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Overview

• Equivalence Relations and Partitions

•Modular Arithmetic

• Another Construction of Number Domains
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Equivalence Relations and Partitions
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Relation Properties

Definition: A binary relation R on a set S is reflexive, symmetric,
respectively transitive, if it satisfies the following properties:

R is reflexive on S :⇔
∀x ∈ S : 〈x, x〉 ∈ R;

R is symmetric on S :⇔
∀x, y : 〈x, y〉 ∈ R⇒ 〈y, x〉 ∈ R;

R is transitive on S :⇔
∀x, y, z : (〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ R)⇒ 〈x, z〉 ∈ R.

Example: equality is reflexive, symmetric and transitive on every set.
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Equivalence Relation

Definition: Let R be a binary relation on S. R is an equivalence
relation on S, if it is reflexive, symmetric, and transitive on S:

R is equivalence relation on S :⇔
R ⊆ S × S ∧
R is reflexive on S ∧
R is symmetric on S ∧
R is transitive on S.

Many (not all) properties of the equality relation on S.
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Visualization

• Reflexivity: every node has an arrow to itself,

• Symmetry: if there is an arrow from node a to node b, then there
is also an arrow from b to a,

• Transitivity: if there is an arrow from node a to node b and an
arrow from b to some node c, then there is an arrow from a to c.
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Example

• p(x, y) :⇔ x + y is even

Equivalence relation on N.

• r(x, y) :⇔ x0 + y1 = x1 + y0

Equivalence relation on R× R.

• s(x, y) :⇔ x is parallel to (or coincides with) y

Equivalence relation on the set of all lines in the plane.

• t(x, y) :⇔ x has the same age as y

Equivalence relation on the set of all people.
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Proof

We prove p(x, y) :⇔ x + y is even is an equivalence relation on N.

1. p is clearly a binary relation on N.

2. p is reflexive on N: Take arbitrary x ∈ N. We have to show x + x is even, i.e, 2x is even.

3. p is symmetric on N: Take x ∈ N, y ∈ N. We assume x + y is even. Then y + x is even.

4. p is transitive on N: Take arbitrary x ∈ N, y ∈ N, and z ∈ N. We assume

(1) x + y is even ∧ y + z is even.

We have to show (2) x + z is even. From (1), we have some a ∈ N and b ∈ N such that

(3) 2a = x + y ∧ 2b = y + z.

Thus we know (2) because of

x + z = (x + y) + (y + z)− 2y = 2a + 2b− 2y = 2(a + b− y).
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Class

Definition: The class of x with respect to R is the set of all elements
that are related to x by R:

[x]R := {y ∈ range(R) : 〈x, y〉 ∈ R}.

•We may just write [x], if R is clear from the context.

• If R is an equivalence relation, we call [x]R the equivalence class of
x with respect to R.
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Visualization

The equivalence class of a node x is the set of all nodes to which x is
(directly or indirectly) connected.
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Example

Let p ⊆ N× N such that p(x, y)⇔ x + y is even. Then we have

[0]p = {0, 2, 4, 6, 8, 10, . . .},
[1]p = {1, 3, 5, 7, 9, 11, . . .},
[2]p = {0, 2, 4, 6, 8, 10, . . .},
[3]p = {1, 3, 5, 7, 9, 11, . . .},
[4]p = {0, 2, 4, 6, 8, 10, . . .},
. . .

We see that [0]p ∪ [1]p = N and [0]p ∩ [1]p = ∅.
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Example

Let q ⊆ N× N such that q(x, y)⇔ x mod 5 = y mod 5. We have

[0]q = {0, 5, 10, 15, 20, 25, . . .},
[1]q = {1, 6, 11, 16, 21, 26, . . .},
[2]q = {2, 7, 12, 17, 22, 27, . . .},
[3]q = {3, 8, 13, 18, 23, 28, . . .},
[4]q = {4, 9, 14, 19, 24, 29, . . .},
[5]q = {0, 5, 10, 15, 20, 25, . . .},
. . .

We see that [0]q ∪ [1]q ∪ [2]q ∪ [3]q ∪ [4]q = N and that any two of
these sets are disjoint.
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Example

Let r ⊆ (R×R)× (R×R) such that r(x, y)⇔ x0 + x1 = y0 + y1.

[a]r = {b ∈ R× R : a0 + a1 = b0 + b1}
[a]r = {b ∈ R× R : b1 = −b0 + (a0 + a1)}

[a]r denotes the line with slope −1 that goes through a:
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Example (Continued)

R× R =
⋃

a∈R×R
[a]r

The plane is partitioned into the set of all these lines:

We can determine a “canonical representative” for each such line:

R× R =
⋃
y∈R

[〈0, y〉]r
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Class Properties

Proposition: Let R be an equivalence relation on S. [x]R contains x,
for every x ∈ S:

∀S,R : R is equivalence relation on S ⇒ ∀x ∈ S : x ∈ [x]R.

Let x and y be elements of S. The equivalence classes of x and y
with respect to R are either identical or disjoint:

∀S,R : R is equivalence relation on S ⇒
∀x ∈ S, y ∈ S :

[x]R = [y]R ∨ [x]R ∩ [y]R = ∅.
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Quotient Set

Definition: The quotient set of S with respect to R is the set of all
classes induced on S by R:

S/R := {[x]R : x ∈ S}.

By class properties, every set S is partitioned by an equivalence relation
R into a set of non-empty and disjoint subsets (blocks).
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Partition

Definition: D is a partition or decomposition of S, if its elements, the
blocks, are non-empty and disjoint and their union equals S:

D is partition of S :⇔
(∀x ∈ D : x 6= ∅) ∧
(∀x ∈ D, y ∈ D : x = y ∨ x ∩ y = ∅) ∧⋃
D = S.
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Example

• The set {A,B,C} is a partition of N.

A := {x ∈ N : x is even},
B := {x ∈ N : x > 2 ∧ x is prime},
C := {x ∈ N : x is odd ∧ x is not prime}.

• The set {circle(r) : r ∈ R≥0} is a partition of R× R.

circle(r) := {p ∈ R× R : p0
2 + p1

2 = r2}.
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Equivalence Relations and Partitions

Proposition: Let R be an equivalence relation on S. The quotient set
of S with respect to R is a partition of S:

∀S,R : R is equivalence relation on S ⇒
S/R is partition of S.

Proof: see lecture notes.

Every equivalence relation defines a partition.
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Partitions and Equivalence Relations

Definition: The relation induced by a partition D is the set of all pairs
of elements of the same block of D:

x ∼D y :⇔ ∃d ∈ D : x ∈ d ∧ y ∈ d.

Proposition: Let D be a partition of S. The relation induced by D is
an equivalence relation on S:

∀S,D : D is partition of S ⇒
∼D is equivalence relation on S.

Every partition defines an equivalence relation.
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Relationship between Constructions

Proposition: Let R be an equivalence relation on S. Then R is the
relation induced by the quotient set of S with respect to R:

∀S,R : R is equivalence relation on S ⇒
R = ∼S/R .

Let D be a partition of S. Then D is the quotient set of the relation
induced by D:

∀S,D : D is partition of S ⇒
D = S/ ∼D .

Each construction is the inverse of the other.
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Modular Arithmetic
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Motivation

• Z has infinite size.

Infinitely many integers, no upper bound.

• Computer processors can only operate with finite subset.

On a 64 bit processor, only 264 integers, upper bound 232.

• How deal with operation “overflows”?

220 ∗ 230 = ?

Need domain for modeling processor arithmetic.
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Direct Approach

Definition: Let m ∈ Z>0 and Zm := {x ∈ Z : 0 ≤ x < m}.

+m : Z× Z→ Zm

x +m y := (x + y) mod m

−m : Z× Z→ Zm

−mx := (−x) mod m

∗m : Z× Z→ Zm

x ∗m y := (x ∗ y) mod m
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Example

Arithmetic modulo 3:

+3 −4 −3 −2 −1 0 1 2 3 4

−4 1 2 0 1 2 0 1 2 0

−3 2 0 1 2 0 1 2 0 1

−2 0 1 2 0 1 2 0 1 2

−1 1 2 0 1 2 0 1 2 0

0 2 0 1 2 0 1 2 0 1

1 0 1 2 0 1 2 0 1 2

2 1 2 0 1 2 0 1 2 0

3 2 0 1 2 0 1 2 0 1

4 0 1 2 0 1 2 0 1 2

∗3 −4 −3 −2 −1 0 1 2 3 4

−4 1 0 2 1 0 2 1 0 2

−3 0 0 0 0 0 0 0 0 0

−2 2 0 1 2 0 1 2 0 1

−1 1 0 2 1 0 2 1 0 2

0 0 0 0 0 0 0 0 0 0

1 2 0 1 2 0 1 2 0 1

2 1 0 2 1 0 2 1 0 2

3 0 0 0 0 0 0 0 0 0

4 2 0 1 2 0 1 2 0 1

Same pattern is repeated every 3 lines and every 3 columns.
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Observation

• Same pattern repeated every m lines and every m columns.

•Does not matter whether we compute with a or with

a + m,

a−m,

a + im, for any i ∈ Z.

• The elements of the set

[a]m := {a + im : i ∈ Z}
cannot be distinguished from a by arithmetic modulo m.

Can define modular arithmetic by equivalence classes.
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Modular Congruence

Definition: Two integers x and y are congruent modulo m if they
have the same remainder when divided by m:

x ≡m y :⇔ (x mod m) = (y mod m).

Proposition: ≡m is an equivalence relation, for every m ∈ Z>0.
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Residue Class

Definition: The residue class of a modulo m is the set of all integer
numbers that are congruent to a modulo m.

[a]m := [a]≡m.

Proposition: [a]m = {a + im : i ∈ Z}, for every a ∈ Z,m ∈ Z>0.

• ≡m defines the [a]m of our intuition.

• ≡m also defines a suitable domain Zm for modular arithmetic.
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Modular Integer Numbers

Definition: The set of integers modulo m is the quotient set of Z with
respect to congruence modulo m:

Zm := Z/ ≡m .

Proposition: Zm has m elements each of which is represented by a
natural number less than m, i.e.,

Zm = {[0]m, [1]m, [2]m, . . . , [m− 1]m}.
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Congruence Properties

Proposition: Let a and a′ be in the same residue class and also b and
b′ be in the same residue class. The result of any integer operation
involving a and b is in the same residue class as if the operation were
performed with a’ and b’ instead:

∀m ∈ Z>0, a ∈ Z, a′ ∈ Z, b ∈ Z, b′ ∈ Z :
[a]m = [a′]m ∧ [b]m = [b′]m ⇒

[a + b]m = [a′ + b′]m ∧
[−a]m = [−a′]m ∧
[a ∗ b]m = [a′ ∗ b′]m.
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Example

We have [7]5 = [2]5 and [9]5 = [4]5. Consequently,

[7 + 9]5 = [2 + 4]5 = [6]5 = [1]5.

When dealing with e.g.

[3]5 = {. . . ,−7,−2, 3, 8, 13, . . .}

we need not take the “canonical” representative 3 but may also choose
−2 or 8 as the representative for computation.

Wolfgang Schreiner 30



More on Relations 1

Modular Arithmetic

Let m ∈ Z>0 and define the selector function

x := such a ∈ Z : x = [a]m.

+m : Zm × Zm→ Zm

x +m y := [x +
Z
y]m

−m : Zm→ Zm

−m x := [−
Z
x]m

∗m : Zm × Zm→ Zm

x ∗m y := [x ∗
Z
y]m

Wolfgang Schreiner 31



More on Relations 1

Equivalent Definition

+m : Zm × Zm→ Zm

[a]m +m [b]m := [a +
Z
b]m

−m : Zm→ Zm

−m[a]m := [−
Z
a]m

∗m : Zm × Zm→ Zm

[a]m ∗m [b]m := [a ∗
Z
b]m

Because of congruence properties, functions are uniquely defined.
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Operational Interpretation

For performing arithmetic on some x ∈ Zm,

1. we apply the selector function to determine a representative x ∈ Z,

2. perform the corresponding operation in Z to yield the result r ∈ Z,

3. and then determine the residue class [r]m ∈ Zm.

Because of congruence, choice of the representative does not matter.
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Example

We consider arithmetic in Z5 = {[0]5, [1]5, [2]5, [3]5, [4]5}.

[17]5 +5 [24]5 = [2]5 +5 [4]5 = [6]5 = [1]5
[7]5 −5 [10]5 = [2]5 −5 [0]5 = [3]5

[−7]5 = [3]5
[6]5 ∗5 [9]5 = [1]5 ∗5 [4]5 = [4]5

[−3]5 ∗5 [6]5 = [2]5 ∗5 [1]5 = [2]5
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Another Construction of Number Domains
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Direct Definition of Integer Numbers

• Integer as a tuple 〈x, y〉.
•Difference between x and y denotes desired value.

• For unique definition, x or y is chosen 0.

• Constructor fuction I to build well-formed integers.

More elegant: integer as class of all 〈x, y〉 with same difference.

Wolfgang Schreiner 36



More on Relations 1

Integer Domain

Definition: Set of integer numbers Z:

x ∼
Z
y :⇔ (x0 +

N
y1 = y0 +

N
x1)

Z := (N× N)/ ∼
Z

Partitioning of N× N by equivalence relation.
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Integer Arithmetic

0 := [〈0
N
, 0
N
〉]; 1 := [〈1

N
, 0
N
〉]; 2 := [〈2

N
, 0
N
〉]

x := such a ∈ N× N : x = [a]

x + y := [〈x0 +
N
y0, x1 +

N
y1〉]

−x := [〈x1, x0〉]
x− y := [〈x0 +

N
y1, y0 +

N
x1〉]

x ∗ y := [〈(x0 ∗N y0) +
N

(x1 ∗N y1), (x0 ∗N y1) +
N

(x1 ∗N y0)〉]
x ≤ y :⇔ x0 + y1 ≤N y0 + x1

Since ∼
Z

is a congruence relation, functions are uniquely defined.
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Example

5 = [〈7, 2〉] = {〈5, 0〉, 〈6, 1〉, 〈7, 2〉, 〈8, 3〉, . . .}
−6 = [〈3, 9〉] = {〈0, 6〉, 〈1, 7〉, 〈2, 8〉, 〈3, 9〉, . . .}

5 + (−6) = [〈7, 2〉] + [〈3, 9〉] = [〈10, 11〉] = [〈0, 1〉] = −1
5 ∗ (−6) = [〈7, 2〉] ∗ [〈3, 9〉] = [〈39, 69〉] = [〈0, 30〉] = −30
5 ≤ −6 ⇔ [〈7, 2〉] ≤ [〈3, 9〉]⇔ 16 ≤ 5⇔ F.
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Isomorphism of Integer Constructions

Proposition: Let Z’ denote the old construction of the integers and Z
denote the new one. The function i : Z′→ Z

i(x) := [x]

is an isomorphism with respect to 0,+,−, ∗, <, i.e., i is bijective and
for all x ∈ Z′ and y ∈ Z′, we have:

i(0Z′) = 0Z,

i(x +Z′ y) = i(x) +Z i(y),

i(−Z′ x) = −Z i(x),

i(x−Z′ y) = i(x)−Z i(y),

. . .

Inverse Isomorphism: j : Z→ Z
′, j(x) := I(x)
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Rational Numbers

Definition: Set of rational numbers Q:

x ∼
Q
y :⇔ (x0 ∗Z y1 = y0 ∗Z x1)

Q := (Z× Z 6=0)/ ∼
Q

Arithmetic: see lecture notes.
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Isomorphism of Rational Constructions

Proposition: Let Q’ denote the old construction of the integers and
Q denote the new one. The function i : Q′→ Q

i(x) := [x]

is an isomorphism with respect to 0,+,−, ∗,′ , <, i.e., i is bijective
and for all x ∈ Q′ and y ∈ Q′, we have:

i(0Q′) = 0Q,

i(x +Q′ y) = i(x) +Q i(y),

i(−Q′ x) = −Q i(x),

i(x−Q′ y) = i(x)−Q i(y),

. . .

Inverse Isomorphism: j : Q→ Q
′, j(x) := x0

x1
.
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Summary

• Equivalence relations, classes, and partitions.
– Every equivalence class is a partition.

– Every partition is an equivalence class.

•Modular arithmetic and number domains.
– Partitioning of basic domain by equivalence relation.

– Computation with representative.

– Because of congruence properties, choice of representative does not matter.
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