
A Distributed Constraint Solving System for Functional Logic

Programming

Mircea Mariny Tetsuo Idaz

Wolfgang Schreinery

yResearch Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University

A-4040 Linz, Austria
Mircea.Marin@risc.uni-linz.ac.at

Wolfgang.Schreiner@risc.uni-linz.ac.at
zInstitute of Information Sciences and Electronics

University of Tsukuba
Tsukuba 305-8573, Japan

ida@score.is.tsukuba.ac.jp

Abstract

The need for combining and making various con-
straint solvers cooperate is widely recognized. Such
an integrated system would allow solving problems
that can not be solved by a single solver. CFLP
(Constrained Functional Logic Programming lan-
guage) is a distributed software system consisting of
a functional logic interpreter running on one machine
and a number of constraint solving engines running
on other machines. The interpreter is based on a de-
terministic version of a lazy narrowing calculus which
was extended in two main directions: (a) the pos-
sibility to specify explicit OR-parallelism, and (b)
the possibility to specify constraints over various do-
mains. The OR parallel features of the interpreter
allow the decomposition of the solution space into
di�erent subspaces denoted by various sets of con-
straints; the individual sets are solved by di�erent
constraint solving engines in parallel and joined to-
gether to form the total solution set. This allows to
investigate problems with large solution spaces using

the computational power available in large computer
networks.

1 Introduction

The need for combining and making various con-
straint solvers cooperate is widely recognized. Such
an integrated system would allow solving problems
that can not be solved by a single solver and further
open the possibility of global problem solving over
the web.

We designed the lazy narrowing calculi [5] for solv-
ing equations over the domain of terms in a func-
tional logic setting. There are many applications
such as theorem proving and computational geom-
etry, where the expressive power of a pure functional
logic language is not suÆcient. These problems usu-
ally involve solving systems of constraints over var-
ious domains, like polynomial equations, di�erential
equations, linear equations and inequations. Our in-
vestigation showed that it is possible to extend the

lazy narrowing calculus with inference rules for spec-
ifying constraints and to develop a model for solving
the constraints in a parallel and distributed environ-
ment.

We designed and implemented a system called
CFLP [4] (Constrained Functional Logic Program-
ming) consisting of a functional logic interpreter and
a number of constraint solvers that may be deployed
over di�erent machines. The cooperation between in-
terpreter and constraint solvers is coordinated by a
constraint scheduler, which schedules the tasks gen-
erated by the interpreter among the solvers.

The paper is structured as follows: in Section 2.1
we illustrate by examples the system capabilities.
Section 3 describes the system architecture. Subsec-
tions 3.1, 3.2 and 3.3 describe the three main com-
ponents of the system: interpreter, scheduler and
constraint solvers.

2 Examples

In this section we illustrate the functionality of
CFLP with a few examples.

2.1 Polynomial Approximation

Consider the problem of �nding the relationship be-
tween the coeÆcients of a uni-variate polynomial
f 2 C [x] of degree 3 and a uni-variate polynomial
g 2 C [x] of degree 4 related by the constraint that
they have the same values for x = 1; 2; 3; 4: In CFLP,
this problem can be modeled as an equality between
the lists ff [1]; f [2]; f [3]; f [4]g and fg[1]; g[2]; g[3];
g[4]g: In order to express lists of function evaluations,
we make use of the higher-order function map which
is de�ned by the conditional rewrite rules:

map[F; fg]! fg;
map[F; [y j z]]! [F [y] j t](t � map[F; z]

In variables F; x; y; z. Note that in this example F

is a higher-order variable. We write f [t1; : : : ; tn]
for the term obtained by applying f to arguments
t1; : : : ; tn: The construct lhs ! rhs (cond is the
CFLP notation for a conditional rewrite rule, and

lhs ! rhs an unconditional rewrite rule. The con-
dition part cond of a rewrite rule is in this exam-
ple an equation, but in general it can be any CFLP
goal. [h j t] denotes a list with head h and tail
t, fg is the empty list, and an expression of the
form fa1; a2; : : : ; ang is syntactic sugar for the list
[a1 j [a2 : : : [an j fg] : : :]]: The rewrite rule which
de�nes the polynomial f is

f [x]! a x3 + b x2 + c x+ d

in variable x. In the theory de�ned by these rules
our problem reduces to solving the equation:

map[�[fzg;m z4 + n z3 + p z2 + q z + r]; f1; 2; 3; 4g]
�
map[f; f1; 2; 3; 4g]

in variables m;n; p; q; r and constants a; b; c; d. Here,
� is the symbol for lambda-abstraction.

For solving CFLP queries, our system provides the
function TSolve. The �rst argument of TSolve is the
equational goal to be solved, the second one is the list
of variables to be computed, and the third (optional)
argument is the list of other variables appearing in
the equational goal. Variables may be type anno-
tated. A polymorphic type checker is provided for
verifying the type-correctness of the goal and condi-
tional rules. The rest of the information necessary
for solving the goal is given by passing speci�c op-
tions of TSolve. For our �rst example the call is:

TSolve[
map[�[fzg; �m z4 + �n z3 + �p z2 + �q z + �r]; f1; 2; 3; 4g]
�
map[f; f1; 2; 3; 4g];
DefinedSymbol-> f
map:Float� Float� TyList[Float]

! TyList[Float];

f : Float! Floatg,
Rules->f f [x]! a x3 + b x2 + c x+ d;

map[F ; fg]! fg;
map[F,[y | z]]! [F [y]jt](t � map[F; z]g,
Constructor->f
a : Float; b : Float;
c : Float; d : Floatg]

Logical variables are declared in the goal by anno-
tating them with an overbar, and rule variables are
underlined.
The TSolve options used for this call are:

� Rules: the set of conditional rewrite rules,

� Constructor: the constructor symbols,

� DefinedSymbol: the de�ned symbols.

The answer computed by TSolve is

ff m! 1
24 (�d+ r); n! a+ 5(d-r)

12 ;

p! b� 35(d-r)
24 ; q! c+ 25(d-r)

12 gg

Note the use of higher-order variables and lambda-
abstractions in the formulation of the query and
rewrite rules. The system is able to handle equa-
tions involving operators de�ned outside the func-
tional logic program. Furthermore, the computed
answer is a parametric solution, since r is a variable.

2.2 A Problem Involving Solver Co-

operation

Consider the following program:

f [x]! g[y]((x+ y � 3 _ x2 � y � 9)

in complex variables x; y and the goal:

f [x] � g[y]; g[y2] � g[z2 � 1];
�[fug; H 0[u]] � �[fug; z uy]; H 0[1] � 4

in variables x; y; z;H: In this example the operator
_ denotes logical disjunction, and it can be used in
goals and conditional parts of rewrite rules to express
alternative solutions.
Solving this goal requires constraint solvers for lin-

ear, polynomial and di�erential equations over the
domain of complex numbers. Upon the query:

TSolve[ff [�x] � g[�y]; g[y2] � g[z2 � 1]; �[fug;
H 0[u]] � �[fug; �z uy]; �H 0[1] � 4g; fx;Hg
DefinedSymbol-> ff:Compl! Complg;
Rules->ff [x]g[y]((x + y � 3 _ x2 � y � 9)g;
Constructor->fg:Compl! Complg]

1

. .
 .

m -solver

m -solver

m -solver

1

interpreter

. .
 .

. . . k

k
m -solver

scheduler

Figure 1: The architecture of CFLP

all solutions are computed:

ffx 7! 3 +
p
15; H ! �[fug; c1 + 4 u

1�
p
15

1�
p
15

]g;
fx 7! 3�p15; H ! �[fug; c2 + 4 u

1+
p
15

1+
p
15

];

fx 7! �
p
9�p15; H ! �[fug; c4+ 4 u

1�
p
15

1�
p
15

];

fx 7! �
p
9 +

p
15; H ! �[fug; c4+ 4 u

1+
p
15

1+
p
15

];

fx 7!
p
9�p15; H ! �[fug; c4 + 4 u

1�
p
15

1�
p
15

];

fx 7!
p
9�p15; H ! �[fug; c4 + 4 u

1+
p
15

1+
p
15

]gg

3 The System Structure

CFLP is a distributed software system for solving
equational goals in theories that can be represented
as sets of conditional rewrite rules over a term al-
gebra whose signature is extended with external op-
erators. External operators are used for expressing
constraints over various domains.

The system consists of three components:

� an interpreter,

� a scheduler,

� various specialized constraint solvers.

The system architecture is depicted in Fig. 1.

3.1 The Interpreter

The CFLP interpreter is based on a deterministic
extension of the calculi Higher-order LNC and LCNC
[6, 1]. The calculus essentially consists of the rules
for higher-order uni�cation plus the lazy narrowing
rules, and it was proven to be sound and complete
for various classes of equational theories of practical
interest. We extended this calculus in two directions:

(a) the possibility to specify constraints, i.e., equa-
tions that can not be solved by narrowing, but
for which specialized solvers are available, and

(b) the possibility to specify explicit OR- and AND-
parallelism.

The interpreter successively decomposes the goal
towards an answer substitution by applying the in-
ference steps of the underlying functional logic cal-
culus. The only equations which can not be solved
in this way are those which involve external opera-
tors. Such equations are factored into a sequence of
simpler equations and a constraint, i.e., an equation
which contains only external operators. The con-
straints generated upon derivations are sent to spe-
cialized constraint solvers via the component called
constraint scheduler.

Note that the non-deterministic selection of an in-
ference rule for a de�ned symbol and explicit OR-
formulas cause the initial goal to be reduced to dis-
joint sets of constraints that have to be solved in
parallel. For example, in the second example the re-
duction of the initial goal involves the decomposition
of the equation f [�x] � g[�y] into simpler equations.
The inference step performed by our calculus is:

f [x] � g[y])
x � x0; (x0 + y0 � 3) _ (x02 � y0 � 9); g[y0] � g[y]

where x0; y0 are new variables. In this step we used
the fresh variant f [x0]! y0((x0+ y0 � 3_ x02�
y0 � 9) of the rewrite rule which de�nes f: Upon this
step an OR-subgoal is introduced and as a result the
goal is �nally decomposed into two disjoint sets of
constraints. These sets of constraints are sent to be
solved to the constraint scheduler.

3.2 The Constraint Scheduler

The constraint scheduler coordinates the process of
solving the systems of constraints received from the
interpreter. In order to solve these sets of con-
straints, the constraint scheduler maintains a dy-
namic data structure called constraint tree. The
nodes of the constraint tree are tuples of the form
h�; csi; where � is a substitution and cs is a system
of constraints.

Whenever a set of constraints is received from the
interpreter, a new son h"; csi of the root of the con-
straint tree is created. Here " is the empty substi-
tution. The scheduler expands this tree by apply-
ing constraint solving methods in parallel to all its
leaf nodes. The application of a constraint solving
method m to a node h�; csi involves the call of a
constraint solver which implements the method m.
Upon this call the system cs of constraints may be
found inconsistent or may be decomposed into a �-
nite sequence of pairs h�1; cs1i; : : : ; h�p; cspi; with
the property that � is a solution of cs i� there exists
a solution �i of csi (1 � i � p) such that � = �i Æ �i.
The expansion of a node h�; csi stops either when cs

is detected inconsistent or if it can not be reduced
further by any constraint solver.

The implementation of the scheduling algorithm is
inspired from the work of Hong [3]. The scheduler
can be regarded as a component parameterized with
respect to a list M = fm1; : : : ;mkg of constraint
solving methods. Every method has associated one
or more running constraint solvers.

3.3 The Constraint Solvers

The constraint solvers are implementations of the
constraint solving methods speci�ed to the scheduler
through the listM. The current implementation pro-
vides four methods for solving constraints over the
domain of real and complex numbers: (a) Linear,
for linear equations (the Simplex algorithm), (b)
Polynomial, for polynomial equations (the Gr�obner
basis algorithm), (c) Derivative, for ordinary dif-
ferential equations, and (d) PartialDerivative, for
partial di�erential equations. These methods are
tried in the order presented.

All constraint solvers are implemented by sepa-
rate processes executing in parallel and communicat-
ing with the interpreter via the constraint scheduler.
There are two types of CFLP constraint solvers:
(A) Local solvers. These solvers run as subsidiary
Mathematica kernel processes of the CFLP con-
straint scheduler.
(B) Shared solvers. These solvers are started from
outside a CFLP session and can be shared by di�er-
ent CFLP constraint schedulers running on di�erent
machines. This means that we may have the situa-
tion depicted in Figure 2.

constraint solver

scheduler scheduler

interpreterinterpreter

Figure 2: Shared constraint solver

The user can adjust the constraint solving compo-
nent of the system by specifying the number of lo-
cal constraint solvers which are started at system
initialization and the remote machines on which to
look up for shared constraint solvers. The commu-
nication mechanism between the scheduler and con-
straint solvers is implemented completely in Math-
Link [7]. Therefore the CFLP system is machine
independent and can be used in heterogeneous net-
works.

4 Conclusions

CFLP is a software system consisting of a func-
tional logic interpreter and a distributed constraint
solving system. All the system components: in-
terpreter, scheduler, constraint solvers, are imple-
mented in Mathematica 3.0 [7] as separated processes
that may run in a distributed environment and com-
municate via MathLink connections. In the current
implementation we have integrated solvers for lin-
ear, polynomial, di�erential and partial di�erential

equations over the domain of complex numbers.
We intend to further develop the system by inte-

grating more constraint solvers and deploying them
over the web, each concurrently accessing their con-
straints.

References

[1] M. Hamada, T. Ida: Deterministic and Non-
deterministic Lazy Conditional Narrowing and
their Implementations. Transactions of Informa-
tion Processing Society of Japan. Vol.39, No.3,
Mar.1998.

[2] M. Hamada, A. Middeldorp, T. Suzuki: Com-
pleteness Results for a Lazy Conditional Nar-
rowing Calculus. Proceedings of DMTCS'99 and
CATS'99. Auckland, New Zealand, 18-21 Jan-
uary 1999.

[3] H. Hong: RISC-CLP(CF): Constraint Logic Pro-
gramming over Complex Functions. Technical
Report. Research Institute for Symbolic Compu-
tation. Linz 1994.

[4] M. Marin, W. Schreiner: CFLP: a Distributed
Constraint Solving System for Functional Logic
Programming, P. Kacsuk and G. Kotsis (eds).,
DAPSYS'98 Workshop on Distributed and Par-
allel Systems, September 28-30, 1998, Budapest,
Hungary, pp.133-136. Technical Report TR-
98102, Department of Applied Computer Sci-
ence, University of Vienna, Austria.

[5] A. Middeldorp, S. Okui, T. Ida: Lazy Nar-
rowing: Strong Completeness and Eager Vari-
able Elimination. Theoretical Computer Science,
167(1,2):95-130, 1996.

[6] T. Suzuki, K. Nakagawa, T. Ida: Higher Order
Lazy Narrowing Calculus: a Computation Model
for a Higher-Order Functional Logic Language.
Proceedings of Sixth International Conference on
Algebraic and Logic Programming. LNCS, 1997.

[7] S. Wolfram: The Mathematica Book. Third Edi-
tion, Mathematica Version 3, Wolfram Media,
Cambridge University Press.

