsize(u, M)} = {{1,1, 3,3}, {1,1}} where

8|

M = {(
(
(

in 7,0),(Z in f(a*),1),(®@in f(a),1),(v in f(a)*,0),
in C(a), NonEmptySeq(u) ® 1), (C in D(o)*.f(a,0),1),
in f(g*,0)*,1),(¥ in "a,b* 7, 1)}.

Ql €l

3. cup(t, M) = {regsize(T, M), regsize(u, M), regsize(w, M), regsize(C(c), M)}
= {{17 17 3’ 3}’ {1’ 2}7 {17 2’ 3’ 37 3}7 {17 3, 37 3}} Where

M ={(z in
(C in

7,0),(@ in f(a*),1),(@ in f(a)",0), (@ in C(a),0),
D(o

0)*.f(a,0),1),(C in f(y",0)*,1),(¥ in "a,b" 7, 1)}.

o), M

4. cop(t, M) = {regsize(T, M), regsize(tu, M), regsize(w, M), regsize(C(),
1’ 37 37 3}’

regsize(T, M), regsize(y, M)} = {{1,1, 3,3}, {1,2}, {1,2,3,3,3}, {
{1,1,3,2}, {1,3}} where

M = {(

Z in 7,0),(Z in f(a*,1),(@in f(a)*,0), @ in C(a),0),
(C in D(o

0)*.f(a,0),0),(C in f(y",0)*,1),(¥ in "a,b"7, 1)}.

With each RwcCs constraint I' # L we associate a complezity measure, cm(I"),
as a tuple (ni,ng,n3, ng, ns, ng), where nq,ns and ng are nonnegative integers,
ng is a multiset of positive integers and oo, ng is a triple of nonnegative integers,
and n4 is a multiset of multisets of positive integers defined as follows:

n1 = the number of variables constrained by more than one membership
constraint.
ng = Usrer {tsize(t)}.
ng = (my, ma, mg) where
my is the number of equations s < t € I’
such that the head of s is a variable,
my is the number of equations s <t € I
such that the head of s is a context variable,
ms is the number of equations s < t € I’
such that the first argument of s is a sequence variable.
ny = Uster cop(s, M), where M is the membership constraint part of I
ns = the number of distinct variables in I

ng = the number of constraints of the form (C' in D(C),g), C# o in I

For L we define ¢em(L) = (0,{0}). The ordering > compares measures lexico-
graphically. Obviously, > is well-founded.

Theorem 2 (Termination of €). € terminates on any input.

Proof. Termination of € follows from the fact that every rule R in R strictly
decreases the complexity measure: If I'j; 01 =g I3; 02 then em(I7) > em(I2),
and em(I") > em(L) for any I'. Table 4.3 shows which rule in R decreases which
component of the regular complexity measure. a

Rule niy Ny N3 N4 Ns Rule niy Mo N3 Na N5 Mg
T = > ChRET = = = >
IVE = > CRET = = >
FVE = > = = > RRET1 = > > >
PD = > RRET2 = = = >
TD = > HREC, ifg=0 = > > >
SvD = > > = > HREC, ifg=1 > >

W = > CxREC1 = > >
CvD = > > = > CxREC2 = = = = = >
D = > CVREC,ifg=0 = = = >
SC > > CVREC, ifg=1

AD > > D not constrained = = >
ESRET,iff=0 = > > > D constrained = = = >
ESRET7 iff=1 > > SVA2 = = = >
TRET = > > CVA2 = = = >
SVRET,if f=0 = = = > ChREC = = = >
SVRET, if £f =1 CREC = = = >
Yy not constrained = = > RREC1 = > > >
y constrained = = = > RREC2 = = = >
SVA1 = = = > IRET, IREC >

CVAl = = = > SAT = >

Table 3. Rules in R on the regular complexity measure. The equality sign = means
the component remains unchanged, > means it strictly decreases, and > means it does
not increase.

4.4 Completeness of &€

Theorem 3 (Completeness of €). Let I be a RWCS constraint, ¥ be a solu-
tion of I', Q = equ(I"), and V = vars(I"). Then there exists a computed answer
o € CAe such that o|lg = Vg and oly <J|y.

Proof. We use well-founded induction on complexity measures. Assume that for
any Rwcs constraint I if em(I") > c¢m(I") then for any solution ¢ of I there
exists a derivation I";e =1 0;0 such that o'|g = ¥'|g and o'|y < ']y
where Q' = equ(I") and V' = wvars(I""). We show how to build the desired
derivation from I';e for a solution ¢ of I.

If I" does not contain equations then the theorem is trivial, because ¢ = ¢
and equ(I') =). Therefore, we assume that I' contains equations. We pick an
arbitrary equation s < t from I" such that t is ground, and represent I as
{s < t} U A. Depending on the form of s < ¢ we have three cases: s and ¢ are
the same terms, s is an individual variable, or s is a compound term different
from t. The first two cases as well as all the subcases of the third one, except
the ones considered below, can be handled in the same way as in the proofs of
Theorem 3 and Theorem 8 in [21].

We consider here first those subcases of the third case where the first ar-
gument of s is a sequence variable constrained by more than one membership
constraint, or where the head of s is a context variable constrained by more
than one membership constraint. Let s = f(T, s1,...,8,) and represent A as

A = {(f in T17f1)7(f in Tg,fg)} U ®. We have 79 = rtl,...,tm—|7 m 2 0,
for some ground t’s. We transform I';e with the step I';e = greT ¥;& where
U = {f(Z,s1,...,80) < t, (T in T1,£1),f[@) < f(T),(y in T, f2)} U D
Since 9 is a solution of I'; the substitution ¥ is a solution of ¥, where ¢ =
{7 — Tt1,...,ty }. We assume without loss of generality that § occurs nei-
ther in the domain nor in the range of 9. By the induction hypothesis, there
exists a derivation ¥;e =71 (;0 with o|g = 99| and o|ys < V|ys where
Q' = equ(¥) and V' = wars(¥). Since @ C Q" and § does not occur in ¥, we
have o|g = ¥|g = ¥|g. As for the case with restriction to V, since i € equ(¥),
by Lemma 2, go|y- is ground. Then the only possibility is go|y: = Tt1,...,tm
because g |y = Tt1,. .., L, . Moreover, § does not occur in the range of oy .
Hence, for all v € dom(o|y) we have voly = vo|y.. Similarly, since ¥ does not
occur in ¥, for all v € dom(Vy|yv) we have vy = viy|y,. It implies that
oly < %ply. But since 9|y = Iy we finally get o|y < dy.

The case when the head of s is a context variable constrained by more than
one regular constraint can be proved in a similar way.

Now assume the first argument of s is a sequence variable constrained only
once, by a regular term whose head is not a regular operator, and that contains
a proper r-subterm or a proper r-subcontext. Let s = f(T, s1,. .., s,) and repre-
sent Aas A={(Z in T,f)} UP. We have T = r, where r is ground. Assume T
contains a proper r-subterm T” such that no proper superterm of T is an r-term
and no proper supercontext of T” is an r-context. We transform I'; ¢ with the step
I';e =>sya1 U where ¥ = {f (T, s1,...,8,) < t, (T in T £),(g in T,0)} U,
where T’ is obtained from T by replacing the occurrence of T” with a fresh se-
quence variable g. Since ¥ is a solution of I', the substitution ¥ is a solution
of W, where ¢p = {y +— "t1,...,t, '} for some ground t’s. We assume without loss
of generality that ¥ occurs neither in the domain nor in the range of 9. By the
induction hypothesis, there exists a derivation ¥;e =7 ;0 with o|g = 9¢|¢
and oy < 9|y, where Q' = equ(¥) and V' = vars(¥). Since Q@ = Q" and g
does not occur in ¥, we have o|g = ¥|g = ¥|g. To prove ol < J|y we first
observe that gol|y- is ground, although 7 is just a potentially equational variable
of ¥. (It happens because there is no proper r-superterm and r-supercontext of T
in T that could disappear (by taking an empty sequence or an empty hole as its
instance, or choosing another branch by choice operator) during the derivation.
Hence, in the derivation there is no step that turns 7 into a nonequational vari-
able. Therefore, 3 eventually becomes an equational variable and, by Lemma 2,
gets bound to a ground sequence of terms.) By the same reasoning as in the case
with IRET above we conclude that o|y < 9d]y. O

5 Extensions and Restrictions

We can add the intersection “N” and complementation “—” into the list of reg-
ular operators and redefine the notions of regular expressions and generated
languages correspondingly. However, we have to handle membership constraints
that contain such operators with some care in order not to have problems with

decidability. The idea is that no rule in the algorithm should make the vari-
ables constrained by regular expressions that contain N and — nonequational.
To guarantee this, we require that the RWcCs constraints satisfy the following
condition (besides already mentioned weak Ecv): All the variables constrained
by a regular expression that contains N or — should be equational.

For N we introduce the following two rules: IORET in fR,; and IOREC in fR,..
It is not a surprise that they are pretty similar to IRET and IREC that also deal
with intersection.

IORET: Intersection Operator in Regular Terms

{f(Z,s1,...,8n) < t, (T in TINT2,£)}UTL; o
:>{f(i7817"'75")<<t7 (E in T17f)7f(?)<<f(f)7(g in T27f)}UF; g.

IOREC: Intersection Operator in Regular Contexts

{C(s) <«t, (Cin C1NCa,g)}UT; o
— {C(s) < t, (C in C1,g),D(a) < C(a),(D in Ca,g)}UT; 0.

As for the complementation, we ignore the constraints of the form (Z in —T, f)
and (C' in —C,g) until the algorithm € computes an answer o, and then check
whether Zo ¢ L(To)¢y and Co ¢ L(Co)ge hold. Since all Z and C are equational,
as well as all the variables in T and C, their instances To, C'o, To, and Co are all
ground, and the membership test can be done using automata.

On the other hand, by restricting variable occurrences we can obtain in-
stances of the framework.

DCV+ECV. The most restricted instance of the framework deals with Rwcs
problems that satisfy Dcv and Ecv, i.e. all the constrained variables are distinct
and equational.

Ezxample 10. A RwcCS constraint that satisfies Dcv and Ecv:

{C(f(@) < g(f(a,b),h(f(a), f)), Flz,y) < C(b),

(Cin D(h(7",0,77)),0), (in (f(z)]a)",0)}.
To solve such problems the rules Req, Ry, and R, are sufficient. If we restrict
this case further, considering only those regular expressions that are built from
pure terms and contexts using regular operators (and forbid constrained variables
to occur in them), we obtain the case that was studied in [22]. There it was
shown that Req, R, and R,c, without variable abstraction rules, give sound,
terminating, and complete solving method.

DCV. Constrained variables, all distinct, need not occur in equations (i.e. can
be potentially equational or nonequational).

Example 11. A RwcCS constraint that satisfies only Dcv:
{C(f(@) < g(f(a,b), h(f(a), f)), F(z,y) < C(b), (C in D(A(F",0,7")),0),
@ in (f(z) | @)",0), (7 in b%,0), (W in"f(c)"(a),7"",0)}.

The rules Req, Rit, Rre, and Rqay provide sound, terminating, and complete
solving method for this case.

ECV. Constrained variables need not all be distinct, but they must occur in
equations (i.e. must be equational variables).

Ezxample 12. A RwWcCS constraint that satisfies only Ecv:

Hﬁ
S
s
5
A
K=}

(f(a,b),h(f(a), f)), F(x,y) < C(b),
0,00, @ in (f(z) |)*,0), (@ in f(2)" | a,0)}.

—
Ql
=
ol

—~
=

—~

<

o *

o
8|

In this case for sound, terminating, and complete solving method we need the
rules Req, Rre, Rrc, and Rine.

6 Related Work and Concluding Remarks

The framework is flexible and expressive: It allows to traverse the data term,
represented as a tree, in horizontal and in vertical directions (using four different
kinds of variables). Variables can be constrained by regular expressions, and the
regular expressions can occur in the query terms.” The same variable can be con-
strained in several ways. Moreover, the regular expressions the framework pro-
cesses can be seen as an “extension” of the standard ones [13] with (unrestricted)
variable occurrences. Well-modedness allows avoiding variable occurrence check
and guarantees that matching techniques can be applied for solving.

Our framework subsumes various formalisms used in constraint solving, pro-
gramming, and querying. Here we just mention the most closely related ones.
Note that the types of problems we can solve are problematic for automata-based
approaches because of variables in regular expressions.

Context matching [33] is a particular instance of RwCs constraint solving
where only context and individual variables are allowed, no regular expressions
are considered, and each equation to be solved is a matching equation.

Context sequence matching [22] can be obtained by the following restrictions:
Regular terms and regular contexts should be built by regular operators from
pure terms and pure contexts only; all the equations to be solved should be
matching equations (and should not involve regular operators); each sequence
and context variable can be constrained by maximum one membership constraint
(Dcv); all constrained variables should occur in matching equations (Ecv); no
constrained variable can occur in regular expressions.

" Query terms with regular expressions can be reduced to query terms without reg-
ular expressions and with membership constraints, by variable abstraction tech-
niques. We did not spell it in this paper, but it is straightforward. For instance,

{f(a",9(c) | C(f(a | b,0))(f(b"))) < t} is transformed into {f(z, D(f(¥))) <

t,(Z in a*,0),(D in g(o) | C(f(a|b,0)),0), (" in b*,0)}.

Ezample 13. Let I' = {C(b) < f(a,a, f(a, f(b))), (C in f(a*,0)*,0)} bea Rwcs
constraint. The algorithm C solves it with {C — f(a,a, f(a, f(o)))}. This con-
straint can not be expressed in the syntax of [22]. An attempt of writing I’
in the form A = {C(b) < f(a,a, f(a, f(b))),(C in f(T,0)*,0), (T in a*,0)}
does not give an equivalent transformation: A is not solvable, because T will get
instantiated with "a,a” and will not match a.

The pattern matching mechanism of the programming language of MATHEMAT-
ICA [35] can be directly modeled in our framework. For this we do not even
need context variables. The pattern constructs like RepeatedNull, Repeated,
Alternatives, Optional, Except have straightforward counterparts in our reg-
ular expressions. The “shortest first match” semantics of MATHEMATICA for
sequence variables [5] can be captured by first trying those rules from R that
assign "7 to sequence variables, and stopping the algorithm € when the first
matcher is computed.

A rule-based system pLOG [25], implements matching with individual, func-
tion, sequence and context variables that is subsumed by RWCS constraint solv-
ing. Various special versions of the framework found their way into the mathe-
matical software system THEOREMA [6].

The equational formulae with membership constraints [14] have similarities
and differences with RWcCs constraints. The fragment that can be represented
as an instance of our framework consists of existentially closed constraints in
disjunctive normal form, where disjuncts contain no negated equality and are
well-moded. To express this fragment we need to consider only individual and
sequence variables and ground regular terms without star in membership con-
straints.

Comon [12] restricts equational and membership constraints in a different
way than we do: He requires any occurrence of the same context variable to
be always applied to the same term (that gives a decidable fragment), while we
require well-modedness. Otherwise, his sort expressions correspond to our regular
terms without variables and the star operator. Context expressions correspond to
regular contexts without sequence and function variables. Sequence and function
variables do not occur in the equations either.

Like [12], we can easily express possible schematization involving a regular
expression of star height larger than 2 like, for instance, writing (f(o)*.g(0))*(a)
for ™ (g(f™2(g(--- f™(g(a))---)))). This can not be represented in the for-
malisms developed for unification of terms schemes [8,32,11, 18]. On the other
hand, these formalisms can represent the set of all ground terms of the form
f(g™(a),h™(a)) which can not be expressed in our framework.

We can encode one-step rewrite constraints [7] s1 — t1 by Iy — ri, ..., 8, —
t, by I, — r, (that says that the term s; can be rewritten to a term ¢; by the
rule [; — 7; in one step) as {C1(l1) < s1,t1 < C1(11),...,Cn(ly) < sp,tn <
C,(rn)} provided that vars(r;) C vars(l;) for each i, variables in rules and terms
are disjoint, $; is ground and wvars(s;) C U;;ll vars(t;). These conditions make
sure that the obtained constraint is well-moded. Niehren et al [29] generalize
one-step rewriting constraints by specifying the position where the term is to

be rewritten and impose the ordering constraints on positions. Under the well-
modedness restrictions we can express not only this generalization but any other
that specify positions in terms of regular contexts, and also one-step rewrite
constraints for rewrite systems that contain not only individual but also sequence
and context variables. It implies that well-moded one-step rewrite constraints
with such extended rewrite rules are decidable. Moreover, again under well-
modedness restrictions equality up-to constraints [27] (that subsume one-step
rewrite constraints) can be expressed.

Regular expression pattern matching [19] is used for tree manipulation, pri-
marily for XML, in a statically typed setting. Regular expression patterns basi-
cally correspond to our regular terms without individual variables and contexts.
The effect of regular contexts is achieved by recursion on pattern names (under
certain restrictions that guarantee that the language remains regular). Regular
expression patterns are restricted to be linear. We do not have such a restriction.

Niehren et al [28] use tree automata for multi-slot information extraction
from semistructured data. The automata are restricted to be unambiguous that
limits n-ary queries to finite unions of Cartesian closed queries (Cartesian prod-
ucts of monadic queries), but this restricted case is processed efficiently. Rwcs
constraint solving is closely related with some other solving methods proposed
for querying and transforming semistructured data (XML, in particular), like
simulation unification [4] of XCERPT, unification with sequence variables [20] of
XCENTRIC [10], path expression matching of XPATH [9], matching of incomplete
regular expressions [31], just to name a few.

We can also extend the framework to work on multitrees [23] that are un-
ranked unordered trees. The property of being unordered can be expressed by
the equality f(Z,z,9,y,%Z) = f(T,y,7,z,Z) and the corresponding rule can be
directly incorporated into the inference system of our algorithm. In this way we,
in fact, get a mixture of constraints over ordered and unordered unranked trees.
However, a naive straightforward way of adding a rule for unordered terms would
be very inefficient since it would consider all possible permutations of the argu-
ments. There are known techniques for efficient commutative and associative-
commutative matching (see, e.g. [16]) that can be adapted for this case.

We can use well-moded membership constraints to express regular hedge
grammars (without multiple recursion). For instance, let G be the following
regular hedge grammar (N, T, S, P) from [26]:

N = {Doc, Paral, Para2, Pcdata}
T = {doc, para, pcdata}
S ={(doc, Doc)}
P = {Doc — (para[Paral], para[Para2]*),
Paral — €, Para2 — pcdata[Pcdata), Pcdata — €}

It has a straightforward translation into the following well-moded membership
constraint (overlined identifiers are sequence variables and bold face ones are

function symbols):

{(Doc in doc(para(Paral), para(Para2)*),0),(Paral in ™7,0),
(Para2 in pcdata(Pcdata),0), (Pedata in "7,0)}.

In fact, this constraint can be further simplified:
{(Doc in doc(para(), para(pcdata())*),0)}.

We can easily model single recursion in regular grammars with well-moded
membership constraint. Mutual recursion can not be modeled because of well-
modedness restriction, and multiple recursion would need multiple occurrences
of the hole constant.

Nevertheless, in our opinion, having RWCS constraint solving as the matching
mechanism for an XML querying and transformation language would make it
very flexible and expressive. In [22] we demonstrated how an instance of Rwcs
constraint solving, context sequence matching, can be used in this purpose.

Other application areas of our framework are implementation of rewriting
and rewriting strategies, and representing and matching schemas in program
synthesis.

An experimental PROLOG implementation of our algorithm is available at:
http://www.risc.uni-linz.ac.at/people/tkutsia/software.html.

References

1. K. R. Apt and S. Etalle. On the unification free PROLOG programs. In A. M.
Borzyszkowski and S. Sokolowski, editors, Proc. of MFCs’93, volume 711 of LNCS,
pages 1-19. Springer, 1993.

2. I. Attali and P. Franchi-Zannettacci. Unification-free execution of TYPOL programs
by semantic attribute evaluation. In R. A. Kowalski and K. A. Bowen, editors,
Proc. of 5th IcLp/sLp, pages 160-177. MIT Press, 1988.

3. A. Briiggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge
languages over unranked alphabets. Technical Report HKusT-Tcsc-2001-05, Hong
Kong University of Science and Technology, 2001.

4. F. Bry and S. Schaffert. Towards a declarative query and transformation language
for XML and semistructured data: Simulation unification. In Proc. of ICLP, number
2401 in LNCs. Springer, 2002.

5. B. Buchberger. MATHEMATICA as a rewrite language. In T. Ida, A. Ohori, and
M. Takeichi, editors, Proc. of the 2nd Fuji Int. Workshop on Functional and Logic
Programming, pages 1-13, Shonan Village Center, Japan, 1996. World Scientific.

6. B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa,
F. Piroi, N. Popov, J. Robu, M. Rosenkranz, and W. Windsteiger. THEOREMA:
Towards computer-aided mathematical theory exploration. J. Applied Logic, 2006.
To appear.

7. A.-C. Caron, J.-L. Coquidé, and M. Dauchet. Encompassment properties and
automata with constraints. In C. Kirchner, editor, Proc. of RTA’93, volume 690
of LNcs, pages 328-342. Springer, 1993.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

H. Chen and J. Hsiang. Logic programming with recurrence domains. In J. L. Al-
bert, B. Monien, and M. Rodriguez-Artalejo, editors, Proc. of 1CALP’91, volume
510 of LNCs, pages 20-34. Springer, 1991.

J. Clark and S. DeRose, editors. XML Path Language (XPath) Version 1.0. W3C,
1999. Available from: http://www.w3.org/TR/xpath/.

J. Coelho and M. Florido. XCENTRIC: A logic programming language for XML.
Technical Report Dcc-2005-X, Dcc-Fce and Liacc, University of Porto, 2005.
H. Comon. On unification of terms with integer exponents. Mathematical Systems
Theory, 28(1):67-88, 1995.

H. Comon. Completion of rewrite systems with membership constraints. Part II:
Constraint solving. J. Symb. Comp., 25(4):421-453, 1998.

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. Available from:
http://www.grappa.univ-1ille3.fr/tata, 1997.

H. Comon and C. Delor. Equational formulae with membership constraints.
Inf. Comput., 112(2):167-216, 1994.

P. Deransart and J. Maluszynski. Relating logic programs and attribute grammars.
J. Log. Program., 2(2):119-155, 1985.

S. Eker. Fast matching in combinations of regular equational theories. FElectronic
Notes in Theoretical Computer Science, 4, 1996.

A. Frisch and L. Cardelli. Greedy regular expression matching. In Proc. of
IcAaLP’04, pages 618-629, 2004.

M. Hermann and R. Galbavy. Unification of infinite sets of terms schematized by
primal grammars. Theor. Comput. Sci., 176(1-2):111-158, 1997.

H. Hosoya and B. Pierce. Regular expression pattern matching for XML. J. Func-
tional Programming, 13(6):961-1004, 2003.

T. Kutsia. Unification with sequence variables and flexible arity symbols and its ex-
tension with pattern-terms. In J. Calmet, B. Benhamou, O. Caprotti, L. Henocque,
and V. Sorge, editors, Proc. of Joint A1s¢’2002—CALCULEMUS’'2002 Conference,
volume 2385 of LNAI, pages 290-304. Springer, 2002.

T. Kutsia and M. Marin. Matching with regular constraints. Technical Report
05-05, RISC, Johannes Kepler University, Linz, 2005.

T. Kutsia and M. Marin. Matching with regular constraints. In G. Sutcliffe and
A. Voronkov, editors, Proc. of LPAR’05, volume 3835 of LNAI, pages 215-229.
Springer, 2005.

D. Lugiez. Multitree automata that count. Theor. Comput. Sci., 333(1-2):225-263,
2005.

J. Maluszynski and H. Komorowski. Unification-free execution of logic programs.
In Proc. of SLP, pages 78—-86, 1985.

M. Marin. pLog. http://www.score.is.tsukuba.ac.jp/ mmarin/RhoLog/, 2005.
M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using
formal language theory. In Ezxtreme Markup Languages, 2001.

J. Niehren, M. Pinkal, and P. Ruhrberg. On equality up-to constraints over finite
trees, context unification, and one-step rewriting. In W. McCune, editor, Proc. of
CADE-14, volume 1249 of LNCS, pages 34-48. Springer, 1997.

J. Niehren, L. Planque, J.-M. Talbot, and S. Tison. N-ary queries by tree automata.
In Proc. of DBPL’05, 2005.

J. Niehren, S. Tison, and R. Treinen. On rewrite constraints and context unifica-
tion. Inf. Process. Lett., 74(1-2):35-40, 2000.

The RrA List of Open Problems. Problem #90. Available from the Web:
http://www.lsv.ens-cachan.fr/rtaloop/problems/90.html.

31. S. Okui and T. Suzuki. Pattern matching incompletely RE-typed expressions via
transformations. IpsJ Transactions on Programming, 47(s1G 0(PRO 29)), 2006. To
appear.

32. G. Salzer. The unification of infinite sets of terms and its applications. In
A. Voronkov, editor, Logic Programming and Automated Reasoning, Proc. of
LPAR’92, volume 624 of LNCS, pages 409-420. Springer, 1992.

33. M. Schmidt-Schaufl and J. Stuber. On the complexity of linear and stratified
context matching problems. Theory Comput. Systems, 37:717-740, 2004.

34. F. van Raamsdonk. Translating logic programs into conditional rewriting systems.
In L. Naish, editor, Proc. of 14th 1cLP, pages 168-182. MIT Press, 1997.

35. S. Wolfram. The MATHEMATICA Book. Wolfram Media, 5th edition, 2003.

