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Overview

e Equivalence Relations and Partitions
e Modular Arithmetic

e Another Construction of Number Domains
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Equivalence Relations and Partitions
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Relation Properties

Definition: A binary relation R on a set S is reflexive, symmetric,
respectively transitive, if it satisfies the following properties:

R is reflexive on S &
Ve eS:(x,x) €R;
R is symmetric on S &
Ve,y:(z,y) € R= (y,x) € R;
R is transitive on S <
Ve,y,z: ((x,y) € RA(y,z) € R) = (x,2) € R.

Example: equality is reflexive, symmetric and transitive on every set.
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Equivalence Relation

Definition: Let R be a binary relation on S. R is an equivalence
relation on S, if it is reflexive, symmetric, and transitive on 5

R is equivalence relation on S <
RCSxXSA
R is reflexive on S' A
R is symmetric on .S A
R is transitive on S.

Many (not all) properties of the equality relation on S.
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Visualization

C-é? '
S5

G/D

e Reflexivity: every node has an arrow to itself,

e Symmetry: if there is an arrow from node a to node b, then there
is also an arrow from b to a,

e Transitivity: if there is an arrow from node a to node b and an
arrow from b to some node ¢, then there is an arrow from a to c.
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Example

e p(x,y) & = +yis even
Equivalence relation on N.

o r(z,y) & xg+y1 =21 + Yo

Equivalence relation on R x R.

e s(x,y) < x is parallel to (or coincides with) y

Equivalence relation on the set of all lines in the plane.

o t(x,y) < x has the same age as y

Equivalence relation on the set of all people.
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Proof

We prove p(x,y) < x + y is even is an equivalence relation on N.
1. p is clearly a binary relation on N.
2. p is reflexive on N: Take arbitrary z € N. We have to show x + z is even, i.e, 2z is even.
3. p is symmetric on N: Take x € N, y € N. We assume = + y is even. Then y + x is even.
4. p is transitive on N: Take arbitrary x € N, y € N, and z € N. We assume
(1) x +y is even A y + z is even.
We have to show (2) = + z is even. From (1), we have some a € N and b € N such that
3)2a=x+yAN2b=y+z.
Thus we know (2) because of

r+z=(@+y)+y+z2)—2y=2a+20—2y=2(a+b—1y).
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Class

Definition: The class of  with respect to R is the set of all elements
that are related to x by R:

z]p :={y € range(R) : (z,y) € R}.

e We may just write [x], if R is clear from the context.

e If R is an equivalence relation, we call [z]p the equivalence class of
x with respect to R.
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Visualization

o ¢

The equivalence class of a node x is the set of all nodes to which x is
(directly or indirectly) connected.
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Example

Let p € N X N such that p(x,y) < = + y is even. Then we have

l, = {0,2,4,6,8,10,...},
» = {1,3,5,7,9,11,...}
» = {0,2,4,6,8,10,...}
» = {1,3,5,7,9,11,.. .},
» = {0,2,4,6,8,10,...}

N =)

We see that [0], U [1], = N and [0], N [1], = 0.
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Example

Let ¢ € N x N such that ¢(z,y) < x mod 5 =y mod 5. We have

. = {0,5,10,15,20,25, ...},
. = {1,6,11,16,21,26, ...}
0= {2,7,12,17,22,27,.. .}
. = {3,8,13,18,23,28,.. .},
o = {4,9,14,19,24,29, .. .}
. = {0,5,10,15,20,25, ...}

O WO N = O

We see that |0}, U [1]4 U [2]4 U [3]4 U |4]; = N and that any two of
these sets are disjoint.
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Example
Let r C (R x R) X (R x R) such that r(z,y) < xg+ x1 = yo + y1.

lal, ={beR xR :ayg+a; =by+ b}
lal, ={beR xR :by=—by+ (ag+aj)}

la), denotes the line with slope —1 that goes through a:
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Example (Continued)

RxR= | [a

acR xR
The plane is partitioned into the set of all these lines:

We can determine a “canonical representative” for each such line:

RXR= U 0, 9)]r

yeR
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Class Properties

Proposition: Let R be an equivalence relation on S. |z]p contains z,
for every z € 5"

VS, R : R is equivalence relation on S = Vx € S :x € |x|R.

Let x and y be elements of S. The equivalence classes of x and y
with respect to R are either identical or disjoint:

VS, R : R is equivalence relation on S =
Vee S,yels:

Zlr=lrV [TlrNylr = 0.
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Quotient Set

Definition: The quotient set of S with respect to R is the set of all
classes induced on S by R:

S/R :={|x]p:x € S}.

By class properties, every set .S is partitioned by an equivalence relation
R into a set of non-empty and disjoint subsets (blocks).
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Partition

Definition: D is a partition or decomposition of .S, if its elements, the
blocks, are non-empty and disjoint and their union equals S:

D is partition of S &
Ve eD:xz#0)A
VreDyeD : z=yvVeny=0)A
UbD=>5.
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Example

e The set {A, B,C'} is a partition of N.

o The set {circle(r) : 7 € R>q} is a partition of R x R.

A = {r eN:ziseven},
B = {x € N:x > 2 Az is prime},
C' = {2z € N:zisodd A z is not prime}.

circle(r) ;== {p € R x R : pp*> + p;* = r*}.

Wolfgang Schreiner
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Equivalence Relations and Partitions

Proposition: Let R be an equivalence relation on S. The quotient set
of S with respect to R is a partition of S:

VS, R : R is equivalence relation on S =
S/R is partition of S.

Proof: see lecture notes.

Every equivalence relation defines a partition.
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Partitions and Equivalence Relations

Definition: The relation induced by a partition D is the set of all pairs
of elements of the same block of D:

r~py:deD . xedNyed.

Proposition: Let D be a partition of S. The relation induced by D is
an equivalence relation on S:

VS, D : D is partition of S =
~ p is equivalence relation on S.

Every partition defines an equivalence relation.
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Relationship between Constructions

Proposition: Let R be an equivalence relation on S. Then R is the
relation induced by the quotient set of S with respect to R:

VS, R : R is equivalence relation on S =

Let D be a partition of S. Then D is the quotient set of the relation
induced by D:

VS, D : D is partition of S =
D=5S/~p.

Each construction is the inverse of the other.
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Modular Arithmetic

Wolfgang Schreiner
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Motivation

e 7 has infinite size.

Infinitely many integers, no upper bound.

e Computer processors can only operate with finite subset.

On a 64 bit processor, only 2%* integers, upper bound 232.

e How deal with operation “overflows”?
220 4 23V = 9

Need domain for modeling processor arithmetic.

Wolfgang Schreiner
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Direct Approach
Definition: Let m € Z~gand Z;, . ={x € Z : 0 <z < m}.

+m P L X L — Ly
T +my = (r+y) mod m

—m L X L — Ly

—me = (—x) mod m

ki - Lo X Lo — Lo

T *km Yy = (x % y) mod m
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Example

Arithmetic modulo 3:

< AN O — N O — N O
N IO O O OO oo oo
N —H O AN 4 O AN —+H O A
— AN O 4 AN O 4 N O
OO O O O O O o o o
— | O N — O N — O
_
NN ©O 4 AN O 4 N O
|
NI O O O o o o o o
_
| O AN 4 O AN —H O AN
|
%%432101234
I N B
H O —A AN O 4 AN O —
MIAN O 4 AN O — N O
AN |[—A AN O A N O — AN O
— O 4 N O —~ N O —H
OO AN O 4 AN O 4 N O
— | AN O — N O — AN O
|
AN O — AN O — AN O —
|
MNMIAN O —w AN O — AN O
|
| — NN O — AN O = AN O
|
ﬂ432101234
I N B

Same pattern is repeated every 3 lines and every 3 columns.
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Observation

e Same pattern repeated every m lines and every m columns.

e Does not matter whether we compute with a or with
a—+m,
a—m,
a + im, for any 1 € Z.
e The elements of the set
alm ={a+im:1 € Z}

cannot be distinguished from a by arithmetic modulo m.

Can define modular arithmetic by equivalence classes.

Wolfgang Schreiner
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Modular Congruence

Definition: Two integers x and y are congruent modulo m if they
have the same remainder when divided by m:

r =y < (xr mod m) = (y mod m).

Proposition: =,;, is an equivalence relation, for every m € Z~.
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Residue Class

Definition: The residue class of a modulo m is the set of all integer
numbers that are congruent to a modulo m.

Proposition: [a|;, = {a +im : i € Z}, for every a € Z,m € Z~.

e =, defines the |a],, of our intuition.

e =,, also defines a suitable domain Z,,, for modular arithmetic.
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Modular Integer Numbers

Definition: The set of integers modulo m is the quotient set of Z with
respect to congruence modulo m:

Proposition: Z,, has m elements each of which is represented by a
natural number less than m, i.e.,

L = {0]m, [Ym, 2lm, - .. [m = 1m}.
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Congruence Properties

Proposition: Let @ and a’ be in the same residue class and also b and
' be in the same residue class. The result of any integer operation
involving a and b is in the same residue class as if the operation were
performed with a’ and b’ instead:

Vm € Zwp,a € Z,a' € Z,bcZ,V € Z -
alm = [@lm A [blm = [0 =
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Example
We have [7|5 = [2]5 and [9]5 = |4]5. Consequently,
7495 = 2+ 45 = [0]5 = [1]5.

When dealing with e.g.
3ls=4{...,—7,-2,3,8,13,...}

we need not take the “canonical” representative 3 but may also choose
—2 or 8 as the representative for computation.
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Modular Arithmetic

Let m € Z~( and define the selector function

T :=suchaeZ:x=lan.

THmy = [E+Zg]m

—m : Ly, — L

—m T = |—7 T|m

ko, - Luyy, X Lo, — Loy,
L *mlY = [E*Z?]m

Wolfgang Schreiner
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Equivalent Definition

+in ¢ Ly, X Loy, — Loy
alm +m [blm = [a +7 blm

—m : Lo — L

—mlalm = |~z am

oy, Luyy, X Loy, — Loy,
alm *m b)m = |a *7 blm

Because of congruence properties, functions are uniquely defined.

Wolfgang Schreiner
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Operational Interpretation

For performing arithmetic on some = € Z,,

1. we apply the selector function to determine a representative © € 7Z,
2. perform the corresponding operation in Z to yield the result r € Z,

3. and then determine the residue class |r],;, € Z,.

Because of congruence, choice of the representative does not matter.
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Example

We consider arithmetic in Zs5 = {[0]5, [1]5, [2]5, [3]5, [4]5}.

17]5 +5 [24]

5 = [2
7]5 =5 [10]5 = [2
=75 = 13]5
6]5 %5 [9]5 = [1s *5 [4]s = [4]5
[=3]5 %5 [6]5 = [2]5 %5 [1]5 = [2]5

Wolfgang Schreiner
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Another Construction of Number Domains

Wolfgang Schreiner
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Direct Definition of Integer Numbers

e Integer as a tuple (z,v).
e Difference between x and y denotes desired value.
e For unique definition, = or y is chosen 0.

e Constructor fuction I to build well-formed integers.

More elegant: integer as class of all (x,y) with same difference.

Wolfgang Schreiner
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Integer Domain

Definition: Set of integer numbers Z:
X~z Y e (20 TN YL = Yo +N 21

4, = (NXN)/ ~7

Partitioning of N x N by equivalence relation.

Wolfgang Schreiner
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Integer Arithmetic

Tr+Yy :
—T
r—1qy :

TxY

0:=[(On, On)); 1= [{1ry, On)); 2= [(2N, O))

T :=sucha e NxN:z=]|q
= (To +N Y0, T1 +N Y1)
T1,T0)]

To +N Y1, Yo +N 1))

(T
= [{
= [T

(

r <y <= T0+yY SNYyt+ T

Since ~7 is a congruence relation, functions are uniquely defined.

(To *N ¥o) +N (T1 *N ¥1), (To *N Y1) +N (T1 *N Yo))]

Wolfgang Schreiner
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More on

77777

T
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Isomorphism of Integer Constructions

Proposition: Let Z' denote the old construction of the integers and Z
denote the new one. The functioni: Z' — Z

i(x) = [
Is an isomorphism with respect to 0, 4+, —, *, <, I.e., 7 is bijective and
for all x € Z' and y € Z’, we have:

i(0z) = Oz,
i +zy) = i(z) +z1i(y),
i(—z x) = —zi(x),
i(x —py) = i(z) —zi(y),

Inverse Isomorphism: j : Z — Z/, j(z) = I(7)
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Rational Numbers

Definition: Set of rational numbers Q:

T ~Q Y & (20 *7, Y1 = Yo *7,71)
Q = (Z X Z#())/ ~Q

Arithmetic: see lecture notes.

Wolfgang Schreiner
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Isomorphism of Rational Constructions

Proposition: Let Q' denote the old construction of the integers and
Q denote the new one. The function i : Q) — Q

ix) = [z]

is an isomorphism with respect to 0, +, —, *,
and for all z € Q" and y € Q/, we have:

' <, i.e. iis bijective

i(0g) = Og,
i+ y) = ilz) +oily),
i(—g 33% = —q i),

r —gy) = ilz) —giy),

Inverse Isomorphism: j : Q — @/, j(x) :=

EE
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Summary

e Equivalence relations, classes, and partitions.

— Every equivalence class is a partition.

— Every partition is an equivalence class.
e Modular arithmetic and number domains.

— Partitioning of basic domain by equivalence relation.
— Computation with representative.

— Because of congruence properties, choice of representative does not matter.

Wolfgang Schreiner
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