
Model Checking (Part 3)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.uni-linz.ac.at

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 1/57

1. Basic PLTL Model Checking

2. Translating PLTL Formulas to Automata

3. Optimized PLTL Model Checking

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 2/57

The Basic Approach

Translation of the original problem to a problem in automata theory.

Original problem: S |= P .

S = 〈I , R〉, PLTL formula P .
Does property P hold for every run of system S?

Construct system automaton SA with language L(SA).

A language is a set of infinite words.
Each such word describes a system run.
L(SA) describes the set of runs of S .

Construct property automaton PA with language L(PA).

L(PA) describes the set of runs satisfying P .

Equivalent Problem: L(SA) ⊆ L(PA).

The language of SA must be contained in the language of PA.

There exists an efficient algorithm to solve this problem.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 3/57

Finite State Automata

A (variant of a) labeled transition system in a finite state space.

Take finite sets State and Label .

The state space State.
The alphabet Label .

A (finite state) automaton A = 〈I ,R ,F 〉 over State and Label :

A set of initial states I ⊆ State.
A labeled transition relation R ⊆ Label × State × State.
A set of final states F ⊆ State.

Büchi automata: F is called the set of accepting states.

We will only consider infinite runs of Büchi automata.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 4/57

Runs and Languages

An infinite run r = s0
l0→ s1

l1→ s2
l2→ . . . of automaton A:

s0 ∈ I and R(li , si , si+1) for all i ∈ N.
Run r is said to read the infinite word w(r) := 〈l0, l1, l2, . . .〉.

A = 〈I ,R ,F 〉 accepts an infinite run r :
Some state s ∈ F occurs infinitely often in r .
This notion of acceptance is also called Büchi acceptance.

The language L(A) of automaton A:
L(A) := {w(r) : A accepts r}.
The set of words which are read by the runs accepted by A.

Example: L(A) = (a∗bb∗a)∗aω + (a∗bb∗a)ω = (b∗a)ω.
w i = ww . . . w (i occurrences of w).
w∗ = {w i : i ∈ N} = {〈〉, w , ww , www , . . .}.
wω = wwww . . . (infinitely often).
An infinite repetition of an arbitrary number
of b followed by a.

Edmund Clarke: “Model Checking”, 1999.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 5/57

A Finite State System as an Automaton

The automaton SA = 〈I ,R ,F 〉 for a finite state system S = 〈IS ,RS〉:
State := StateS ∪ {ι}.

The state space StateS of S is finite; additional state ι (“iota”).
Label := P(AP).

Finite set AP of atomic propositions.
All PLTL formulas are built from this set only.

Powerset P(S) := {s : s ⊆ S}.
Every element of Label is thus a set of atomic propositions.

I := {ι}.
Single initial state ι.

R(l , s, s ′) :⇔ l = L(s ′) ∧ (RS(s, s ′) ∨ (s = ι ∧ IS(s ′))).
L(s) := {p ∈ AP : s |= p}.
Each transition is labeled by the set of atomic propositions satisfied
by the successor state.
Thus all atomic propositions are evaluated on the successor state.

F := State.
Every state is accepting.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 6/57

A Finite State System as an Automaton

Edmund Clarke et al: “Model Checking”, 1999.

If r = s0 → s1 → s2 → . . . is a run of S , then SA accepts the labelled

version rl := ι
L(s0)
→ s0

L(s1)
→ s1

L(s2)
→ s2

L(s3)
→ . . . of r .

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 7/57

A System Property as an Automaton

Also an PLTL formula can be translated to a finite state automaton.

We need the automaton PA for a PLTL property P .

Requirement: r |= P ⇔ PA accepts rl .
A run satisfies property P if and only if automaton AP accepts the
labeled version of the run.

Example: 2p.

s
true

~p
p

Example: 3p.

true
p

~p

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 8/57

Further Examples

Example: 32p.

Gerard Holzmann: “The Spin Model Checker”, 2004.

Example: 23p.

Gerard Holzmann: “The Model Checker Spin”, 1997.

We will give later an algorithm to convert arbitrary PLTL formulas to
automata.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 9/57

System Properties

State equivalence: L(s) = L(t).

Both states have the same labels.
Both states satisfy the same atomic propositions in AP .

Run equivalence: w(rl) = w(r ′l).

Both runs have the same sequences of labels.
Both runs satisfy the same PLTL formulas built over AP .

Indistinguishability: w(rl) = w(r ′l) ⇒ (r |= P ⇔ r ′ |= R)

PLTL formula P cannot distinguish between runs r and r ′ whose
labeled versions read the same words.

Consequence: S |= P ⇔ L(SA) ⊆ L(PA).

Proof that, if every run of S satisfies P , then every word w(rl) in
L(SA) equals some word w(r ′l) in L(PA), and vice versa.
“Vice versa” direction relies on indistinguishability property.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 10/57

The Next Steps

Problem: L(SA) ⊆ L(PA)

Equivalent to: L(SA) ∩ L(PA) = ∅.
Complement L := {w : w 6∈ L}.

Equivalent to: L(SA) ∩ L(¬PA) = ∅.

L(A) = L(¬A).

Equivalent Problem: L(SA) ∩ L((¬P)A) = ∅.
We will introduce the synchronized product automaton A ⊗ B .

A transition of A⊗B represents a simultaneous transition of A and B.

Property: L(A) ∩ L(B) = L(A ⊗ B).

Final Problem: L(SA ⊗ (¬P)A) = ∅.
We have to check whether the language of this automaton is empty.
We have to look for a word w accepted by this automaton.

If no such w exists, then S |= P.
If such a w = w(rl) exists, then r is a counterexample, i.e. a run of S

such that r 6|= P.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 11/57

Synchronized Product of Two Automata

Given two finite automata A = 〈IA,RA,StateA〉 and B = 〈IB ,RB ,FB〉.

Synchronized product A ⊗ B = 〈I ,R ,F 〉.
State := StateA × StateB .
Label := LabelA = LabelB .
I := IA × IB .
R(l , 〈sA, sB〉, 〈s ′A, s ′B〉) :⇔ RA(l , sA, s ′A) ∧ RB(l , sB , s ′B).
F := StateA × FB .

Special case where all states of automaton A are accepting.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 12/57

Synchronized Product of Two Automata

Edmund Clarke: “Model Checking”, 1999.

<r1,q1>

<r1,q2>

<r2,q1>

<r2,q2>

a

b

a

b

ba

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 13/57

Example

Check whether S |= 2(P ⇒ #3Q).

B. Berard et al: “Systems and Software Verification”, 2001.

The product automaton accepts a run, thus the property does not hold.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 14/57

Checking Emptiness

How to check whether L(A) is non-empty?

Suppose A = 〈I ,R ,F 〉 accepts a run r .
Then r contains infinitely many occurrences of some state in F .
Since State is finite, in some suffix r ′ every state occurs infinit. often.
Thus every state in r ′ is reachable from every other state in r ′.

C is a strongly connected component (SCC) of graph G if
C is a subgraph of G ,
every node in C is reachable from every other node in C along a path
entirely contained in C , and
C is maximal (not a subgraph of any other SCC of G).

Thus the states in r ′ are contained in an SCC C .
C is reachable from an initial state.
C contains an accepting state.
Conversely, any such SCC generates an accepting run.

L(A) is non-empty if and only if the reachability graph of A has an SCC
that contains an accepting state.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 15/57

Checking Emptiness

Find in the reachability graph an SCC that contains an accepting state.

We have to find an accepting state with a cycle back to itself.

Any such state belongs to some SCC.
Any SCC with an accepting state has such a cycle.
Thus this is a sufficient and necessary condition.

Any such a state s defines a counterexample run r .

r = ι → . . . → s → . . . → s → . . . → s → . . .

Finite prefix ι → . . . → s from initial state ι to s.
Infinite repetition of cycle s → . . . → s from s to itself.

This is the core problem of PLTL model checking; it can be solved by a
depth-first search algorithm.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 16/57

Basic Structure of Depth-First Search

Visit all states of the reachability graph of an automaton 〈{ι},R ,F 〉.

global
StateSpace V := {}
Stack D := 〈〉

proc main()
push(D, ι)
visit(ι)
pop(D)

end

proc visit(s)
V := V ∪ {s}
for 〈l , s, s ′〉 ∈ R do

if s ′ 6∈ V

push(D, s ′)
visit(s ′)
pop(D)

end
end

end

State space V holds all states visited so far; stack D holds path from
initial state to currently visited state.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 17/57

Checking State Properties

Apply depth-first search to checking a state property (assertion).

global
StateSpace V := {}
Stack D := 〈〉

proc main()
// r becomes true, iff
// counterexample run is found
push(D, ι)
r := search(ι)
pop(D)

end

function search(s)
V := V ∪ {s}
if ¬check(s) then
print D

return true
end
for 〈l , s, s′〉 ∈ R do

if s′ 6∈ V

push(D, s′)
r := search(s′)
pop(D)
if r then return true end

end
end
return false

end

Stack D can be used to print counterexample run.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 18/57

Depth-First Search for Acceptance Cycle

global
. . .

Stack C := 〈〉

proc main()
push(D, ι); r := search(ι); pop(D)

end

function searchCycle(s)
for 〈l , s, s′〉 ∈ R do

if has(D, s′) then
print D; print C ; print s ′

return true
else if ¬has(C , s ′) then

push(C , s′);
r := searchCycle(s ′)
pop(C);
if r then return true end

end
end
return false

end

boolean search(s)
V := V ∪ {s}
for 〈l , s, s′〉 ∈ R do

if s′ 6∈ V

push(D, s′)
r := search(s′)
pop(D)
if r then return true end

end
end
if s ∈ F then

r := searchCycle(s)
if r then return true end

end
return false

end

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 19/57

Depth-First Search for Acceptance Cycle

At each call of search(s),
s is a reachable state,
D describes a path from ι to s.

search calls searchCycle(s)
on a reachable accepting state s

in order to find a cycle from s to itself.

At each call of searchCycle(s),
s is a state reachable from a reachable accepting state sa,
D describes a path from ι to sa,
D → C describes a path from ι to s (via sa).

Thus we have found an accepting cycle D → C → s ′, if

there is a transition s
l
→ s ′,

such that s ′ is contained in D.

If the algorithm returns “true”, there exists a violating run; the converse
follows from the exhaustiveness of the search.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 20/57

Implementing the Search

The state space V ,
is implemented by a hash table for efficiently checking s ′ 6∈ V .

Rather than using explicit stacks D and C ,
each state node has two bits d and c ,
d is set to denote that the state is in stack D,
c is set to denote that the state is in stack C .

The counterexample is printed,
by searching, starting with ι, the unique sequence of reachable nodes
where d is set until the accepting node sa is found, and
by searching, starting with a successor of sa, the unique sequence of
reachable nodes where c is set until the cycle is detected.

Furthermore, it is not necessary to reset the c bits, because
search first explores all states reachable by an accepting state s before
trying to find a cycle from s; from this, one can show that
called with the first accepting node s that is reachable from itself,
search2 will not encounter nodes with c bits set in previous searches.
With this improvement, every state is only visited twice.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 21/57

Complexity of the Search

The complexity of checking S |= P is as follows.

Let |P | denote the number of subformulas of P .

|State(¬P)A| = O(2|P|).

|StateA⊗B | = |StateA| · |StateB |.

|StateSA⊗(¬P)A | = O(|StateSA
| · 2|P|)

The time complexity of search is linear in the size of State.

Actually, in the number of reachable states (typically much smaller).
Only true for the improved variant where the c bits are not reset.
Then every state is visited at most twice.

PLTL model checking is linear in the number of reachable states but
exponential in the size of the formula.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 22/57

Adding Weak Scheduling Fairness

Assume that system is an asynchronous composition of k components.

Weak scheduling fairness:
A run satisfies w.s.f., if it has infinitely many transitions from every
component which is permanently ready to perform some transition.

Implementation in a model checker.
Construct k + 2 copies 0, . . . , k + 1 of the state space.

Actually just k + 2 bits need to be added to every state.
Only copy 0 has the original acceptance states.

In copy 0, the destinations of all transitions from acceptance states
are replaced by the corresponding states in copy 1.
In copy i , 1 ≤ i ≤ k , the destinations of all transitions of component i

are replaced by the corresponding states in copy i + 1; a null transition
is added from every state to the corresponding state in copy i + 1
which is enabled if no other transition of component i is enabled.
In copy k + 1, the transitions of all components are replaced by the
corresponding states in copy 0.

Every accepted run has (possibly null) transitions from all components.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 23/57

Example

Gerard Holzmann: “The Spin Model Checker”, 2004.

Runtime complexity of model checking is increased by a factor k + 2.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 24/57

Summary

Basic PLTL model checking for deciding S |= P .

Convert system S to automaton SA.
Atomic propositions of PLTL formula are evaluated on each state.

Convert negation of PLTL formula P to automaton (¬P)A.
How to do so, remains to be described.

Construct synchronized product automaton SA ⊗ (¬P)A.
After that, formula labels are not needed any more.

Find SCC in reachability-graph of product automaton.
A purely graph-theoretical problem that can be efficiently solved.
Time complexity is linear in the size of the state space of the system
but exponential in the size of the formula to be checked.
Weak scheduling fairness with k components: runtime is increased by
factor k + 2 (worst-case, “in practice just factor 2” [Holzmann]).

The basic approach immediately leads to state space explosion; further
improvements are needed to make it practical.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 25/57

1. Basic PLTL Model Checking

2. Translating PLTL Formulas to Automata

3. Optimized PLTL Model Checking

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 26/57

From a PLTL Formula to an Automaton

How to translate an PLTL formula P to an automaton PA?

Automaton states: “atoms”.
An atom is a particular set of subformulas of P .

May influence the value of the PLTL formula.
May be simultaneously satisfied by some state.

Construction: PA is the synchronous product of two automata.
A local automaton: checking the safety aspect of P .

Atoms describe system states.
Transitions describe the system transitions allowed by P.

An eventuality automaton: checking the liveness aspect of P .

Atoms describe goals that have to be satisfied by a system run.
Transitions describe the changes of these goals.

Today there are better approaches generating smaller automata, but the
presented one is easier to understand.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 27/57

The Closure of a Formula

We will only consider the operators ¬,∧,#,U.

f0 ∨ f1 ⇔ ¬(¬f0 ∧ ¬f1),
3f ⇔ true U f .
2f ⇔ ¬3¬f .

The closure C(P) of a PLTL formula P .
The smallest set satisfying the following conditions:

P ∈ C(P).
If ¬f0 ∈ C(P), then f0 ∈ C(P).
If f0(6= ¬f1) ∈ C(P), then ¬f0 ∈ C(P).
If f0 ∧ f1 ∈ C(P), then f0, f1 ∈ C(P).
If #f0 ∈ C(P), then f0 ∈ C(P).
If f0 U f1 ∈ C(P), then f0, f1 ∈ C(P).

Example: P :⇔ (¬p) U q.

C(P) = {P ,¬P , p,¬p, q,¬q}.

The closure of P is the set of its subformulas and their negation.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 28/57

The Atoms of a Formula

The closure C(P) gives the material to construct sets of formulas.

An atom K ⊆ C(P) of P :
An atom K of P is a subset of the subformulas of P that do not have
a propositional contradiction.

If f0 ∈ C(P), then f0 ∈ K iff ¬f0 6∈ K .
If f0 ∧ f1 ∈ C(P), then f0 ∧ f1 ∈ K iff f0 ∈ K and f1 ∈ K .

PK := {K : K is an atom of P}.

The set of atoms of P.

Example: P :⇔ (¬p) U q.

PK = {{P , p, q}, {P , p,¬q}, {P ,¬p, q}, {P ,¬p,¬q},
{¬P , p, q}, {¬P , p,¬q}, {¬P ,¬p, q}, {¬P ,¬p,¬q}}.

The atoms represents the states of the automaton to be constructed.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 29/57

The Local Automaton of a Formula

The local automaton PL = 〈IL,RL,FL〉 of P :
State := PK , Label := P(C(P)).

States are atoms, labels are sets of formulas from the closure of P.
IL := {a ∈ PK : P ∈ a}.

The initial states are all atoms that contain P.

RL(l , a, a
′) :⇔ l = a ∧

∀ #f ∈ C(P) :
#f ∈ a ⇔ f ∈ a′ ∧

∀ f0Uf1 ∈ C(P) :
f0Uf1 ∈ a ⇔ f1 ∈ a ∨ (f0 ∈ a ∧ f0Uf1 ∈ a′).

#f holds now iff f holds next.
f0 U f1 holds now iff f1 holds now or f0 U f1 holds next.

FL := PK .
All states are accepting; i.e. every accepted run passes some state
infinitely often.

The transition label describes the obligations of the predecessor state; the
local automaton checks all obligations except for the U formulas.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 30/57

Example

Local automaton PL where P ⇔ true U q (⇔ 3q).
Accepts every run (no safety aspect).

q

q

~q

~q

P P

~P~P

P,q P,~qP,q

P,~q

P,qP,q

~P,~q

~P,~q

;

~q
~P

~P,~q

q ~q
P P

P,q P,~qP,q

P,~q

P,q

Local automaton (¬P)L where ¬P ⇔ ¬(true U q) (⇔ 2¬q).
Accepts only runs where q does not occur.

q

q

~q
P

P,q P,~qP,q

P,~q

~P,~q

~P~P

P

P,q P,q

~P,~q
~q

;

~P,~q

~P
~q

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 31/57

The Eventuality Automaton of a Formula

The eventuality automaton PE = 〈IE ,RE ,FE 〉 of P :
State := P({f0Uf1 : f0Uf1 ∈ PK}); Label := P(C(P)).

States are sets of U formulas; labels are formula sets.
IL := {∅}.

The initial state is the empty formula set.

RL(l , a, a
′) :⇔

(a = ∅ ∧ ∀ f0Uf1 ∈ l : f1 ∈ l ∨ f0Uf1 ∈ a′) ∨
(a 6= ∅ ∧ ∀ f0Uf1 ∈ a : f1 ∈ l ∨ f0Uf1 ∈ a′).

From the initial state, the successor state has to fulfill all obligations
of the label not satisfied by the label itself.
From each other state, the successor state has to fulfill all obligations
of the current state not satisfied by the label.

FL := {∅}.
Only the initial state is accepting; i.e. every accepted run passes the
initial state infinitely often.

The transition label describes the obligations of the predecessor state
involving U formulas; the eventuality automaton checks these obligations.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 32/57

Example

Eventuality automaton PE where P ⇔ true U q (⇔ 3q)
(also for (¬P)E where ¬P ⇔ ¬(true U q) ⇔ 2¬q).

{ } {P}

{P,q}{P,~q}{~P,q}{~P,~q}

{P,q}{~P,q}

true <=>
true

<=> q

{P,q}{~P,q}{~P,~q}
~(P /\ ~q) <=>

If the initial obligation is {P ,¬q}, the only possible transition is to
the non-accepting state.

In all other cases, there is an accepting run through the initial state.

If the non-accepting state eventually encounters q, the obligation is
fulfilled and a transition back to the accepting state is possible.

Only runs are accepted where all obligations are infinitely often fulfilled.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 33/57

Synchronous Product of Both Automata

Synchronous product PL ⊗ PE .

As already defined; finally all non-atomic propositions are removed
from the labels.

Intuitive understanding:

PL ⊗ PE accepts only runs that both PL and PE accept.
PL accepts a run with transition a

a
→ a′, if the transition does not

violate the safety aspect of P , even if a does not satisfy the U
formulas with which it was labeled.
PE accepts a run with transition b

a
→ b′, if either b satisfies the U

formulas in label a, or if this obligation is passed on to a′ and
eventually a state is reached that fulfills the obligation.
PL ⊗ PE thus accepts a run with transition 〈a, b〉

a
→ 〈a′, b′〉, if the

transition does not violate the safety aspect of P and if either 〈a, b〉
satisfies the U formulas in a, or if this obligation is passed on to
〈a′, b′〉 and eventually a state is reached that fulfills the obligation.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 34/57

Example

Product (¬P)L ⊗ (¬P)E where ¬P ⇔ ¬(true U q) ⇔ 2¬q.

(¬P)L :

~P,~q

~P
~q

(¬P)E :
{ } {P}

{P,q}{P,~q}{~P,q}{~P,~q}

{P,q}{~P,q}

true <=>
true

<=> q

{P,q}{~P,q}{~P,~q}
~(P /\ ~q) <=>

(¬P)L ⊗ (¬P)E :

~P,~q

~P
~q

{ }

~P,~q
~P,~q

~P
~q

{P}

(¬P)L ⊗ (¬P)E is equivalent to (¬P)L (no liveness aspect in ¬P).
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 35/57

Example

Product PL ⊗ PE where P ⇔ true U q ⇔ 3q.

PL :

~q
~P

~P,~q

q ~q
P P

P,q P,~qP,q

P,~q

P,q

PE :
{ } {P}

{P,q}{P,~q}{~P,q}{~P,~q}

{P,q}{~P,q}

true <=>
true

<=> q

{P,q}{~P,q}{~P,~q}
~(P /\ ~q) <=>

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 36/57

Example

Product PL ⊗ PE where P ⇔ true U q ⇔ 3q.

q ~q
P P

~q
~P

{ }

{ } { }

q ~q
P P

~q
~P

{P}

{P} {P}

Can remove a state from which no acceptance state can be reached.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 37/57

Example

Product PL ⊗ PE where P ⇔ true U q ⇔ 3q.

PL ⊗ PE :
q ~q
P P

~q
~P

{ }

{ } { }

q ~q
P P

{P}{P}

Transitions are labeled with the atomic propositions of predecessor state.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 38/57

Example

Product PL ⊗ PE where P ⇔ true U q ⇔ 3q.

In every accepting run, q must occur.

Accepting states have only incoming
edges labeled with q.
Exception: 2 → 2, but 2 is not initial.

All runs where q occurs are accepted.

q in first state: 0 → . . .

q not in first state: 1 → . . .

Occurrences of q:
. . . → 0 → . . . → 0 → . . .

q finitely often:
. . . → 2 → 2 → 2 → . . .

q eventually forever:
. . . → 0 → 0 → 0 → . . .

q

q

q

q

q

~q

q

~q

q
q

~q

~q

~q
q

1

2

0

q

This automaton is much bigger than necessary (typical for the approach).
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 39/57

1. Basic PLTL Model Checking

2. Translating PLTL Formulas to Automata

3. Optimized PLTL Model Checking

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 40/57

On the Fly Model Checking

For checking L(SA ⊗ (¬P)A) = ∅, it is not necessary to construct the
states of SA in advance.

Only the property automaton (¬P)A is constructed in advance.

This automaton has comparatively small state space.

The system automaton SA is constructed on the fly.

Construction is guided by (¬P)A while computing SA ⊗ (¬P)A.
Only that part of the reachability graph of SA is expanded that is
consistent with (¬P)A (i.e. can lead to a counterexample run).

Typically only a part of the state space of SA is investigated.

A smaller part, if a counterexample run is detected early.
A larger part, if no counterexample run is detected.

Unreachable system states and system states that are not along possible
counterexample runs are never constructed.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 41/57

On the Fly Model Checking

Expansion of state s = 〈s0, s1〉 of product automaton SA ⊗ (¬P)A into
the set R(s) of transitions from s (for 〈l , s, s ′〉 ∈ R(s) do . . .).

Let S ′
1 be the set of all successors of state s1 of (¬P)A.
Property automaton (¬P)A has been precomputed.

Let S ′
0 be the set of all successors of state s0 of SA.
Computed on the fly by applying system transition relation to s0.

R(s) := {〈l , 〈s0, s1〉, 〈s
′
0, s

′
1〉〉 : s ′0 ∈ S ′

0 ∧ s ′1 ∈ S ′
1 ∧ s1

l
→ s ′1 ∧ L(s ′0) ∈ l}.

Choose candidate s ′0 ∈ S ′
0.

Determine set of atomic propositions L(s ′0) true in s ′0.
If L(s ′0) is not consistent with the label of any transition

〈s0, s1〉
l
→ 〈s ′0, s

′
1〉 of the proposition automaton, s ′0 it is ignored.

Otherwise, R is extended by every transition 〈s0, s1〉
l
→ 〈s ′0, s

′
1〉 where

L(s ′0) is consistent with label l of transition s1
l
→ s ′1.

Actually, depth-first search proceeds with first suitable successor 〈s ′0, s
′
1〉

before expanding the other candidates.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 42/57

Partial Order Reduction

Core problem of model checking: state space explosion.

Take asynchronous composition S0||S1|| . . . ||Sk−1.
Take state s where one transition of each component is enabled.

Assume that the transition of one component does not disable the
transitions of the other components and that no other transition
becomes enabled before all three transitions have been performed.

Take state s ′ after execution of all three transitions.
There are k! paths leading from s to s ′.
There are 2k states involved in the transitions.

Sometimes it suffices to consider
a single path with k + 1 states.

Edmund Clarke: “Model Checking”, 1999.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 43/57

Example

Check (T1||T2) |= 3g ≥ 2.

Gerard Holzmann: “The Spin Model Checker”, 1999.

For checking 3g ≥ 2, it suffices to check only one ordering of the
independent transitions x = 1 and y = 1 (not true for checking 2x ≥ y).

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 44/57

Partial Order Reduction

Check S |= P .

boolean search(s)
. . .

for 〈l , s, s ′〉 ∈ R(s) do
;

boolean search(s)
. . .

for 〈l , s, s ′〉 ∈ ampleP(s) do

ampleP(s) ⊆ R(s).
The ample set ampleP (s).

The set of transitions from s to be considered for checking P.

R(s) := {〈l , s, s ′〉 : l ∈ Label ∧ s ′ ∈ State}.

The set of all transitions from s.

Optimization: ampleP(s) (R(s).

Search space is reduced.

We will now investigate the calculation of the ample set.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 45/57

Independence

When can two transitions of two components be executed in any order?

Edmund Clarke: “Model Checking”, 1999.

Independence relation I ⊆ Trans × Trans.
I is a relation between transitions.

Trans := Label × State × State.
I (α, β) . . . α and β are independent.

I satisfies the following conditions
for every s ∈ State and α, β ∈ Trans:

I is antireflexive and symmetric:

¬I (α, α) ∧ (I (α, β) ⇒ I (β, α)).
Enabledness: α, β ∈ R(s) ⇒ α ∈ R(β(s)).

If α and β are enabled, then α is still enabled after executing β.
Commutativity: α, β ∈ R(s) ⇒ α(β(s)) = β(α(s)).

If α and β are enabled, then they may be executed in any order.

Dependence relation D(α, β) :⇔ ¬I (α, β).
Two transitions are dependent, if they are not independent.

I (α, β) is necessary for considering only one transition α or β from s.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 46/57

Open Problems

Edmund Clarke: “Model Checking”, 1999.

I (α, β) is not sufficient for considering only one transition α or β.

Problem 1: property P may distinguish between s1 and s2.
s → s1 → r may be recognized as different from s → s2 → r .

Problem 2: states s1 and s2 may have successors in addition to r .
If α is not considered, not every successor of s1 may be explored.

Need some more checks to make sure that these problems do not occur.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 47/57

Invisibility and Stuttering Equivalence

A transition α is invisible:
∀s, s ′ ∈ State : s ′ = α(s) ⇒ L(s) = L(s ′).
Predecessor and successor state fulfill the same atomic propositions.

Two runs r and s are stuttering equivalent:
There are two infinite sequences i0, i1, . . . and j0, j1 of positions in r

respectively s such that for all k ∈ N

L(r(ik)) = L(r(ik + 1)) = . . . = L(r(ik+1 − 1)) =
L(s(jk)) = L(s(jk + 1)) = . . . = L(s(jk+1 − 1)).

r and s have identical sequences of labels except for the number of
occurrences of each label in subsequent positions.

Edmund Clarke: “Model Checking”, 1999.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 48/57

Stuttering Invariance

A PLTL formula P is invariant under stuttering:

For each pair of stuttering equivalent runs r and s: r |= P iff s |= P .
P cannot distinguish among r and s.

Every PLTL formula without # is invariant under stuttering.

Only temporal operators 2, 3,U.
Only these operators are allowed in Spin as well.
Also converse of statement is true: every path property that does not
distinguish between stuttering equivalent runs can be expressed by a
PLTL formula without #.

Partial order reduction only applies to checking formulas that are
invariant under stuttering.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 49/57

Computation of the Ample Set

Check (S0|| . . . ||Sk−1) |= P where P is invariant under stuttering.

function ampleP(s) :
for Si with Ri(s) 6= ∅ do

if C1(Ri (s)) ∧ C2(s, Ri (s)) ∧ C3(s, Si) then
return Ri(s)

end
end
return R(s)

end

Transition relation Ri of component i :
Total system transition relation R :=

⋃
0≤i<k Ri .

Result of ampleP(s):
Some component i ’s non-empty set of transitions from s that satisfies
conditions C1, C2, C3 (if such a set exists).
All transitions from s, if no such set exists.

If successful, only transitions from component i are considered.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 50/57

Condition 1: Invisibility

C1(T) :⇔
∀α ∈ T : α is invisible.

If ample(s) 6= R(s), then every
α ∈ ample(s) is invisible.

A reduced ample set has only invisible
transitions; otherwise the discarded runs
would not be stuttering equivalent to
the considered run. Edmund Clarke: “Model Checking”, 1999.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 51/57

Condition 2: Cycle Condition

C2(s, T) :⇔ ∀α ∈ T : ¬has(D, α(s)).

If ample(s) 6= R(s), then no α ∈ ample(s) may lead to a cycle.

Edmund Clarke: “Model Checking”, 1999.

C2 ensures that ampleP(s3) = {β}; otherwise β would not appear at all
in the reduced state graph.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 52/57

Condition 3: Independence

C3(s, Si) :⇔
∀Pj 6= Pi :
∀β ∈ Rj (s) :

(∀α ∈ Ri(s) : I (β, α) ∧
∀α ∈ current i(s)\Ri (s) : ¬enable(β, α))

current i (s) := {α : α ∈ Ri ∧ ∃s ′ : α ∈ R(s ′) ∧ pc i (s) = pc i (s
′)}.

The set of transitions of Si that are enabled in any state where Si is
at the same statement as in s (including those not enabled in s itself).

enable(β, α) :⇔ ∃s : α 6∈ R(s) ∧ β ∈ R(s) ∧ α ∈ R(β(s))
Transition β may enable transition α.

Every transition β that may be executed before any transition
α ∈ ample(s) is independent of α and cannot enable α; thus it it safe to
execute α first and β later.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 53/57

Interpretation

Which transitions depend on each other respectively enable each other?

D(β, α) iff

β and α belong to the same process or
β and α share a variable that is changed by β or α, or
β and α are two send statements or two receive statements on the
same channel.

enable(β, α) iff

β and α belong to the same process and α is a possible successor
statement of β, or
α is a statement that depends on the value of a shared variable and β

is a statement that may change this variable, or
β and α are send respectively receive statements on the same channel.

For checking Condition 3, only certain pairs of transitions are of interest.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 54/57

Closing the Open Problems

Edmund Clarke: “Model Checking”, 1999.

Problem 1: property P may distinguish between s1 and s2.
Not possible because of Condition 1 (Invisibility) which makes
s → s1 → r and s → s2 → r stuttering equivalent.

Problem 2: states s1 and s2 may have successors in addition to r .
Transition γ enabled in s1 is independent of β (Condition 3) and,
since enabled in s1, thus also enabled in r .
Since β is invisible (Condition 1), sequences s

α
→ s1

γ
→ s ′1 and

s
β
→ s2

α
→ r

γ
→ r ′ are stuttering equivalent.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 55/57

Example

Edmund Clarke et al: “Model Checking”, 1999.

System after partial order reduction.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 56/57

Other Optimizations

Statement merging.
Special case of partial order reduction where a sequence of transitions
of same component is combined to a single transition.

State compression.
Collapse compression: each state holds pointers to component states;
thus component states can be shared among many system states.
Minimized automaton representation: represent state set V not by
hash table but by finite state automaton that accepts a state
(sequence of bits) s if and only if s ∈ V .
Hash compact: store in the hash table a hash value of the state
(computed by a different hash function). Probabilistic approach: fails
if two states are mapped to the same hash value.
Bitstate hashing: represent V by a bit table whose size is much larger
than the expected number of states; each state is then only
represented by a single bit. Probabilistic approach: fails if two states
are hashed to the same position in the table.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 57/57

	Basic PLTL Model Checking
	Translating PLTL Formulas to Automata
	Optimized PLTL Model Checking

