7\
A4

Model Checking (Part 2)

Wolfgang Schreiner

Wolfgang.Schreiner@risc.uni-linz.ac.at

1. The Basics of Temporal Logic

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.uni-linz.ac.at

2. Specifying with Linear Temporal Logic
()
.ME.
W

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 1/44 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 2/44

. 2\, _ 178
Motivation N4 Computation Trees versus System Runs N4

We need a language for specifying system properties.

Set of system runs:
State Transition Graph or
Kr?p?(e Model [a, b] —C—C— ...

A system S is a pair (I, R). e - [a,b] = [b,c] = c— ...
Initial states /, transition relation R. AN [a,b] — [b,c] — [a,b] — ...
More intuitive: reachability graph. ~Leese ey [a, b] — [b,c] — [a,b] — ...

Starting from an initial state sp, the system runs evolve. e e

Consider the reachability graph as an infinite computation tree.

Different tree nodes may denote occurrences of the same state.
Each occurrence of a state has a unique predecessor in the tree. @ °

Every path in this tree is infinite.

Every finite run sp — ... — s, is extended to an infinite run ° °
S) — ...—> S, — Sy — Sp — ...
Or simply consider the graph as a set of system runs.
Same state may occur multiple times (in one or in different runs).

Unwind State Graph to obtain Infinite Tree

Figure 3.1
Temporal logic describes such trees respectively sets of system runs. L Edmund Clarke et al: “Model Checking”, 1999.
Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 3/44 Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 4/44

)
State Formula W

Temporal logic is based on classical logic.

A state formula F is evaluated on a state s.
Any predicate logic formula is a state formula:
p(X),_\F,Fo/\FhFo\/Fl,FO:} F17F0<:>F17VXZF,3XZF.
In propositional temporal logic only propositional logic formulas are
state formulas (no quantification):
p,—F,. Fo ANFi,FoV F,Fo= Fi,Fo < Fi.
Semantics: s = F (“F holds in state s").
Example: semantics of conjunction.
(S }: Fo A Fl) = (S }: Fo)/\(s }: Fl).
“Fo A F1 holds in s if and only if Fy holds in s and F; holds in s”.

Classical logic reasons on individual states.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 5/44
(]
B hing Ti Logic (CTL) 'M E’
rancnin ime LogIC
g g N

We use temporal logic to specify a system property F.

Core question: S = F ("“P holds in system F").
System S = (I, R), temporal logic formula F.
Branching time logic:
SEF & S,s E F, for every initial state sy of S.
Property F must be evaluated on every pair of system S and initial
state sp.
Given a computation tree with root sy, F is evaluated on that tree.

CTL formulas are evaluated on computation trees.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 7/44

: 7\
Temporal Logic e

Extension of classical logic to reason about multiple states.

Temporal logic is an instance of modal logic.
Logic of “multiple worlds (situations)” that are in some way related.
Relationship may e.g. be a temporal one.
Amir Pnueli, 1977: temporal logic is suited to system specifications.
Many variants, two fundamental classes.
Branching Time Logic
Semantics defined over computation trees.
At each moment, there are multiple possible futures.
Prominent variant: CTL (used by the model checker SMV).
Computation tree logic; a propositional branching time logic.
Linear Time Logic
Semantics defined over sets of system runs.
At each moment, there is only one possible future.
Prominent variant: PLTL (used by the model checker Spin).
A propositional linear temporal logic.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 6/44
Z4\
State Formulas e
N4

We have additional state formulas.

A state formulas F is evaluated on state s of System S.

Every (classical) state formula f is such a state formula.
Let P denote a path formula (later).

Evaluated on a path (state sequence) p=po — p1 — p2 —
R(pi, pi+1) for every i; py need not be an initial state.

Then the following are state formulas:

A P (“in every path P"),

E P (“in some path P").
Path quantifiers: A, E.

Semantics: S,s = F (“F holds in state s of system S").

S,;sEf & skEf.
S,sEAP & S, r= P, for every path p of S with pg = s.
S,sEEP & S,r= P, for some path p of S with pg =s.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 8/44

.M.E.
W

Path Formulas

We have a class of formulas that are not evaluated over individual states.

A path formula P is evaluated on a path p of system S.
Let F and G denote state formulas.
Then the following are path formulas:
X F (“next time F"),
G F (“always F"),
F F (“eventually F"),
F UG ("F until G").
Temporal operators: X, G, F,U.

Semantics: S,p = P (“P holds in path p of system S").
S,pEXF =S, pl=F.
S,pEGF :oVieN:S pEF.
SSpEFF :3ieN:S pEF.
SSpEFUG :«3ieN:S5pi=GAYjeN;: 5 pi=F.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 9/44
(]

7\
Path Quantifiers and Temporal Operators .E l(.

g
g g g
M,so=EF g M,so=AF g
g
g
g
M,so =EG g M,s0 =AG g

Edmund Clarke et al: “Model Checking”, 1999.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 11/44

Path Formulas

7\
A4

o U@
A o
MR e e B s R

oy @

Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at

Linear

Time Logic (LTL)

10/44

N
1" 4

We use temporal logic to specify a system property P.

Core

question: S = P ("“P holds in system S").
System S = (I, R), temporal logic formula P.

Linear time logic:

SEP & r P, forevery run r of S.
Property P must be evaluated on every run r of S.

Given a computation tree with root sy, P is evaluated on every path
of that tree originating in sg.

If P holds for every path, P holds on S.

LTL formulas are evaluated on system runs.

Wolfgang Schreiner

http:/ /www.risc.uni-linz.ac.at

12/44

7\
Formulas &

No path quantifiers; all formulas are path formulas.

Every formula is evaluated on a path p.
Also every state formula f of classical logic (see below).
Let F and G denote formulas.
Then also the following are formulas:
X F (“next time F"), often written OF,
G F (“always F"), often written OF,
F F (“eventually F"), often written OF,
F UG ("F until G").
Semantics: p = P (“P holds in path p").
p' = (piy Pit1s - - -)-
pEfepEf
pEXF :=plEF.
pEGF :&VieN:p = F.
pEFF :=3JieN:p F.
pPEFUG =3ieN:p=GAYjeN;: S, p EF.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 13/44

AN

Branching versus Linear Time Logic v

We use temporal logic to specify a system property P.

Core question: S = P (“P holds in system S").
System S = (I, R), temporal logic formula P.
Branching time logic:
SEP & S s = P, for every initial state s of S.
Property P must be evaluated on every pair (S, sp) of system S and
initial state sg.
Given a computation tree with root sg, P is evaluated on that tree.
Linear time logic:

SEP & rE P, forevery run r of s.

Property P must be evaluated on every run r of S.

Given a computation tree with root sy, P is evaluated on every path
of that tree originating in sp.

If P holds for every path, P holds on S.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 15/44

ZA\
Formulas 5 2
W
G e W B T
A A+
v O el@ OO
o @y e -
Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 14/44
ZAY
Branching versus Linear Time Logic .E {'
L}

€9 €9

As: Az

Fig. 2.4. Two automata, indistinguishable for PLTL

B. Berard et al: “Systems and Software Verification”, 2001.

Linear time logic: both systems have the same runs.
Thus every formula has same truth value in both systems.
Branching time logic: the systems have different computation trees.

Take formula AX(EX Q A EX —Q).
True for left system, false for right system.

The two variants of temporal logic have different expressive power.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 16/44

ZA\

Branching versus Linear Time Logic v

Is one temporal logic variant more expressive than the other one?
CTL formula: AG(EF F).
“In every run, it is at any time still possible that later F will hold".
Property cannot be expressed by any LTL logic formula.
LTL formula: GOF (i.e. FG F).
“In every run, there is a moment from which on F holds forever.”.

Naive translation AFG F is not a CTL formula.
G F is a path formula, but F expects a state formula!

Translation AFAG F expresses a stronger property (see next page).
Property cannot be expressed by any CTL formula.

None of the two variants SESAET TR
is strictly more expressive

than the other one; no
variant can express every
system property.

P Theorem 4-4

i S Theorem 4-1 ™

(3 ICTL

(heorom 41 (Tneorom 42 >
A (Theorem 4-5) -

Fig. 4-8. Expressiveness of CTL*, CTL+, CTL and LTL
: Thomas Kropf: “Introduction to Formal Hardware Verification”, 1999.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 17/44

78
W

1. The Basics of Temporal Logic

2. Specifying with Linear Temporal Logic

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 19/44

AN

. . . . ® *
Branching versus Linear Time Logic e
L}
Proof that AFAG F (CTL) is different from GOF (LTL).
F F F F F F
VRN | AN A A A |
F ~F F ~F F F F
VAN N 2N B B R |
F ~F F F F ~F F F
VRN N RN L2 A B R |
F ~F F F F F F ~F -~F
PPN N N N Voo oy
~F F F F F F F F
N} X L A R B
RN
AFAG F <=> false <>[] F <=>true
In every run, there is a moment when In every run, there is a moment
it is guarantueed that from now on from which on F holds forever.
F holds forever.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 18/44

| | o/
Linear Temporal Logic .E {.

Why using linear temporal logic (LTL) for system specifications?

LTL has many advantages:
LTL formulas are easier to understand.
Reasoning about computation paths, not computation trees.
No explicit path quantifiers used.
LTL can express most interesting system properties.
Invariance, guarantee, response, ... (see later).
LTL can express fairness constraints (see later).
CTL cannot do this.
But CTL can express that a state is reachable (which LTL cannot).
LTL has also some disadvantages:
LTL is strictly less expressive than other specification languages.
CTL" or p-calculus.
Asymptotic complexity of model checking is higher.
LTL: exponential in size of formula; CTL: linear in size of formula.
In practice the number of states dominates the checking time.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 20/44

N\,
Frequently Used LTL Patterns El(

In practice, most temporal formulas are instances of particular patterns.

Pattern Pronounced Name

oF always F invariance

OF eventually F guarantee

ooF F holds infinitely often recurrence

CoF eventually F holds permanently stability

O(F = <©G) always, if F holds, then response
eventually G holds

O(F = (G U H)) always, if F holds, then precedence

G holds until H holds

Typically, there are at most two levels of nesting of temporal operators.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 21/44
Z@N
Temporal Rules . *
W

Temporal operators obey a number of fairly intuitive rules.

Extraction laws:

OF & FAOOF.

OF & FVOOF.

FUG < GV(FAO(F U G)).
Negation laws:

-OF & O=F.

-OF & O—F.

-(FUG) & (=G) U (-F A=G).
Distributivity laws:

O(FAG) < (OF)A(DG)
O(FVG) & (OF)V(©G6)
(FAGY)UH < (FUH)A(GUH)
FU(GVH) & (FUG)V(FUH)
OOC(FV G) & (OOF) V(O0G).

CO(FAG) & (COF)A(CDOG).

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 23/44

A\
Examples .E l(.

Mutual exclusion: O=(pc; = C A pcy = C).

Alternatively: =<O(pe; = C A pe, = C).

Never both components are simultaneously in the critical region.
No starvation: Vi : O(pc; = W = Opc; = R).

Always, if component / waits for a response, it eventually receives it.
No deadlock: O—Vi: pc; = W.

Never all components are simultaneously in a wait state W.
Precedence: Vi: O(pc; # C = (pc; # C U lock = i)).

Always, if component i/ is out of the critical region, it stays out until it

receives the shared lock variable (which it eventually does).
Partial correctness: O(pc = L = C).

Always if the program reaches line L, the condition C holds.
Termination: Vi: O(pe; = T).

Every component eventually terminates.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 22/44
ZaY
Classes of System Properties .E {'
L}

There exists two important classes of system properties.

Safety Properties:s
A safety property is a property such that, if it is violated by a run, it
is already violated by some finite prefix of the run.
This finite prefix cannot be extended in any way to a complete run
satisfying the property.
Example: OF.
The violating run F — F — —~F — ... has the prefix F — F — =F
that cannot be extended in any way to a run satisfying OF.
Liveness Properties:
A liveness property is a property such that every finite prefix can be
extended to a complete run satisfying this property.
Only a complete run itself can violate that property.

Example: OF.
Any finite prefix p can be extended to a run p — F — ... which
satisfies OF.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 24/44

: 7™\
System Properties .E l(.

Not every system property is itself a safety property or a liveness property.
Example: P :< (0OA) A (¢OB)
Conjunction of a safety property and a liveness property.
Take the run [A,—B] — [A,—B] — [A,—B] — ... violating P.
Any prefix [A,~B] — ... — [A, —B] of this run can be extended to a

run [A,—B] — ... = [A,=B] — [A,B] — [A, B] — ... satisfying P.
Thus P is not a safety property.

Take the finite prefix [-A, B].

This prefix cannot be extended in any way to a run satisfying P.
Thus P is not a liveness property.

So is the distinction “safety” versus “liveness” really useful?.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 25/44
Z@N
Proving Invariance . 3
W

We only consider a special case of a safety property.
Prove M |= OF.

F is a state formula (a formula without temporal operator).
Prove that F is an invariant of system M.
M = {l,R).
I(s) & ...
R(s,s’") & Ro(s,s’)V Ri(s,s') V...V Rp_1(s, s').
Induction Proof.
Vs I(s) = F(s).
Proof that F holds in every initial state.
Vs,s' : F(s) A R(s,s") = F(s').
Proof that each transition preserves F.
Reduces to a number of subproofs:

F(s) A Ro(s,s’) = F(s')
F(s) A Ro_s(s,s') = F(s)

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 27/44

) 7"\
System Properties .E l(.

The real importance of the distinction is stated by the following theorem.
Theorem:

Every system property P is a conjunction S A L of some safety
property S and some liveness property L.

If Lis “true”, then P itself is a safety property.
If S is “true”, then P itself is a liveness property.

Consequence:

Assume we can decompose P into appropriate S and P.
For proving M = P, it then suffices to perform two proofs:
A safety proof: M = S.
A liveness proof: M = L.

Different strategies for proving safety and liveness properties.

For verification, it is important to decompose a system property in its
“safety part” and its “liveness part”.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 26/44

Z4Y

Example g
N4
var x :=0
loop I loop
po : wait x =0 go: wait x =1

p1:x:=x+1 gr:x:=x—1
State = {po, p1} X {qo, g1} x N.

I(p,g,x) & p=poANg=qgoAx=0.
R({p,q,x),{(p’,q',x"}) & Po(...)VPL(...) VQ(...) V Qi(...).

(p,a,x),(p',q' X)) & p=ppAx=0Ap =prAq =qgAX =x.
Pi((p;a,x),(p',q',x)) & p=piAp =pAqg =qgAx =x+1.
Qo((p; 4, %), (P, q', X)) & q=qAx=1Ap =pAqd =qaAx =x
QP g, %), (P, d, X)) e qg=qAp =pAd =g Ax =x—-1

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 28/44

/Ny
Inductive System Properties 4
L}
The induction strategy may not work for proving OF
Problem: F is not inductive.
F is too weak to prove the induction step.
F(s) AR(s,s") = F(s').
Solution: find stronger invariant /.
If I = F, then (Ol) = (OF).
It thus suffices to prove O/.
Rationale: I may be inductive.
If yes, I is strong enough to prove the induction step.
I(s) AR(s,s") = I(s').
If not, find a stronger invariant /” and try again.
Invariant | represents additional knowledge for every proof.
Rather than proving OP, prove O(/ = P).
The behavior of a system is captured by its strongest invariant.
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 29/44
Z4Y
Proving Liveness 5 2
N4

var x =0,y :=0
loop I loop
x:=x+1 y=y+1

State = N x N; Label = {p, q}.
I(x,y) ©x=0Ay=0.
R(1,{(x,y), (X', y") &
(I=pAX =x+1Ay' =y)V(I=gAX =xANy =y+1).

Prove (I,R) = Ox = 1.
[x=0,y=0]—[x=0y=1—[x=0,y=2] — ...
This run violates (as the only one) Ox = 1.

Thus the system as a whole does not satisfy Ox = 1.

For proving liveness properties, “unfair” runs have to be ruled out.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 31/44

7\

Example .E I(.
.
Prove (I,R) EO(x=0Vx=1).
Proof attempt fails.
Prove (I,R) = OG.
G:&
(x=0vx=1)A
(p=p1=x=0)A
(a=q=x=1).
Prove (I,R) E OG'.
G &
(x=0vx=1)A
(p=p1=x=0Aqg=qo) A
(d=q=x=1Ap=p).
Prove (I,R) = 0G".
G" s
(x=0Vx=1)A(p=pVp=p1)A(@g=qVqg=aq)A
(p=p1=>x=0Aqg=qo)A
(g=q1=x=1Ap=po).
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 30/44

AN

Enabling Condition

1" 4

When is a particular transition enabled for execution?
Enabledr(/,s) < 3t : R(I,s, t).

Labeled transition relation R, label /, state s.
Read: “Transition (with label) / is enabled in state s (w.r.t. R)".

Example (previous slide):
Enabledr(p, (x,y))

< 3,y R(p, (%,), (X', ¥"))

<A,y
(p=pAX =x+1Ny =y)V
(p=agnrnxX =xAy' =y+1)

S A,y p=pAX =x+1Ay =y)V

3,y ip=gAX =xAy =y+1)
& true V false
< true.

Transition p is always enabled.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at

32/44

:)
Weak Fairness 74

Weak Fairness
A run sy LN st A, S N ... is weakly fair to a transition /, if
if transition / is eventually permanently enabled in the run,
then transition / is executed infinitely often in the run.
(3i:Vj >i:Enabledr(l,s;)) = (Vi:3j>i:lj=1).
The run in the previous example was not weakly fair to transition p.
LTL formulas may explicitly specify weak fairness constraints.
Let E; denote the enabling condition of transition /.
Let X; denote the predicate “transition / is executed”.
Define WF, :< (OOE) = (00X)).
If | is eventually enabled forever, it is executed infinitely often.
Prove (I, S) = (WF, = P).

Property P is only proved for runs that are weakly fair to /.

A model may have weak fairness already “built in".

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 33/44
Z4Y
Proving a Guarantee K *
N4

Core proof: (I, R) = OF.
Find lucky transition / with enabling condition E;.

The execution of / makes F true.

As long as F is not true, / is enabled.

By weak fairness, either F becomes true or / is eventually executed.
Until / is executed, additional property H holds.

—F(s) Al(s) = H(s) A Ei(s).
—F(s) AH(s) A Ei(s) A=R(I,s,s") = H(s') A Ei(s').
—F(s) AH(s) A R(l,s,s") = F(s).
Core proofs: (I, R) = 0O(F = <G).
Find lucky transition | with enabling condition E;.
Prove: =G(s) A F(s) = H(s) A Ei(s).
Prove: =G(s) A H(s) A Ei(s) A=R(l,s,s’) = H(s') A Ei(s').
Prove: =G(s) A H(s) A AR(l,s,s") = G(s).
Sometimes augmented by proofs using well-founded orderings.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 35/44

_ 7\
Proving a Guarantee e

We only consider a special case of a liveness property.
Prove (I, R) = OF.

Proof that F is a guarantee of the system.
F is a state formula (a formula without a temporal operator).

Decomposition: sequence of properties Fo, F1,...,F, = F.
Prove (I, R) = Fo.
Prove (I, R) = O(Fo = OF).
Prove (I, R) = O(F1 = OF,).

Prove (I, R) = O(Fn—1 = ©F).

Typically, guarantee proofs have to be decomposed into multiple proofs.

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 34/44
Z4Y
Example g
N4

State = N x N; Label = {p, q}.
I(x,y) ©x=0Ay=0.
R(, (0 y), (6, y))
(I=pAX =x+1Ay' =y)V(I=gAX =xANy =y+1).

Prove (I,R) = Ox = 1.
Lucky transition p, additional property H :< x = 0.

Xx#Z1AN(x=0Ay=0)=x=0Atrue.
x#Z1Ax=0AtrueA (X' =xAy =y+1)= x"=0Atrue.
xZIAx=0A(X=x+1Ay' =y)=x'=1.

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 36/44

Checking Liveness in Spin

7\
A4

bool wait[2] = false;

proctype client(byte id)

{

do ::

true ->
request[id-1] ! MESSAGE;

wait[id-1] = true;

answer [id-1]

? MESSAGE;

wait[id-1] = false;

}

Weak Fairness in Spin

7\

X

[=][al]x]]

| Yerification |‘
Exhausiive
-~ Supertrace/Bitstate

-~ Hash-Compact

Optiong
W Vith Weak Faimess
_ | Check xrfxs Assertions

#define wl wait[0]==

[l -> <>tul)

Check D(Wl = <>—\W1).

Wolfgang Schreiner http://www.risc.uni-linz.ac.at 37/44

Wolfgang Schreiner

[Set Advanced Options] |
1

Help i Cancel i Run |

1
| A Full Queue
@ Blocks New Msgs
-~ Loses Mew Msgs
J

http://www.risc.uni-linz.ac.at

Checking Liveness in Spin

N
1" 4

Wolfgang Schreiner

e

e ollx

PN oy - T |
Formuia; o - <=hu) =

Operators: ﬂﬂ u | - |and| or | not|

Property holds for: @ All Executions (desired hehavior) . Mo Executions (error hehavior)

Notes [file clientServer3-progress ti]:

=
/
Symbol Definitions:

. #define wl wait |
[
|

] (waits==1 55 Llen{raquest[0]) >0}
/ #define xl (sender-=1)

i
Hever Claim: Generate

+

* Formila As Typed: []{wl —» <>!wl)
J + The Never Glaim Below Corresponds

* To The Negated Formula |([] (vl > <3!wl))
* (formalizing violations of the originall
*

/ newer { (1L =y lwly) +f

Verification Result: not valid

Run Verification

" warning: for p.o. reduction to be walid the never claim must be stutter-invariant

| (never clains generated from LTL formulae are stutter-invariant)
depth 152: Clain reached state 9 (line 89)

pan: acceptance cycle (at depth 510)

pan: wrote pan_in. trail

(Spin Version 4.2.2 — 12 Decenber 2004)

/ Warning: Search not completed

Help | clear | Close | save as..
: ;

http:/ /www.risc.uni-linz.ac.at

39/44

Wolfgang Schreiner

Strong Fairness

38/44

AN

1" 4

Strong Fairness

I I I
Arun sp—> 51— s > ..

. is strongly fair to a transition /, if

if [is infinitely often enabled in the run,
then / is also infinitely often executed the run.
(Vi:3j > i: Enabledr(l,s)) = (Vi:3j >i: | =1).
If r is weakly fair to /, it is also strongly fair to / (but not vice versa).

LTL formulas may explicitly specify strong fairness constraints.

Let E; denote the enabling

condition of transition /.

Let X; denote the predicate “transition / is executed” .
Define SF; :< (OCE) = (00X)).

If I is enabled infinitely often, it is executed infinitely often.

Prove (I,S) |= (SF; = P).

Property P is only proved for runs that are strongly fair to /.

A much stronger requirement to the fairness of a system.

http:/ /www.risc.uni-linz.ac.at

40/44

78" o o ©y,
Example gl Specifying Strong Fairness in Spin s

L}
-0 unsigned sender : 2;
:Iar x= bool waitS = false;
oop
a: xX:=—x proctype server()
b: choose x :=0[] x:=1 {
unsigned given 1 2=0;
State := {a, b} x N; Label = {A, By, B }. unsigned waiting : 2 = 0;
I(p7x) :<:>p/:a//\x:0. do :: true ->
R(1,{p,x), (p",x")) :& waitS = true;
(I=AAn(p=aAnx'=—x))V if
(I=BoA(p=bAX =0))V i request[0] 7 MESSAGE ->
I=BiA(p=bAX =1)). sender = 1
(1A (p) :: request[1] ? MESSAGE ->
. _ sender = 2
Prove: (I,R) F Ox = 1. .
. . A B A B A i = .
Take violating run [a,0] = [b,0] = [a,0] = [b,0] = [2,0] > ... wait§ = false;
Enabledg, (p, x) <& p=b.
Run is weakly fair but not strongly fair to Bj. }
Wolfgang Schreiner http://www.risc.uni-linz.ac.at 41/44 Wolfgang Schreiner http://www.risc.uni-linz.ac.at 42/44

0/ - o 1\
Specifying Strong Fairness in Spin .E l(. Specifying Strong Fairness in Spin .E l(.

o e e o=
Formuia; [((j<-e1) - [ee1)) = [pw1 > =i f | Load... |
#define el (waitS == 1 && len(request[0]) > 0) rommac [pee) o) 2 2 ' '
K _ Operators: | | <» | U | -> | and] or | not|
#define x1 (sender == 1) Property holds for: @ All Executions (desired hehavior) Mo Executions (error behavior)
#define wl (wait [0] == 1) HNotes [file clientServer3-progress.H]:
(([1<>el) -> ([O<>x1)) -> [Twl -> <>twl) /

Symbol Definitions:

. #define wl wait[[
[
|

Assume that system is strongly fair with respect to receiving a value from renieiend

55 Len(request[0])>0)

/ #define xl (sender
Client 1 and prove under that assumption that Client 1 after a request ever Claim: o
eventually receives an answer. = "% bormils b Byped. (116361 > (10w -5 1161 > i)

+ The Never Glaim Below Corresponds

* To The Negated Formula |((([]<>el) —> ([]<3al)) -5 [1(wl —> <>lul))
* (formalizing violstions of the original)

*

/ never { A LOCC[T<rel) =5 ([Jesxl)) =3 [Jiwl =» <>lwl)) */
Verification Result: valid

Run Verification

", warning: for p.o. reduction to he walid the never claim must be stutter-invariant
"I (never clamims generated from LTL Eormilas are stubber-invariant)
depth 260 Claim reached state 37 (Line 107)
depth 250: Clainm reached state 29 (Line 102
depth 98: Claim reached state 23 (line 96}
(Spin Version 4.2.2 —- 12 Decenmber 2004
/ + Partial Order Reduction

,Help | cear |
:

Close Save As..
T

Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 43/44 Wolfgang Schreiner http:/ /www.risc.uni-linz.ac.at 44 /44

	The Basics of Temporal Logic
	Specifying with Linear Temporal Logic

