Induction

Induction

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University, Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at
http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner

RISC-Linz

Induction

Overview

e Inductive Definitions
e Induction Proofs
e Application: Verifications

e Induction on Sets

Wolfgang Schreiner

Induction

Inductive Definitions

Wolfgang Schreiner

Induction

Situation

e Recursive definitions on N:

*x N XN —N
rxy :=if y=0then 0 else x + (x * y~)

e Proposition:

x*x0 =0,
rxy = x+ (x*xy).

Recursive function definition implies pair of equations.

Wolfgang Schreiner

Induction

ldea

Also converse is true:

e For each a * b, left hand side of only one equation “matches”:
— Either b =0 or b = ¢/ for some .

— Consequence of first Peano axiom.
e Equality b = ¢/ determines unique v.
q y
— b=y’ Nb=y") = yo = y1 for all yy and ;.

— Consequence of second Peano axiom.

Pair of equations uniquely determines a function.

Wolfgang Schreiner

Induction

Alternative Definition Format

Definition by pair of equations (“induction on second argument”):

* N XN — N
x*x0:=0,
rx(y+1):=x+ (x*y).

By syntactic restriction of the equations, the function is well defined.

Wolfgang Schreiner 5

Induction

Inductive Function Definitions

Definition: An inductive definition over N of an n-ary function f:

flxg,...,0,... 1) := Ty,
f(:l?o,...,:lji—l—l,...,ajn_l) =1

e { does not occur in base term Tj,.

e Every application of f in recursion term I} has form
f<T07° "7xi7'° -»Tn—l)

e Free variables of terms must occur in definiendum.

Induction runs over x;.

Wolfgang Schreiner

Induction

Inductively Defined Function
Let Ag,..., A;_1, AH—I: ..., A,_1, B such that we have

forallxg € Ag,...,x;_1 € Aj_1,2; € N, Ti+1 € Ai+1, ooy Ipn—1 €
A, _1. Then the definition introduces the unique function

frAyx ... x A 1 xNxA 1 x...xA, 1—B

that satisfies
f(xo,...,O,...,CCn_l) =Ty A
f(:l?(),...,flfi—l—l,...,zn_l) =1
forallxg € Ag,...,x;_1 € Aj_1,z; €N, Ti+1 € AZ'+1, oo, Ip—1 €
An_l-

Wolfgang Schreiner I

Induction

Induction with Larger Decrements

Example: Fibonacci Numbers

fib(0) := 1,
fib(1) := 1,
fib(z + 2) := fib(x) + fib(z + 1)

fib=[1,1,2,3,5,8,13,21,..]

All base cases must be covered!

Wolfgang Schreiner

Induction

Induction over Multiple Arguments

Examples:

£(0,0) == 0

flz+1,0) = 1+ f(,0)
flz,y+1) =1+ f(z,y).

0,

L+ f(x,0),
1+ f(0,9),
2+ f(x,y),

All possible base cases must be covered!

Wolfgang Schreiner

Induction

Inductive Predicate Definitions

Definition: An inductive definition over N of an n-ary predicate p:

p(xg,...,0,...,xn_1) & B,
p(:ljo,...,xi—kl,...,iljn_l) &k

e p does not occur in base formula Fj,.

e Every application of p in recursion formula F} has form
p(To, -+ @4y T1)

e Free variables of terms must occur in definiendum.

Induction runs over x;.

Wolfgang Schreiner

10

Induction

Inductively Defined Predicate

Take sets Ag, ..., A;_1, Ai+17 oA
The definition introduces the predicate

pC Ay X ... x A 1 XNXA 1 X...xA,1

that satisfies
p(xo,...,0,...,2p_1) & T} A
plxo,...,z;+1,...,0p_1) < T}
forall zg € Ay, ..., x; 1€ A;_1,x; €Ny € Ajuq, ..., 21 €
A, 1.

Wolfgang Schreiner 11

Induction

Example

We can introduce the predicate iseven(z) <= 2|x also as

or as

iseven(0) < T,
iseven(x + 1) ;< —iseven(x).

iseven(0) < T,
iseven(1) < F,
iseven(x + 2) :< iseven(x).

iseven = [T, F, T, F,T,...]

Wolfgang Schreiner

12

Induction

Induction Proofs

Wolfgang Schreiner

13

Induction

Mathematical Induction

Third Peano Axiom:
(Flx —0)A(Ve eN: F=Flrz«—ax+1]) =VreN:F

Proposition: In order to prove

Ve e N: F,
it suffices to prove
1. Flz «0],
2.(VreN: F = Flx «— x +1)).

Wolfgang Schreiner

14

Induction

Typical Format

We want to prove
Ve € N: F.

1. Induction Base: We show F|x « 0.
2. Induction Hypothesis: We take arbitrary x € N and assume F'.

3. Induction Step: We show F'lz «— x + 1].

Proof strategy for formulas that are universally quantified over N.

Wolfgang Schreiner

Induction

Example

We prove by induction on n
VneN:n<2"

The induction base holds because 0 < 1 = 2V.
Now we take arbitrary n € N and assume (induction hypothesis)

(1) n < 2",
We have to show (induction step)
(2) n+1 < 2",

By (1) we have
B)n+1<2"+1

and therefore

which implies (2).

Wolfgang Schreiner

16

Induction

Example

We prove by induction on n
vn € N:3|n’ +2n

The induction base holds because 3|0 and 0 = 0% + 2 % 0.

We take arbitrary n € N and assume
(1) 3|n° + 2n.

We have to show

(2) 3|(n +1)° +2(n +1).

Wolfgang Schreiner

17

Induction

Example (Continued)

By (1) and definition of | we have some a € N such that

(3) 3a = n’ + 2n.

We therefore have
(n+1)°+2(n+1)
(n®+3n%+3n+1)+ (2n +2)
(n +2n) + (3n® + 3n + 3)
3a+3(n*+n+1)
3(a+n*+n+1)

I
~—~
w
~—~

which implies (2) by definition of |.

Wolfgang Schreiner

18

Induction

Example

We prove by induction on n

. . (n+1)n
VnEN.Zz- 5

1<i<n

The induction base holds because

1<:<0

We take arbitrary n € N and assume

We have to show

Wolfgang Schreiner

19

Induction

Example (Continued)

We have
Zlgz‘gnﬂi = (definition)

Zl<i§1ni + (n +1) (1)

+1)
(n+1)n+2(n+1)
(n+1)(2)

(n+1)((n+1))
2

which implies (2).

Wolfgang Schreiner

Induction

Example

We can prove by induction the “computing laws” in N:

We prove
VieNyeNzeNx+(y+2)=(r+y) + =z

We take arbitrary x € N and y € N and prove by induction on z.
VzeN:z+(y+z)=(x+y) +=2

We have to show
r+(y+0)=(x+y)+0.

See lecture notes.

Wolfgang Schreiner

21

Induction

Complete Induction
Generalization of the induction principle:

Proposition: In order to prove

Vre N: F

it suffices to prove

VxeN:(Vn<zx:Flx—n])=F).

1. Induction Hypothesis. We take arbitrary z € N and assume
Vn <z : Flx < n).

2. Induction Step: We show F'.

Wolfgang Schreiner

22

Induction

Example

We prove that every natural number greater than 1 can be factorized into a sequence of prime
numbers, i.e.,
VneN:in>1=
FkeN, f: Ny = N:in=]];.. f(i) A\Vi € Ny : f(i) is prime).

We proceed by complete induction over n.
We take arbitrary n € N and assume

(HVm<n:m>1=
(FkeN, f: Ny — N:m = [[jc;op. f(i) AVi € Np @ f(i) is prime).

We have to show

n>1=
FkeN, f: Ny = N:in=]];.. f(i) AVi €Ny : f(i) is prime).

See lecture notes.

Wolfgang Schreiner 23

Induction

Induction over Term Values
Proposition: In order to prove F', it suffices to prove
VMyeN:y=T=F)
where 1y does not occur freely in T or F'.
Consequence: in order to prove
Vag, ..., Tp—1: F
we may prove
Vxg,...,op_1,y EN:y=T = F)

where T' is a term with free variables xq, ..., T,_1.

We introduce a variable over N to proceed by induction.

Wolfgang Schreiner

24

Induction

Application: Verification

Wolfgang Schreiner

25

Induction

Specifications

Definition: For every function f : A — B, a relation I C A and a
relation O C A x B, we call the formula

Vo : I(z) = O(x, f(x))

a specification of f with input condition I and output condition O.

If the formula is true, then f implements the specification.

We want to verify whether a function implements a specification.

Wolfgang Schreiner 26

Induction

Example

Exponentiation function:

V= L,

n+1

T = x .

We want to verify that the function implements the specification

Ve,n € N:z" = H T.
1<i<n

Wolfgang Schreiner

Induction

Example (Continued)

Take arbitrary x; we proceed by induction over n.
We have 2" = 1 = []1<i<oz and thus the induction base holds.

We take arbitrary n € N and assume

1<i<n
We have to prove
22" =] =
1<i<n+1
We know
2"t = (definition exponentiation)
rxaz" = (1)
x|]i<ic, v = (definition]])
[licicnn @

which implies (2).

Wolfgang Schreiner

28

Induction

Purpose of Verification

e Given: input condition I and output condition O.

— Abstract definition of a function (“what is to be done”).
— May be inconstructive (does not immediately yield an algorithm).

— Even if constructive, the corresponding algorithm may be too inefficient.
e Given: definition of a function f.

— Concrete definition of a function (“how is it done”).

— Intended to yield (efficient) algorithm.

e Verification: show that f implements corresponding specification.

Definition of such a function and its verification needs more knowledge;
more knowledge gives better algorithms.

Wolfgang Schreiner 29

Induction

Example: Greatest Common Divisor

ged(z,y) :=such z € N z|lx Az|y A (Vw : (w|x A wly) = w < 2).

fun ged(x, y) =
let(m = if(=(x, NO), y, x):
such(z in nat(NO, m):
and(divides(z, x), divides(z, y),
forall(w in nat(+N(z, N1), m):
or(not(divides(w, x)), not(divides(w, y))))),
z));

Extremely inefficient way to compute the greatest common divisor.

Wolfgang Schreiner

30

Induction

Specification
We can show that
VzeN:Jw:wl0Aw >z
i.e., gcd(0,0) is undefined, but that, if z £ 0V y # 0,
dzeN:zlx Azly A (Vw : (w|lx Awly) = w < 2).
i.e., ged(z, y) is well defined.

Thus our problem is to find some f that implements the specification
VmeNneN:(m#A0Vn#0)=f(m,n)=gedim,n).

in a more efficient way than gcd does.

Wolfgang Schreiner 31

Induction

Euclid’'s Algorithm

New knowledge:

(0) Vm € Nyn < m : ged(m,n) = ged(m — n,n).

Idea for recursive function definition (termination term m + n):

Euclid(m,n) =
if m =0 thenn
else if n =0 then m
else if n < m then Euclid(m — n,n)
else Euclid(m,n —m).

Wolfgang Schreiner

32

Induction

Verification

VmeN,neN: (m#0Vn+#0)= Euclidim,n) = ged(m,n).

Proof by complete induction on term m + n.

We take arbitrary m € N and n € N and assume

() VeeNyeN:z+y<m+n=
(x 0V y #0) = Euclid(z,y) = ged(z, y).

We have to prove
(2) (m # 0V n #0) = Euclid(m,n) = ged(m, n).

We assume (3) (m # 0V n # 0) and prove (4) Euclid(m,n)
ged(m, n).

Wolfgang Schreiner

33

Induction

Verification (Continued)

By function definition, we have four cases:

om = 0.
By (3), we have n # 0 and, by definition of gcd and Euclid,

ged(m, n) = n = Euclid(m, n)
which implies (4).
em #0An=0.
We have, by definition of gcd and Euclid,

ged(m, n) = m = Euclid(m, n)

which implies (4).

Wolfgang Schreiner

34

Induction

Verification (Continued)

em#0An#0An < m.
We know
ged(m, n) = (0)
ged(m —n,n) = (1)
Euclid(m — n,n) = (definition Euclid)
Euclid(m, n)
which implies (4).
em#0An#0An Lm.
The proof is analogous to the previous case.

Wolfgang Schreiner

35

Induction

Improvements

More knowledge:

(0") Vm € N,n # 0 : ged(m, n) = ged(m, m mod n)

Function definition (with recursion term m + n):

Euclid’ (m,n) :=
if m =0 thenn
else if n =0 then m
else if n < m then Euclid'(m mod n,n)
else Euclid’(m, n mod m)

Wolfgang Schreiner

36

Induction

Logic Evaluator

fun Euclid(m: N, n: N) recursive +(m, n) =
if(=(m, 0), n,
if(=(n, 0), m,
if (<=(m, n), Euclid(m, -(n, m)),
Euclid(-(m, n), n))));
fun Fuclid’(m: N, n: N) recursive +(m, n) =
if(=(m, 0), n,
if(=(n, 0), m,
if (<=(m, n), Euclid’ (m, modN(n, m)),
Fuclid’ (modN(m, n), n))));

Much faster than gcd!

Wolfgang Schreiner

37

Induction

Induction on Sets

Wolfgang Schreiner

38

Induction

Inductive Set Definition

Definition: An inductive definition of a set S is a collection of formulas
(Y1, ..., 2m;, Y1 €5,...,Yn €S:
fl(ilfl,.. '7:Cm]7y17°° '7yn1> S S)

)

.
(Yo1, ..., Zm, Y1 €S,...,Yn. €S :
fC(xla R 7xmcay17 R 7ync) S S)
where we call the function constants f1, ..., f. the constructors of S.

Wolfgang Schreiner 39

Induction

Defined Set

S'is the smallest set on which the conjunction of these formulas holds,

.e., every element of S is described by a constructor term

fZ<T17 e 752—1777,7;, Sl, c e ey Snz)

for some terms 17,...,T,, 51,...,5n, where the 57,..

also such constructor terms.

., Op, are

Wolfgang Schreiner

40

Induction

Example

The set N is inductively defined by

0 e N,
VieN:z' € N

with constructors 0 and .

Every element of N is of the form
0!
e.g. the number 4 in N is denoted by 0.

Wolfgang Schreiner

41

Induction

Example

For every set T, the set List(T") is defined by

nil € List(T),
Ve € Tl € List(T) : cons(e,) € List(T).

with constructors nil and cons.

Every element of List(7') is of the form
cons(eq, . . ., cons(ey,_1,nil)),

e.g. the list |2, 3] in List(N) is denoted by cons(2, cons(3, nil)).

Wolfgang Schreiner

42

Induction

Example

For every set T, the set Tree(T') is defined by

empty € Tree(T),

Ve € T\l € Tree(T),r € List(T) : node(e, l,r) € Tree(T).
with constructors empty and node.
Every element of Tree(T") is of the form

node(ng, node(niy,...),node(nsy,...)),

1
2 5
3 4

node(1, node(2, node(3, empty, empty), node(4, empty, empty)), node(5, empty, empty))

Wolfgang Schreiner

43

Induction

Term

The set Term is defined by

0 € Term,

1 € Term,

Vo € Term : —x € Term,

Vo € Term,y € Term : x + y € Term,
Ve € Term,y € Term : x xy € Term

with constructors 0,1, —, +, x.

An element of Term is 1+ (14 0) * 1.

Wolfgang Schreiner

44

Induction

Formula

The set Formula is defined by

T € Formula

Va € Formula : not(x) € Formula,

Vx € Formula,y € Formula : and(z,y) € Formula,
Vx € Variable,y € Formula : forall(z, y) € Formula

with constructors “T", “not”, “and”, “forall”.

An element of Formula is forall(X, and (T, or(T, F))) (assuming X &€
Variable).

Wolfgang Schreiner 45

Induction

Term Algebra

An inductively defined set is a term algebra if we have for every con-
structor f of this set

Va,y: f(z) = fly) =z =y

l.e., different arguments are mapped to different results.

Furthermore, for all constructors f and g

Va,y: f(z) # g9(y)

I.e., different constructors yield different results.

Wolfgang Schreiner 46

Induction

Consequence

e Every element of a term algebra is denoted by one and only one
constructor term

f’L(T17 e ,Tmi, Sl, e e ey Snz)

for some terms 17, ..., T},., 51, ..., 5p, where the 51,...,.5),, are
also constructor terms.

e One to one correspondence between terms and set elements.

We may define functions and predicates in term algebras inductively .

Wolfgang Schreiner 47

Induction

Example

Take the set List(T") defined in the previous example and assume that

it is a term algebra. We define the length of a list as
length : List(T) — N
length(nil) := 0
length(cons(e, 1)) := 1 + length(l).

Then we have length(cons(1, cons(2,nil))) = 2.

Wolfgang Schreiner

48

Induction

Example

Take the set Term defined in the previous example and assume that
it is a term algebra. We define the value of a term as

value : Term — N

value(0) := ON

value(1) :=

value(— w) = —Nvalue()

value(x + y) := value(x) 4+ value(y)
value(zx * y) := value(x) xy value(y)

Then we have value(1 + (14 0) % 1) = 2.

Wolfgang Schreiner 49

Induction

Generalized Induction Principle

We want to prove
VeeS:F.

|dea: exery element x in .S is denoted by some term

fi(xlv s 7Imiay17 s 7yn@>

Let the induction run over the structure of every such term:
e assume that /7 holds for every “S-component” y; of x, and

e show that F' is propagated to x itself.

Wolfgang Schreiner

50

Induction

Structural Induction

Proposition: In order to prove a property
VeeS§: F

for an inductively defined set .S, it suffices to prove
Vay,...,Tm; Y1 €5,...,yn; €5
(Flz =y A ... ANFlz = yn]) =
F[:C = fi(ajla ce 73377%‘7 Y1, - - - 7ynz)]
for every constructor f; of S.

Wolfgang Schreiner

51

Induction

Example

Take the set List(7") defined inductively as
nil € List(T),
Ve € Tl € List(T) : cons(e, 1) € List(T).
We define
append : List(T") x List(T") — List(7T)

append(nil, y) ;= y
append(cons(e, x),y) := cons(e, append(z, 1))

and claim that the following holds:
Va € List(T),y € List(T) :

length(append(z,y)) = length(x) + length(y).

Wolfgang Schreiner

52

Induction

Example (Continued)

We proceed by structural induction on x:

Case x = nil: We have to show
Vy € List(T) :
length(append(nil, y)) = length(nil) + length(y).
Take arbitrary y € List(T"). We have
length(append(nil,)) = (definition append)
length(y) =

0 + length(y) = (definition length)
length(nil) + length(y).

Wolfgang Schreiner

53

Induction

Example (Continued)

Case x = cons(e, l): Take arbitrary e € T and [€ List(T)).
We assume (induction hypothesis)
Vy € List(T) :
length(append(l,y)) = length(l) 4 length(y)
and have to show

Vy € List(T) :

length(append(cons(e, l),y)) = length(cons(e, 1)) + length(y).

Wolfgang Schreiner

54

Induction

Example (Continued)

Take arbitrary y € List(T). We have

length(append(cons(e, l),y)) = (definition append)
length(cons(e, append(l,y))) = (definition length)
1 + length(append(l,y)) = (induction hypothesis)
1 + (length(l) + length(y))
(1 4 length(l)) 4 length(y) = (definition length)
length(cons(e, 1)) + length(y).

Wolfgang Schreiner

55

Induction

Summary

e Inductive definitions on N.

— Single induction parameter.
— Multiple base cases.

— Multiple induction parameters.
e Induction proofs on N.

— Mathematical induction.
— Complete induction.

— Induction over term values.
e Induction on sets.

— Inductive set definitions.

— Inductive function/predicate definitions on term algebras.

— Induction proofs on inductively defined sets.

Wolfgang Schreiner

56

