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Induction

Overview

e Inductive Definitions
e Induction Proofs
e Application: Verifications

e Induction on Sets
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Inductive Definitions
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Induction

Situation

e Recursive definitions on N:

*x N XN —N
rxy :=if y=0then 0 else x + (x * y~)

e Proposition:

x*x0 =0,
rxy = x+ (x*xy).

Recursive function definition implies pair of equations.
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Induction

ldea

Also converse is true:

e For each a * b, left hand side of only one equation “matches”:
— Either b =0 or b = ¢/ for some .

— Consequence of first Peano axiom.
e Equality b = ¢/ determines unique v.
q y
— b=y’ Nb=y") = yo = y1 for all yy and ;.

— Consequence of second Peano axiom.

Pair of equations uniquely determines a function.
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Induction

Alternative Definition Format

Definition by pair of equations ( “induction on second argument” ):

* N XN — N
x*x0:=0,
rx(y+1):=x+ (x*y).

By syntactic restriction of the equations, the function is well defined.
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Induction

Inductive Function Definitions

Definition: An inductive definition over N of an n-ary function f:

flxg,...,0,... 1) := Ty,
f(:l?o,...,:lji—l—l,...,ajn_l) =1

e { does not occur in base term Tj,.

e Every application of f in recursion term I} has form
f<T07° "7xi7'° -»Tn—l)

e Free variables of terms must occur in definiendum.

Induction runs over x;.
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Induction

Inductively Defined Function
Let Ag,..., A;_1, AH—I: ..., A,_1, B such that we have

forallxg € Ag,...,x;_1 € Aj_1,2; € N, Ti+1 € Ai+1, ooy Ipn—1 €
A, _1. Then the definition introduces the unique function

frAyx ... x A 1 xNxA 1 x...xA, 1—B

that satisfies
f(xo,...,O,...,CCn_l) =Ty A
f(:l?(),...,flfi—l—l,...,zn_l) =1
forallxg € Ag,...,x;_1 € Aj_1,z; €N, Ti+1 € AZ'+1, oo, Ip—1 €
An_l-
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Induction

Induction with Larger Decrements

Example: Fibonacci Numbers

fib(0) := 1,
fib(1) := 1,
fib(z + 2) := fib(x) + fib(z + 1)

fib=[1,1,2,3,5,8,13,21,.. ]

All base cases must be covered!
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Induction

Induction over Multiple Arguments

Examples:

£(0,0) == 0

flz+1,0) = 1+ f(,0)
flz,y+1) =1+ f(z,y).

0,

L+ f(x,0),
1+ f(0,9),
2+ f(x,y),

All possible base cases must be covered!
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Induction

Inductive Predicate Definitions

Definition: An inductive definition over N of an n-ary predicate p:

p(xg,...,0,...,xn_1) & B,
p(:ljo,...,xi—kl,...,iljn_l) &k

e p does not occur in base formula Fj,.

e Every application of p in recursion formula F} has form
p(To, -+ @4y T1)

e Free variables of terms must occur in definiendum.

Induction runs over x;.

Wolfgang Schreiner
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Induction

Inductively Defined Predicate

Take sets Ag, ..., A;_1, Ai+17 oA
The definition introduces the predicate

pC Ay X ... x A 1 XNXA 1 X...xA,1

that satisfies
p(xo,...,0,...,2p_1) & T} A
plxo,...,z;+1,...,0p_1) < T}
forall zg € Ay, ..., x; 1€ A;_1,x; €Ny € Ajuq, ..., 21 €
A, 1.
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Induction

Example

We can introduce the predicate iseven(z) <= 2|x also as

or as

iseven(0) < T,
iseven(x + 1) ;< —iseven(x).

iseven(0) < T,
iseven(1) < F,
iseven(x + 2) :< iseven(x).

iseven = [T, F, T, F,T,...]

Wolfgang Schreiner
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Induction Proofs

Wolfgang Schreiner
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Induction

Mathematical Induction

Third Peano Axiom:
(Flx —0)A(Ve eN: F=Flrz«—ax+1]) =VreN:F

Proposition: In order to prove

Ve e N: F,
it suffices to prove
1. Flz «0],
2.(VreN: F = Flx «— x +1)).

Wolfgang Schreiner
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Induction

Typical Format

We want to prove
Ve € N: F.

1. Induction Base: We show F|x « 0.
2. Induction Hypothesis: We take arbitrary x € N and assume F'.

3. Induction Step: We show F'lz «— x + 1].

Proof strategy for formulas that are universally quantified over N.
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Induction

Example

We prove by induction on n
VneN:n<2"

The induction base holds because 0 < 1 = 2V.
Now we take arbitrary n € N and assume (induction hypothesis)

(1) n < 2",
We have to show (induction step)
(2) n+1 < 2",

By (1) we have
B)n+1<2"+1

and therefore

which implies (2).

Wolfgang Schreiner
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Induction

Example

We prove by induction on n
vn € N:3|n’ +2n

The induction base holds because 3|0 and 0 = 0% + 2 % 0.

We take arbitrary n € N and assume
(1) 3|n° + 2n.

We have to show

(2) 3|(n +1)° +2(n +1).

Wolfgang Schreiner
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Example (Continued)

By (1) and definition of | we have some a € N such that

(3) 3a = n’ + 2n.

We therefore have
(n+1)°+2(n+1)
(n®+3n%+3n+1)+ (2n +2)
(n +2n) + (3n® + 3n + 3)
3a+3(n*+n+1)
3(a+n*+n+1)

I
~—~
w
~—~

which implies (2) by definition of |.

Wolfgang Schreiner
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Induction

Example

We prove by induction on n

. . (n+1)n
VnEN.Zz- 5

1<i<n

The induction base holds because

1<:<0

We take arbitrary n € N and assume

We have to show

Wolfgang Schreiner
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Induction

Example (Continued)

We have
Zlgz‘gnﬂi = (definition )

Zl<i§1ni + (n +1) (1)

+1)
(n+1)n+2(n+1)
(n+1)( 2)

(n+1)((n+1) )
2

which implies (2).
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Induction

Example

We can prove by induction the “computing laws” in N:

We prove
VieNyeNzeNx+(y+2)=(r+y) + =z

We take arbitrary x € N and y € N and prove by induction on z.
VzeN:z+(y+z)=(x+y) +=2

We have to show
r+(y+0)=(x+y)+0.

See lecture notes.

Wolfgang Schreiner
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Complete Induction
Generalization of the induction principle:

Proposition: In order to prove

Vre N: F

it suffices to prove

VxeN:(Vn<zx:Flx—n])=F).

1. Induction Hypothesis. We take arbitrary z € N and assume
Vn <z : Flx < n).

2. Induction Step: We show F'.

Wolfgang Schreiner
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Induction

Example

We prove that every natural number greater than 1 can be factorized into a sequence of prime
numbers, i.e.,
VneN:in>1=
FkeN, f: Ny = N:in=]];.. f(i) A\Vi € Ny : f(i) is prime).

We proceed by complete induction over n.
We take arbitrary n € N and assume

(HVm<n:m>1=
(FkeN, f: Ny — N:m = [[jc;op. f(i) AVi € Np @ f(i) is prime).

We have to show

n>1=
FkeN, f: Ny = N:in=]];.. f(i) AVi €Ny : f(i) is prime).

See lecture notes.
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Induction

Induction over Term Values
Proposition: In order to prove F', it suffices to prove
VMyeN:y=T=F)
where 1y does not occur freely in T or F'.
Consequence: in order to prove
Vag, ..., Tp—1: F
we may prove
Vxg,...,op_1,y EN:y=T = F)

where T' is a term with free variables xq, ..., T,_1.

We introduce a variable over N to proceed by induction.

Wolfgang Schreiner
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Application: Verification

Wolfgang Schreiner
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Induction

Specifications

Definition: For every function f : A — B, a relation I C A and a
relation O C A x B, we call the formula

Vo : I(z) = O(x, f(x))

a specification of f with input condition I and output condition O.

If the formula is true, then f implements the specification.

We want to verify whether a function implements a specification.
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Induction

Example

Exponentiation function:

V= L,

n+1

T = x .

We want to verify that the function implements the specification

Ve,n € N:z" = H T.
1<i<n
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Induction

Example (Continued)

Take arbitrary x; we proceed by induction over n.
We have 2" = 1 = []1<i<oz and thus the induction base holds.

We take arbitrary n € N and assume

1<i<n
We have to prove
22" = ] =
1<i<n+1
We know
2"t = (definition exponentiation)
rxaz" = (1)
x| ]i<ic, v = (definition]])
[licicnn @

which implies (2).

Wolfgang Schreiner
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Induction

Purpose of Verification

e Given: input condition I and output condition O.

— Abstract definition of a function ( “what is to be done”).
— May be inconstructive (does not immediately yield an algorithm).

— Even if constructive, the corresponding algorithm may be too inefficient.
e Given: definition of a function f.

— Concrete definition of a function (“how is it done”).

— Intended to yield (efficient) algorithm.

e Verification: show that f implements corresponding specification.

Definition of such a function and its verification needs more knowledge;
more knowledge gives better algorithms.
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Example: Greatest Common Divisor

ged(z,y) :=such z € N z|lx Az|y A (Vw : (w|x A wly) = w < 2).

fun ged(x, y) =
let(m = if(=(x, NO), y, x):
such(z in nat(NO, m):
and(divides(z, x), divides(z, y),
forall(w in nat(+N(z, N1), m):
or(not(divides(w, x)), not(divides(w, y))))),
z));

Extremely inefficient way to compute the greatest common divisor.

Wolfgang Schreiner
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Induction

Specification
We can show that
VzeN:Jw:wl0Aw >z
i.e., gcd(0,0) is undefined, but that, if z £ 0V y # 0,
dzeN:zlx Azly A (Vw : (w|lx Awly) = w < 2).
i.e., ged(z, y) is well defined.

Thus our problem is to find some f that implements the specification
VmeNneN:(m#A0Vn#0)=f(m,n)=gedim,n).

in a more efficient way than gcd does.
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Induction

Euclid’'s Algorithm

New knowledge:

(0) Vm € Nyn < m : ged(m,n) = ged(m — n,n).

Idea for recursive function definition (termination term m + n):

Euclid(m,n) =
if m =0 thenn
else if n =0 then m
else if n < m then Euclid(m — n,n)
else Euclid(m,n —m).

Wolfgang Schreiner
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Induction

Verification

VmeN,neN: (m#0Vn+#0)= Euclidim,n) = ged(m,n).

Proof by complete induction on term m + n.

We take arbitrary m € N and n € N and assume

() VeeNyeN:z+y<m+n=
(x 0V y #0) = Euclid(z,y) = ged(z, y).

We have to prove
(2) (m # 0V n #0) = Euclid(m,n) = ged(m, n).

We assume (3) (m # 0V n # 0) and prove (4) Euclid(m,n)
ged(m, n).

Wolfgang Schreiner
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Verification (Continued)

By function definition, we have four cases:

om = 0.
By (3), we have n # 0 and, by definition of gcd and Euclid,

ged(m, n) = n = Euclid(m, n)
which implies (4).
em #0An=0.
We have, by definition of gcd and Euclid,

ged(m, n) = m = Euclid(m, n)

which implies (4).

Wolfgang Schreiner
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Induction

Verification (Continued)

em#0An#0An < m.
We know
ged(m, n) = (0)
ged(m —n,n) = (1)
Euclid(m — n,n) = (definition Euclid)
Euclid(m, n)
which implies (4).
em#0An#0An Lm.
The proof is analogous to the previous case.

Wolfgang Schreiner
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Improvements

More knowledge:

(0") Vm € N,n # 0 : ged(m, n) = ged(m, m mod n)

Function definition (with recursion term m + n):

Euclid’ (m,n) :=
if m =0 thenn
else if n =0 then m
else if n < m then Euclid'(m mod n,n)
else Euclid’(m, n mod m)

Wolfgang Schreiner
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Logic Evaluator

fun Euclid(m: N, n: N) recursive +(m, n) =
if(=(m, 0), n,
if(=(n, 0), m,
if (<=(m, n), Euclid(m, -(n, m)),
Euclid(-(m, n), n))));
fun Fuclid’(m: N, n: N) recursive +(m, n) =
if(=(m, 0), n,
if(=(n, 0), m,
if (<=(m, n), Euclid’ (m, modN(n, m)),
Fuclid’ (modN(m, n), n))));

Much faster than gcd!

Wolfgang Schreiner
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Induction

Induction on Sets

Wolfgang Schreiner

38




Induction

Inductive Set Definition

Definition: An inductive definition of a set S is a collection of formulas
(Y1, ..., 2m;, Y1 €5,...,Yn €S:
fl(ilfl,.. '7:Cm]7y17°° '7yn1> S S)

)

.
(Yo1, ..., Zm, Y1 €S,...,Yn. €S :
fC(xla R 7xmcay17 R 7ync) S S)
where we call the function constants f1, ..., f. the constructors of S.
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Induction

Defined Set

S'is the smallest set on which the conjunction of these formulas holds,

.e., every element of S is described by a constructor term

fZ<T17 e 752—1777,7;, Sl, c e ey Snz)

for some terms 17,...,T,, 51,...,5n, where the 57,..

also such constructor terms.

., Op, are

Wolfgang Schreiner
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Induction

Example

The set N is inductively defined by

0 e N,
VieN:z' € N

with constructors 0 and .

Every element of N is of the form
0!
e.g. the number 4 in N is denoted by 0.

Wolfgang Schreiner
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Induction

Example

For every set T, the set List(T") is defined by

nil € List(T),
Ve € Tl € List(T) : cons(e, ) € List(T).

with constructors nil and cons.

Every element of List(7') is of the form
cons(eq, . . ., cons(ey,_1,nil)),

e.g. the list |2, 3] in List(N) is denoted by cons(2, cons(3, nil)).

Wolfgang Schreiner
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Induction

Example

For every set T, the set Tree(T') is defined by

empty € Tree(T),

Ve € T\l € Tree(T),r € List(T) : node(e, l,r) € Tree(T).
with constructors empty and node.
Every element of Tree(T") is of the form

node(ng, node(niy,...),node(nsy,...)),

1
2 5
3 4

node(1, node(2, node(3, empty, empty), node(4, empty, empty)), node(5, empty, empty))

Wolfgang Schreiner
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Term

The set Term is defined by

0 € Term,

1 € Term,

Vo € Term : —x € Term,

Vo € Term,y € Term : x + y € Term,
Ve € Term,y € Term : x xy € Term

with constructors 0,1, —, +, x.

An element of Term is 1+ (14 0) * 1.

Wolfgang Schreiner
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Formula

The set Formula is defined by

T € Formula

Va € Formula : not(x) € Formula,

Vx € Formula,y € Formula : and(z,y) € Formula,
Vx € Variable,y € Formula : forall(z, y) € Formula

with constructors “T", “not”, “and”, “forall”.

An element of Formula is forall(X, and (T, or(T, F))) (assuming X &€
Variable).

Wolfgang Schreiner 45




Induction

Term Algebra

An inductively defined set is a term algebra if we have for every con-
structor f of this set

Va,y: f(z) = fly) =z =y

l.e., different arguments are mapped to different results.

Furthermore, for all constructors f and g

Va,y: f(z) # g9(y)

I.e., different constructors yield different results.
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Induction

Consequence

e Every element of a term algebra is denoted by one and only one
constructor term

f’L(T17 e ,Tmi, Sl, e e ey Snz)

for some terms 17, ..., T},., 51, ..., 5p, where the 51,...,.5),, are
also constructor terms.

e One to one correspondence between terms and set elements.

We may define functions and predicates in term algebras inductively .
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Induction

Example

Take the set List(T") defined in the previous example and assume that

it is a term algebra. We define the length of a list as
length : List(T) — N
length(nil) := 0
length(cons(e, 1)) := 1 + length(l).

Then we have length(cons(1, cons(2,nil))) = 2.

Wolfgang Schreiner
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Induction

Example

Take the set Term defined in the previous example and assume that
it is a term algebra. We define the value of a term as

value : Term — N

value(0) := ON

value(1) :=

value(— w) = —Nvalue( )

value(x + y) := value(x) 4+ value(y)
value(zx * y) := value(x) xy value(y)

Then we have value(1 + (14 0) % 1) = 2.
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Generalized Induction Principle

We want to prove
VeeS:F.

|dea: exery element x in .S is denoted by some term

fi(xlv s 7Imiay17 s 7yn@>

Let the induction run over the structure of every such term:
e assume that /7 holds for every “S-component” y; of x, and

e show that F' is propagated to x itself.

Wolfgang Schreiner
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Structural Induction

Proposition: In order to prove a property
VeeS§: F

for an inductively defined set .S, it suffices to prove
Vay,...,Tm; Y1 €5,...,yn; €5
(Flz =y A ... ANFlz = yn]) =
F[:C = fi(ajla ce 73377%‘7 Y1, - - - 7ynz)]
for every constructor f; of S.

Wolfgang Schreiner
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Induction

Example

Take the set List(7") defined inductively as
nil € List(T),
Ve € Tl € List(T) : cons(e, 1) € List(T).
We define
append : List(T") x List(T") — List(7T)

append(nil, y) ;= y
append(cons(e, x),y) := cons(e, append(z, 1))

and claim that the following holds:
Va € List(T),y € List(T) :

length(append(z,y)) = length(x) + length(y).

Wolfgang Schreiner
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Example (Continued)

We proceed by structural induction on x:

Case x = nil: We have to show
Vy € List(T) :
length(append(nil, y)) = length(nil) + length(y).
Take arbitrary y € List(T"). We have
length(append(nil, )) = (definition append)
length(y) =

0 + length(y) = (definition length)
length(nil) + length(y).

Wolfgang Schreiner
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Example (Continued)

Case x = cons(e, l): Take arbitrary e € T and [ € List(T)).
We assume (induction hypothesis)
Vy € List(T) :
length(append(l,y)) = length(l) 4 length(y)
and have to show

Vy € List(T) :

length(append(cons(e, l),y)) = length(cons(e, 1)) + length(y).

Wolfgang Schreiner
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Example (Continued)

Take arbitrary y € List(T). We have

length(append(cons(e, l),y)) = (definition append)
length(cons(e, append(l,y))) = (definition length)
1 + length(append(l,y)) = (induction hypothesis)
1 + (length(l) + length(y))
(1 4 length(l)) 4 length(y) = (definition length)
length(cons(e, 1)) + length(y).
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Summary

e Inductive definitions on N.

— Single induction parameter.
— Multiple base cases.

— Multiple induction parameters.
e Induction proofs on N.

— Mathematical induction.
— Complete induction.

— Induction over term values.
e Induction on sets.

— Inductive set definitions.

— Inductive function/predicate definitions on term algebras.

— Induction proofs on inductively defined sets.
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