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Image

Definition: Let f: A — B, A’ C A. The image of A’ at f is the set
of all values to which elements of A’ are mapped by f:

f(A") = if A" C domain(f) then {f(z):z € A’}

The inverse image of B’ at f is the set of all elements that are mapped
to some elements of B’ by f:

f7H(B') = {z € domain(f) : f(x) € B'}.

Function applied to set of arguments.
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Image

fHfAD) = A
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Function Properties
Definition: Let f: A —B. f is injective (one-to-one) if it does not
map different arguments to the same result:
f A B &
f:A—= BANxg€e A,z € A: f(xg) = f(x1) = 29 = 27).

f is surjective (onto) if every element of B is hit by some argument:

1nJect1ve

FATIN B f A L BA(WEB: 3 e A f(z)=y).
f is bijective if it is injective and surjective:
f A leeCtIVG PN f A 1nJectlve B A f A surJectlve
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lllustration
injective surjective bijective
(not surjective) (not injective)
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Example

e The identity function f(x) := x is bijective:

2

e The square function f(x) := x° is neither injective nor surjective:

e The function f(x) := x> — x is surjective but not injective: / _
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Function Composition

Proposition: The composition of two bijective functions is bijective:

bijective bijective
VA B.C,f: A 25" B g: B S
bijective
fog: A Ay
bijective bijective

Proof: Take arbitrary f : A — B,g: B —
e We show f o g is injective. Take arbitrary 2y € A and z1 € A with (f o g)(xo) = (f o g)(z1).
We have to show zy = z;.
We know, by definition of o, that g(f(z¢)) = ¢g(f(z1)) and thus, because g is injective, f(xy) =
f(x1). Since f is injective, we then have zy = x;.
e We show fog is surjective. Take arbitrary z € C; we have to find some x such that (fog)(z) = z.

Since ¢ is surjective, we have some y € B such that g(y) = z. Since f is surjective, we have

some © € A such that f(z) =y. Thus (fog)(z) =g(f(x)) =g(y) =
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Function Inversion

Proposition: If a function is injective, its inverse is also a function:

VA B, f:A

1nJect1ve

B le—>A

Proof: Take arbltrary f A " B \We have to show f1:B— A
We have f~! C B x A. Thus it remains to be shown

(vxvy())yl : (<CL’,y0> S f_l A <33,y1> S f_l) = Yo = yl)
Take arbitrary x, 1y, and y; and assume
(1) (z,y0) € 1A () € f7

We have to show (2) yy = y1. From (1) and the definition of inverse, we know
(3) (w0, ) € f Ay, @) € f,

i.e., f(yo) = x and f(y1) = . Since f is injective, we thus know (2).
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Inverse Function Properties

lgy:A— A lylz) =2
Proposition: For every A, B, f : A — B, we have

folp =1
lgof = T.
If f is injective, then we have
fof™ =1y
If f is also surjective (i.e., bijective), then we have
flof=1p.

Wolfgang Schreiner
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Counting Set Elements
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Number of Set Elements

Definition: A set S is finite if it is empty or there is a bijection to N,

for some n > 0. We then call O resp. n the size or cardinality of S

S is finite <= S =0 Vv

(ElnEN>Q £ofN, bljectlve )3

S| :=if S =0 then 0 else
(suchn € Nog:df: f: N,

A set is infinite if is not finite:

S is infinite < —.S is finite.

bljectlve )

Wolfgang Schreiner
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Unicity of Bijection

Proposition: If .S'is not empty and both f : N,, — Sandg:N,, — S

are bijections, then n = m:

(VS #0,neNmeN,f:Ny

m=n).

leeCtIVG bljectlve

S,q: Ny,

Proof: see lecture notes.

The size of a set is uniquely defined.

Wolfgang Schreiner
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Example

e The set S := {0,2,4} is finite; its size is 3 because we can define
b1 ective

a function f : N3 P9 as
f(0) =0
f(1) =2
f(2) :=4

i.e., f =10,2,4]. The length of f is the same as the length of
0,4,2], [4,2,0] or of any other bijection to S.

e The set N is infinite. If it were finite, we had some n € N and

some [ : Ny, PUCN N, Take k :— 1+ max{f(i) : 4 € Ny}. Then
ke NbutVieN,: f(i) #k, ie., fis not surjective on N.
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Number Quantifier

Definition: For every variable x and formula F’, the phrase
#x : F

is a term where x is bound and whose value equals

The term value is only well defined if the base formula is true for a
finite number of assignments for the bound variable.
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Set Sizes

Proposition: If A and B are disjoint with sizes m and n, respectively,
then the size of their union is m + n:

VA, B,m € Nyn € N :
(ANB=0AN|Al=mA|B|=n)= |AUB|=m+n.

The size of the Cartesian product of two sets is the product of their
sizes:

VA, B,m € Nyn € N :
(JAl=mA|B|=n)=|A X Bl =m=xn.
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Set Sizes (Continued)

Proposition: If A and B have size m and n, respectively, then the
size of the set of functions from A to B is n'"":

VA, B,m € N,n € N :
(|JAl=mA|Bl=n)=|A— B|=n""

If A is of size n, then A has 2" subsets:

VA,n € N:
Al =n=|P(A)| =2".
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Countable Sets

Definition: A set is countable if it has an enumeration, i.e., a bijective
mapping from N:

bijective

S is countable & df . f N —

A criterium to distinguish “degrees of infinity" .
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Example

7, is infinite but it is countable because we can define

f ‘N bi@ve

f(x) :=if x is even then — x/2 else (x +1)/2
le.,

F=100,1,-1,2,-2,3,-3,...].

While Z is infinite, we can enumerate all its elements.

Wolfgang Schreiner
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Example

The set QQ is infinite but countable: we can list all positive rationals

in an infinite matrix that holds at position (7, j) the rational ;ill
1 1 1 1
1 2 3 4
/ / /
2 2 2
1 2 3
/ /

—lw

3
2

/

=

We can enumerate all elements in this matrix in a sequence f.
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Example (Continued)

From f, we remove all “doubles” constructing a sequence f/: N — Q
that contains each positive rational number in exactly one position.
Finally we can define an enumeration of all rationals

bijective

g:N"—"Q
g(x) =
if z=0then0

else if z is even
then — f'(z/2)
else f'((x —1)/2)
12 21

1
—[0,1,—1,=, —= 2 —Z 2 _
g [77 727 2717 1737

) )

=] Qo
=] Qo

Q| =
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Example
The set of all infinite sequences over {0, 1} is not countable.
bljectlve
(N— {0,1}). Let s : N — {0,1}
s(i) = f(2);

where d := 1 —d. Then s differs from f(i) in the i-th digit (for every
i € N), thus s is not contained in f.

If it were, we had an f : N

f(0) = [f(0)o f(0)1 f(0)2 [f(O)3 ...]
f)y= [f(M)o F(M)1r f(1):2 f(1)s ...]
f2)= [f2o 21 f(2)2 (2)3 -
fGB)= [fBo fGB)1 [ (3) ]

)2 f

Wolfgang Schreiner 22




More on Functions 1

Example

The set R is not countable.
Every infinite sequence d of decimal digits represents a real number

0.dydyds . . ..

Since the set of all infinite sequences is not countable (and every real
number is represented by a countable set of such sequences), also R
Is not countable.

Not all number domains are countable.
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Set Cardinalities

Proposition: Two sets have same size, if there is a bijection between:

blj ective

A and B are of same size <= df : f: A

One set is not larger than another set, if there exists an injection from
the first set into the second set:

A is not larger than B < df : f: A
One set is smaller than another set, if they are not of same size and
the second one is not larger than the first one.

A is smaller than B :&
(A is not larger than B) A (A and B have same size).

IHJ jective
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Finite Sets

Proposition: For all finite sets A and B, the following holds:

Al =
Al <
Al <

B
B
B

& A and B have same size;
< A is not larger than B;
& A is smaller than B.

For finite sets, the new notions coincide with the old ones.

Wolfgang Schreiner
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Infinite Sets

We can now also compare the size of infinite sets:

e N has the same size as Z.

e 7 has the same size as ().

e Q is smaller than R.

e R has the same size as C.

The first results were just shown above.

Wolfgang Schreiner
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Size of Powersets

Proposition: Every set is smaller than its powerset:
VS : S is smaller than P(.5).

Proof: Take arbitrary S. S is not larger than P(.S) because we can define
f o8 MR p(S)
flax) ={x}.
bijective

Assume that S and P(S) are of the same size, i.e., there exists some f : S — P(S5). We show
a contradiction.

Take A :={x €S :x ¢ f(xr)}. Since f is surjective and A C S, i.e., A € P(S), we have some
a € S with f(a) = A. But then we knowa € A < a & f(a) & a &€ A.

Wolfgang Schreiner 27
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Permutations
Definition: A permutation of length n is a bijection from N,, to Nj;:

: : bijecti
p is permutation of length n <= p: Ny N Ny, .

Example: Take the sequence s = |a,b, ¢, d,e] and the permutation
p=11,0,4,3,2]. Then we have
pos=lba,e,d,c.

Further results: see lecture notes.
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Example: Sorting Problem

e Input:

—n € N .. .the length of the sequence,

—s: N, = R ...a sequence of length n on R.
e OQutput: ¢ : N,, — R such that

— t is permutation of s,

— t is sorted with respect to <.

t is permutation of s <
let n = length(?) :
n = length(s) A
dp : p is permutation of length n Apo s =t;

t is sorted with respect to < &
VO << 1€Hgth(t) —1:t < t41.

Wolfgang Schreiner
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Embedding Sets

Wolfgang Schreiner
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Homomorphism

Definition: Let f : A" — A and f' : B" — B. We call h a
homomorphism from A to B (with respect to f and f') if we have:

h: Ahom(ff) B &
h:A— BA
(In € N :
f:A" - AN f:B"— B A
Yz € A" h(f(20, ..., 2p-1)) = f/(h(20), ..., hM(2p-1))))-

An isomorphism is a bijective homomorphism.

- Also(ff) o Ahom(ff) B AR AbljectlveB
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lllustration

We may compute with f in A or with " in B.

Wolfgang Schreiner
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Example

Take h : N — 7 defined as
h(z) = (x,0).

Then we have, for all z € N and y € N,

Mx+Ny) = h(z) +7 h(y);
hMrxny) = h(z)*z h(y)

i.e., h is a homomorphism from N to Z (for the operations + and ).
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Example
Take h : Z — (Q defined as

Then we have, for all z € Z and y € Z,

Mz +7y) = hz) +q My);
Wz —zy) = h(z) —q h(y)
hx*z,y) = hiz) *q h(y)

i.e., h is a homomorphism from Z to QQ (for operations +, —, *).

Wolfgang Schreiner
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Example
Take the domain “List(7T")" with functions “length” and “append”.

We have for all € List(T) and y € List(T)

length(append(z,y)) = length(x) + length(y)

i.e., “length” is a homomorphism from “List(7")" to N with respect

to “append” and +.

Wolfgang Schreiner 35




More on Functions 1

Example

Take the set of polynomials Poly.

We have, for all polynomials x and y and a € R,

(z +y)la] = zla] +Rr yla

(# —y)la] = zla] —r yla
(—z)la] = —rz(d]

(z xy)la] = zla] *g yla]

i.e., polynomial evaluation is a homomorphism from Poly to R (for
operations +, —, *).
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Example

where

i50(0 4,0/,
AQ/B:@Hh,B/QB:h:AISO(i B/ B’

and O 4 denotes the considered operations on A, O% denotes the

. . , is0(04,0%) _,
corresponding operations on B  and h : A —— = B’ states that

h is an isomorphism between A and B for each operation pair.

Every number domain is isomorphic to some subset of its “successor’ .
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Complex Numbers

Cartesian Coordinates:

X (x. ¥}

Complex number x + yi represented by point with coordinates (z, y).
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Complex Numbers

Polar Coordinates:

fr, e}

£L

Complex number x + yi represented by point with coordinates (7, ).
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Polar Representation of Complex Numbers
Definition:
C' = (R=g x [0,2a]) U {(0,37/2)}

e Angles expressed in “radians” (i.e., m = 180°).

e Zero point is assigned unique (but arbitrary) angle 37 /2.

cartesian : C' — C
cartesian(z) = zq * cos(21) + 2 * sin(z)i.

Translation from new domain into original domain.

Wolfgang Schreiner
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Translation

polar : C — C’
polar(z) = (v/25 + 27, @)
where o =
if 20 = 0 then
if z; > 0 then 7/2 else 37/2
else
let a = arctan(z1/z) :
shift(if zy > 0 then a else 7 — a)

shift : R — [0, 27|
shift(a) .= (such b: b € [0,2n[ A i € Z : a — b = 27i)

Translation from original domain into new domain.

Wolfgang Schreiner
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Relationship

Proposition: cartesian and polar are bijections.

cartesian o polar = 1¢,
polar o cartesian = 1¢v

Definition:

Proposition: C and C' are isomorphic with respect to multiplication.

ISO(*(C, c’) c

: 180(*@’7*@)
cartesian : ¢/ —

polar : C

Wolfgang Schreiner
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Proof

Vo € C',y € C': cartesian(x ¢ ) = cartesian(z) ¢ cartesian(y).
Take arbitrary x € C' and y € C’. We then have

cartesian(x xqv y) =
cartesian(xqgyp, shift(x1 +y1)) =
zoyocos(shift(zy + y1)) + (zoyosin(shift(zq +y1)))i = (*)
royocos(21 + 1) + (zoyosin(z1 + y1))i.
(*) holds because of the definition “shift” and for every z € R,
sin(x + 2m) = sin(x),
cos(x + 2m) = cos(x)
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Proof (Continued)

We also have
cartesian(z) *¢ cartesian(y)
(ocos(x1) + wosin(z1)i) *¢ (yocos(y1) + yosin(y1)i)
(Toyocos(x1)eos(y1) — zoyosin(x )sin(y:))+
(zoyocos(z1)sin(y1) + zoyosin(z)cos(y1 )i
zoyo(cos(z)cos(y1) — sin(z)sin(y1))+
zoyo(cos(z1)sin(y1) + zoyosin(zy)cos(y1))i

We assume the knowledge
cos(x1 + y1) = cos(x)cos(yy) — sin(xq)sin(yq)
sin(z1 + y1) = cos(zy)sin(y1) + sin(zq)cos(y1)
as granted and are therefore done.

Wolfgang Schreiner
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Relationship

e C and C' are isomorphic.
—+, %, —, /.
e Application for computing.

— Operate in one domain.

— Translate results into other domain.

An operation is typically easier to compute in one of the domains.

Wolfgang Schreiner
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Complex Root

Definition:

Ve (NxC)—C
Vz = (Y20, 21/n).

Proposition: For every n € N+ and z € C/, the n-th roots of z are
{/z and the n-1 values that have the same distance from the origin
and their angle shifted by multiples of 27 /n:

Vn € Nug,z € C':

let r = {/z :

(Vs € C': 2 =s" & i € N: s = (rg,shift(r; + 2wi/n))).
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lllustration

.-""_-"-g

(sgre3fr), 0/3 + 2_1:-:}’3).': . A
, x“‘-x ,fi__,-.--hf sqre3fr}, o3}

1 [
! |

\.1 i
.y _.J_ - -
(sqredfr), o/3 + 4pif3}

All roots are on same circle and have equal distance.
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Translation

Definition:

/2 := cartesian( {/polar(z)).
—I_(C’ : ((C/ X Cl> — (C/

T4y = polar(cartesian(z) +¢ cartesian(y));
—C/ - (C/ X Cl> — Cl

T —cv y = polar(cartesian(z) +¢ cartesian(y)).

Compute va in C', but + and — in C.

Wolfgang Schreiner
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Summary

e Function notions:

— Image, injective, surjective, bijective.

— Properties.
e Counting set elements:

— Size of a finite set.
— Countable sets, enumerations.
— Comparing infinite sets.

— Permutations.
e Embedding sets:

— Homomorphisms, isomorphisms.

— Examples, application for computing.
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49




