
Formal Foundations of Computer Science 1

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz)

Wolfgang.Schreiner@risc.uni-linz.ac.at

October 4, 1999

c©1999, Wolfgang Schreiner. The electronic version of this document with executable
contents is available at http://www.risc.uni-linz.ac.at/courses/formal.

Abstract

We introduce basic mathematical domains and techniques as a foundation for
the formal treatment of various concepts in computer science and engineering.
Mathematical domains like numbers, functions, and relations are constructed
on the basis of the fundamental notions of set theory thus exhibiting their
inner structure and properties. As for mathematical techniques, we present
the language of logic for the precise description of mathematical objects and
facts and give rules for correct reasoning and arguing. The constructions are
partially implemented with the help of an interpreter that executes a simple
subset of logic and set theory.

Contents

1 Introduction 6

2 The Language of Logic 9

2.1 Preliminaries . 10

2.2 Propositional Logic . 11

2.2.1 Logical Constants . 13

2.2.2 Negations . 14

2.2.3 Conjunctions . 16

2.2.4 Disjunctions . 20

2.2.5 Implications . 23

2.2.6 Equivalences . 26

2.2.7 Summary . 28

2.3 Predicate Logic . 29

2.3.1 Terms . 30

2.3.2 Atomic Formulas . 34

2.3.3 Equality . 38

2.3.4 Quantified Formulas 38

2.3.5 Local Definitions . 48

2.4 Example . 53

2

CONTENTS 3

3 Sets, Relations, and Functions 60

3.1 The Datatype Set . 60

3.2 Tuples . 74

3.3 Predicates as Sets . 77

3.4 Functions as Sets . 85

3.5 Sequences and Matrices . 93

4 Numbers 98

4.1 The Natural Numbers . 98

4.2 The Integer Numbers . 108

4.3 The Rational Numbers . 113

4.4 The Real Numbers . 118

4.5 The Complex Numbers . 122

4.6 Relationships between Number Domains 127

4.7 Arithmetic Notions . 128

4.7.1 Minimum and Maximum 129

4.7.2 Arithmetic Quantifiers 130

4.7.3 Binomials . 135

4.7.4 Matrix Operations . 137

4.7.5 Polynomials . 139

5 Induction and Recursion 143

5.1 Inductive Definitions . 143

5.2 Induction as a Proof Technique 147

5.3 Properties of Recursive Definitions 154

5.4 Induction on Sets . 159

6 More on Functions 165

6.1 Further Notions . 165

6.2 Counting Set Elements . 173

6.3 Embedding Sets . 184

4 CONTENTS

6.4 Sequences and Series . 192

6.5 Special Functions . 205

6.6 Asymptotic Bounds . 219

7 More on Relations 225

7.1 Equivalence Relations and Partitions 225

7.1.1 Basic Notions . 225

7.1.2 Modular Arithmetic 238

7.1.3 Another Construction of Number Domains 244

7.2 Order Relations . 251

7.3 Graphs . 263

A Defining New Notions 280

A.1 Preliminaries . 281

A.2 Explicit Predicate Definitions 282

A.3 Explicit Function Definitions 286

A.4 Implicit Function Definitions 292

A.5 Recursive Definitions . 298

A.6 Evaluating Definitions . 306

B Proving Propositions 308

B.1 Proof Levels . 308

B.2 Preliminaries . 309

B.3 General Strategies . 311

B.4 Decomposing the Goal . 313

B.5 Deriving New Knowledge . 319

B.5.1 Propositional Consequences 322

B.5.2 Quantifier Consequences 324

B.5.3 Substitutions . 325

B.6 Example . 326

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

CONTENTS 5

C Logic Evaluator Definitions 330

C.1 Sets . 330

C.2 Relations and Functions . 332

C.3 Natural Numbers . 334

C.4 Integer Numbers . 336

C.5 Rational Numbers . 338

C.6 Real Numbers . 339

C.7 Complex Numbers . 340

C.8 More on Functions . 341

C.9 Real Functions . 342

C.10 Equivalence Relations . 343

C.11 Modular Arithmetic . 344

C.12 Integers as Equivalence Classes 345

C.13 Rationals as Equivalence Classes 346

C.14 Order Relations . 348

Chapter 1

Introduction

AGEOMETRETOS MEDEIS EISITO
Let no one without skill in geometry enter.

(Inscription over the portal of Plato’s Academy
in the sense of “Study mathematics first”)

We introduce in this report basic mathematical domains and techniques as
a foundation for the formal treatment of many concepts in computer science
and engineering. The relationship between computer science and mathemat-
ics is still a subject of debate. Nevertheless it is clear that the mathematical
way of problem solving is at the core of every scientific and technical activity
whose goal is to describe phenomena of the real world and to influence these,
e.g. by a computer program that fulfills a particular purpose.

The key idea in this process is abstraction (see Figure 1.1): we construct
a simplified image (model, theory, domain) of the real world that captures
all those aspects that we consider of relevance for our problem but neglects
those facets that seem without influence. While being not a duplicate of the
real world, this domain has the advantage that it can be unambiguously de-
scribed and that we can operate in it (ask questions, derive knowledge, define
new concepts) without resorting to the objects of the real world. An inter-
pretation of the solution developed in this domain yields real world effects
that (provided that our abstraction has been faithful and that our operations
have been correct) meet our expectations.

While the real world has all kinds of different objects and phenomena, their
mathematical images are ultimately described in terms of a relatively small
number of notions, such as numbers, functions, and relations which in turn
can be all reduced to the fundamental concept of sets. The constructions of

6

7

Figure 1.1: The Mathematical Process

these domains, their resulting inner structures, and their consequent proper-
ties reveal much of how mathematics works; we will elaborate them in this
report in detail.

For understanding the constructions in a deeper sense it is important to learn
not only mathematical contents but also mathematical techniques, in partic-
ular the language and the reasoning rules provided by mathematical logic.
If these are mastered, we read and understand definitions and statements
in any scientific area and judge whether a given argument is complete and
correct. We therefore put in this report much emphasis on formally correct
definitions and propositions in addition to the semi-formal ones that can be
usually found in a textbook. Likewise we give proofs in a greater degree of
formality and detail as is common practice; our goal is to enable the reader to
check and to understand statements and claims, not to learn them by heart.

This report is therefore not only a collection of mathematical “cookbook
recipes” that can be applied without any deeper insight (although it con-
tains a lot of definitions and propositions); it is intended to make the reader
understand “how things work” in order to enable her to operate in all formal
domains that she will encounter in the future.

To emphasize this “no magic” approach, we use a small piece of software, the
Logic Evaluator, a Java applet/application whose source can be found at

http://www.risc.uni-linz.ac.at/software/formal.

This interpreter allows to write function and predicate definitions in an ex-
ecutable subset of first order predicate logic with set theory and to evaluate

8 Chapter 1. Introduction

terms and propositions. Many of the concepts introduced in this paper are
implemented in this way; demonstration examples as the basis of own ex-
periments can be found throughout the electronic version of this document
(with screenshots in the hardcopy). The Java classes for formulas and terms
are listed to illustrate the operational interpretation of logic formulas.

Much inspiration and some of the contents of this report have been derived
from the textbook

B. Buchberger, F. Lichtenberger
Mathematik für Informatik I — Die Methode der Mathematik
Zweite, korrigierte Auflage, Springer, Berlin, 1981

as well as from the lecture notes

F. Lichtenberger
Mathematik für Informatiker 2
Johannes Kepler Universität, Sommersemester 1999

based on material from former courses of Bruno Buchberger. A subset of the
Theorema software

http://www.theorema.org

being developed by Bruno Buchberger and his working group has been a
source of inspiration for the Logic Evaluator. Many thanks to Werner Daniel-
czyk-Landerl, Peter Kulczycki, Michael Petz, and Wolfgang Windsteiger for
discussions on and/or corrections of this report.

This document contains two parts, the main body oriented towards math-
ematical domains (Chapters 2–7) and an appendix oriented towards math-
ematical techniques (Appendices A and B). We recommend to study the
material in the order

2 → A → 3 → 4 → 5 → B → 6 → 7

skipping the details of the proofs in Chapters 3 and 4 on first reading and
studying them again after having read Appendix B.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

Chapter 2

The Language of Logic

There are two main aspects of mathematical logic that are important for
computer science1.

1. Logic provides a precise language for formulating statements (Aus-
sagen) and denoting objects (Gegenstände). Since computer science
deals with highly abstract entities with complicated properties, it is
important to have such a precise language in which critical issues can
be expressed without ambiguity. The role of natural language in sci-
entific work is to communicate basic ideas and intuitions; the role of
logic is to resolve ambiguities and to clarify details.

2. Logic provides an intellectual framework for correct reasoning (Schluß-
folgern, Schließen) and arguing (Argumentieren). These activities can
be ultimately reduced to a finite number of rules that are formulated so
precisely that their correct application can be checked automatically.
Computer programs are probably the most complex human artifacts;
to reason about their properties is a central task of computer science.

A precise language and sound reasoning belong to the most valuable intel-
lectual tools of a computer scientist or engineer. Only if she masters these
tools thoroughly, she can utilize her creative potential in an effective and
goal-directed way. Please note that it is not the heavy use of symbolism that
characterizes precise expression and clear arguments. A computer scientist
should be able to recognize and to present the underlying logical concepts

1In this chapter, we focus on the language aspect of logic; the reasoning aspect is
investigated in Appendix B. A third aspect, the automatization of problem solving on
computers, is discussed in another course “Logic for Computer Science”.

9

10 Chapter 2. The Language of Logic

Figure 2.1: Formulas and Truth Values

on various language levels and in various notations. She can then flexibly
adapt form and preciseness of her statements to the demands of a particu-
lar situation while preserving the essential contents. We therefore strive to
demonstrate these concepts in various styles, from natural language (“every
Ferrari is red”) to purely symbolic (∀x : F (x)⇒ R(x)).

2.1 Preliminaries

The fundamental entities of logic are introduced in the following definition
(see Figure 2.1).

Definition 1 (Truth Value, Formula) A truth value (Wahrheitswert) or
Boolean value (Boolescher Wert) is one of the values true or false.

A (logical) formula (logische Formel) or proposition (Aussage) is a syntactic
phrase whose meaning is a truth value.

This definition introduces two layers of a formula: its syntax (Syntax), i.e.,
the concrete external representation, and its semantics (Semantik), i.e., the
underlying meaning.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.2 Propositional Logic 11

Operational Interpretation In the Logic Evaluator, every formula is an
instance of a Java class that implements the following interface:

public interface Formula
{

boolean eval() throws EvalException;
}

For every Formula f , the evaluation of f.eval() returns the boolean value
denoted by f (or throws an exception if some error has occurred).

For stating relationships between formulas, we will use the following notion.

Definition 2 (Equivalence of Formulas) Let A and B be formulas. We
write

A iff B

to indicate that A has the same meaning as B in any context; we read this
as “A is equivalent to B” (“A ist äquivalent zu B”) or as “A if and only if
B” (“A genau dann wenn B”).

2.2 Propositional Logic

Propositional logic is that part of mathematical logic that deals with the
composition of formulas. The composition starts with basic formulas that
are considered as “black boxes”: we are interested in their truth value (“true
or false?”) but not in what properties they actually describe. Various oper-
ations then allow to combine simpler formulas to more complex ones.

Definition 3 (Logical Connective) A (logical) connective (Junktor) is a
syntactic operator that combines formulas to a new formula.

In more detail, the formulas of propositional logic are constructed from the
connectives ‘F’, ‘T’, ‘¬’, ‘∧’, ‘∨’, ‘⇒’, ‘⇔’ as follows:

Proposition 1 (Formulas of Propositional Logic)

12 Chapter 2. The Language of Logic

• The following logical constants (Logische Konstanten) are formulas2:

False “false” (“falsch”)

F

True “true” (“wahr”)

T

• If A is a formula, then the following is a formula:

Negation “not A” (“nicht A”)

¬A

• If A and B are formulas, then the following are formulas

Conjunction “A and B” (“A und B”)

(A ∧B)

Disjunction “A or B” (“A oder B”)

(A ∨B)

Implication “A implies B” (“A impliziert B”)

(A⇒ B)

Equivalence “A is equivalent to B” (“A ist äquivalent zu B”)

(A⇔ B)

We omit the parentheses if A and B are unambiguous (usually x is free
in A).

Above propositions provide the basis for a hierarchical construction of for-
mulas.

Example The formula

(T ∧ F)⇒ ¬(F ∨ ¬F)

has the following syntactic structure:

2Logical constants can be considered as connectives of arity 0, i.e., as connectives that
do not take any arguments.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.2 Propositional Logic 13

Implication

Conjunction

(
Constant

T ∧
Constant

F)⇒

Negation

¬

Disjunction

(
Constant

F ∨

Negation

¬
Constant

F)

The syntactic structure of the formula

T ∧ F⇒ F

is ambiguous; it may be understood as (T ∧ F)⇒ F, i.e.,

Implication

Conjunction

Constant

T ∧
Constant

F ⇒
Constant

F

or as T ∧ (F⇒ F), i.e,

Conjunction

Constant

T ∧

Implication

Constant

F ⇒
Constant

F .

In the following sections, we will discuss the meanings of these formulas.

2.2.1 Logical Constants

The following logical constants are formulas:

F,
T.

Syntactic Forms Logical constants may appear in various forms, e.g. as

• 0, 1;

• “wrong”, “right”;

• “incorrect”, “correct”;

14 Chapter 2. The Language of Logic

• false, true.

The last form is most frequently used; please do not confuse these formulas
with the truth values true and false.

Definition 4 (Semantics of Logical Constants) The meaning of ‘F’ is
false and the meaning of ‘T’ is true.

Again, please note the distinction between the two layers of syntax (‘F’, ‘T’)
and semantics (true, false).

The Logic Evaluator uses the syntax false and true both for (the input of)
logical constants and for (the output of) truth values. However, by above
explanation it should be clear that the input denotes a formula while the
output prefixed by the token ‘>’ denotes the meaning of this formula.

2.2.2 Negations

If A is a formula, then

¬A

is a formula.

Alternative Forms Other syntactic forms of negation are

• A, ∼A, −A, !A;

• non-A;

• “not A”, “never A”, “in no case A”;

• not(A).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.2 Propositional Logic 15

The last line denotes the input syntax of the Logic Evaluator.

Negation of infix atomic formulas is often expressed by crossing the predicate
symbol, e.g.

x 6< y

represents ¬(x < y).

Definition 5 (Semantics of Negation) For every formula A, the meaning
of ¬A is denoted by the following truth table (Wahrheitstabelle) that lists
the possible truth values for A in the first column and the truth value of its
negation in the second column:

A ¬A
false true
true false

In other words, ¬A is true if and only if A is false.

Operational Interpretation A logical formula can be given an operational
interpretation by a program that computes its truth value. For instance, in
the Logic Evaluator, a negation is represented by an object of Java type

public final class Not implements Formula
{

private Formula formula;

public Not(Formula _formula)
{

formula = _formula;
}

16 Chapter 2. The Language of Logic

public boolean eval() throws EvalException
{

if (formula.eval())
return false;

else
return true;

}
}

The Java expression (new Not(A)).eval() thus computes the truth value
of the negation of A. The result is true only if the truth value of A is false.

We conclude the discussion of negation by stating a simple law and proving
its correctness.

Proposition 2 (Inversion of Negation) For every formula A, we have

¬¬A iff A.

Proof Let A be an arbitrary formula. We have to show that the meaning
of ¬¬A is the same as the meaning of A, i.e., that they have the same truth
values. From Definition 5, we can construct the following truth table.

A ¬A ¬¬A
false true false
true false true

Since the last column coincides with the first column, we are done.

2.2.3 Conjunctions

If A and B are formulas, then

(A ∧B)

is a formula.

Alternative Forms A conjunction of A and B may also appear in other
syntactic forms, e.g. as

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.2 Propositional Logic 17

• A, B (comma);

• A ∗B, A & B, A && B;

• “A and B”, “A as well as B” (“sowohl A als auch B”);

• and(A, B).

The last form is the input syntax for the Logic Evaluator.

Definition 6 (Semantics of Conjunction) Let A and B be formulas. The
meaning of A ∧B is defined by the following truth table:

A B A ∧B
false false false
false true false
true false false
true true true

In other words, A ∧B is true if and only if both A and B are true.

Operational Interpretation In the Logic Evaluator, a conjunction is rep-
resented by an object of the Java type

public final class And implements Formula
{

private Formula formula0;
private Formula formula1;

public And(Formula _formula0, Formula _formula1)

18 Chapter 2. The Language of Logic

{
formula0 = _formula0;
formula1 = _formula1;

}

public boolean eval() throws EvalException
{

if (formula0.eval())
{

if (formula1.eval())
return true;

else
return false;

}
else

return false;
}

}

The Java expression (new And(A, B)).eval() computes the truth value of
A∧B. As one can see, if A evaluates to false, the result is immediately false,
i.e., the truth value of B does not matter any more. Only if A evaluates to
true, also B is evaluated; the result is true only if both formulas are true.

From Definition 6, we can deduce the following properties of conjunctions.

Proposition 4 (Conjunctive Laws) Conjunction is commutative, i.e., for
all formulas A and B, we have

A ∧B iff B ∧ A.

Conjunction is also associative, i.e., for all formulas A, B, and C, we have

A ∧ (B ∧ C) iff (A ∧B) ∧ C.

We will now argue for the correctness of the second part of this proposition,
i.e., the associativity of conjunction.

Proof Let A, B, and C be arbitrary formulas. We have to show that, for
every possible truth value of A, B, and C, the formulas A ∧ (B ∧ C) and
(A ∧B) ∧ C have the same truth value.

From the truth table of A∧B we can determine the meaning of A∧ (B∧C):

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.2 Propositional Logic 19

A B C B ∧ C A ∧ (B ∧ C)
false false false false false
false false true false false
false true false false false
false true true true false
true false false false false
true false true false false
true true false false false
true true true true true

Likewise, we can determine the meaning of (A ∧B) ∧ C:

A B C A ∧B (A ∧B) ∧ C
false false false false false
false false true false false
false true false false false
false true true false false
true false false false false
true false true false false
true true false true false
true true true true true

Since the final results are identical in all lines of both tables, the meanings
of both formulas are the same.

Convention Because of associativity, it does not matter in which particular
way parentheses are placed in nestings of conjunctive formulas. We will
therefore write A ∧ B ∧ C instead of A ∧ (B ∧ C) respectively (A ∧ B) ∧ C
and, in general,

A0 ∧ A1 ∧ . . . ∧ An−1

for conjunctions of n formulas (for every n). Also the Logic Evaluator allows
conjunctions

and(A0, A1, ..., An−1)

of an arbitrary number of formulas.

20 Chapter 2. The Language of Logic

2.2.4 Disjunctions

If A and B are formulas, then

A ∨B

is a formula.

Alternative Forms A disjunction of A and B may also appear in other
syntactic forms, e.g. as

• A+B, A | B, A || B;

• “A or B”;

• or(A, B).

The last form is the input syntax for the Logic Evaluator.

Definition 7 (Semantics of Disjunction) Let A and B be formulas. The
meaning of A ∨B is defined by the following truth table:

A B A ∨B
false false false
false true true
true false true
true true true

In other words, A ∨B is false if and only if both A and B are false.

Since A ∨ B is also true if both A and B are true, it must not be read
as “either A or B” (which would indicate otherwise). Such an “exclusive
or” connective needs an extra definition (which is given at the end of this
section).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.2 Propositional Logic 21

Operational Interpretation In the Logic Evaluator, a disjunction is rep-
resented by an object of the Java type

public final class Or implements Formula
{

private Formula formula0;
private Formula formula1;

public Or(Formula _formula0, Formula _formula1)
{

formula0 = _formula0;
formula1 = _formula1;

}

public boolean eval() throws EvalException
{

if (formula0.eval())
return true;

else
if (formula1.eval())

return true;
else

return false;
}

}

The Java expression (new Or(A, B)).eval() computes the truth value of
A∨B. As one can see, if A evaluates to true, the result is immediately true,
i.e., the truth value of B does not matter any more. Only if A evaluates to
false, also B is evaluated; the result is false only if both formulas are false.

From Definition 7, we can deduce the following properties of disjunctions.

Proposition 6 (Disjunctive Laws) Disjunction is commutative, i.e., for
all formulas A and B, we have

A ∨B iff B ∨ A.

Disjunction is also associative, i.e., for all formulas A, B, and C, we have

A ∨ (B ∨ C) iff (A ∨B) ∨ C.

We have an important duality between conjunctions and disjunctions ex-
pressed by the following law.

22 Chapter 2. The Language of Logic

Proposition 7 (De Morgan’s Laws) For all formulas A and B, the fol-
lowing holds:

¬(A ∧B) iff ¬A ∨ ¬B,
¬(A ∨B) iff ¬A ∧ ¬B.

Consequence From above laws, we have

A ∨B iff ¬(¬A ∧ ¬B).

The disjunction A ∨ B is therefore frequently defined just as a syntactic
abbreviation of ¬(¬A ∧¬B).

Convention Because of associativity, it does not matter in which particu-
lar way parentheses are placed in nestings of disjunctive formulas. We will
therefore write A ∨ B ∨ C instead of A ∨ (B ∨ C) respectively (A ∨ B) ∨ C
and, in general,

A0 ∨ A1 ∨ . . . ∨ An−1

for conjunctions of n formulas (for every n). Also the Logic Evaluator allows
disjunctions

or(A0, A1, ..., An−1)

of an arbitrary number of formulas.

Exclusive Disjunction Finally we give the definition of the “exclusive or”
connective mentioned above.

Definition 8 (Exclusive Disjunction) If A and B are formulas, then also

(A xor B)

is a formula, the exclusive disjunction (Ausschließende Oder-Verknüpfung)
of A and B, The meaning of this formula is defined by the following truth
table:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.2 Propositional Logic 23

A B A xor B
false false false
false true true
true false true
true true false

In other words, A xor B is true, if and only if exactly one of A or B is true.

We then have the following relationship between both kinds of disjunctions.

Proposition 8 (Inclusive and Exclusive Disjunction) For all formulas
A and B, we have

(A xor B) iff (A ∧ ¬B) ∨ (¬A ∧B).

Because of this law, the formula (A xor B) is frequently just defined as a
syntactic abbreviation for (A ∧ ¬B) ∨ (¬A ∧B).

2.2.5 Implications

If A and B are formulas, then

(A⇒ B)

is a formula.

Alternative Forms An implication A⇒ B is often also expressed as

• “A implies B” (“A impliziert B”);

• “if A, then B” (“wenn A, dann B”);

• “B, (only) if A” (“B (nur) dann, wenn A”);

• “B follows from A” (“aus A folgt B”);

• “A is sufficient for B” (“A ist hinreichend für B”);

• “B is necessary for A” (“B ist notwendig für A”);

24 Chapter 2. The Language of Logic

• implies(A, B).

The last line denotes the input syntax of the Logic Evaluator.

Definition 9 (Semantics of Implication) Let A and B be formulas. The
meaning of A⇒ B is defined by the following truth table:

A B A⇒ B
false false true
false true true
true false false
true true true

In other words, A⇒ B is false if and only if A is true and B is false.

Please note that an implication is always true if its premise is false. This
may appear strange at first glance, because it makes sentences like “if 2 is
odd, then 3 is even” true. However, by an implication we actually want to
express the fact “if the premise holds, then also the conclusion holds”, i.e.,

• either the premise does not hold,

• or (the premise holds and) the conclusion holds.

This behavior is also expressed by the first of the following laws.

Proposition 9 (Implicative Laws) For all formulas A and B, we have

A⇒ B iff ¬A ∨B
A⇒ B iff ¬B ⇒ ¬A

¬(A⇒ B) iff A ∧ ¬B.

Because of the first law, the implication A⇒ B is frequently defined just as
a syntactic abbreviation for ¬A ∨B.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.2 Propositional Logic 25

Operational Interpretation In the Logic Evaluator, an implication is
represented by an object of the Java type

public final class Implies implements Formula
{

private Formula formula0;
private Formula formula1;

public Implies(Formula _formula0, Formula _formula1)
{

formula0 = _formula0;
formula1 = _formula1;

}

public boolean eval() throws EvalException
{

if (formula0.eval())
{

if (formula1.eval())
return true;

else
return false;

}
else

return true;
}

}

The Java expression (new Implies(A, B)).eval() computes the truth
value of A ⇒ B. As one can see, if A evaluates to false, the result is imme-
diately true, i.e., the truth value of B does not matter any more. Only if A
evaluates to true, also B is evaluated; the result is false only if A is true and
B is false.

26 Chapter 2. The Language of Logic

2.2.6 Equivalences

If A and B are formulas, then

(A⇔ B)

is a formula.

Alternative Forms An equivalence A⇔ B is often also expressed as

• A = B, A ∼ B;

• “A and B are equivalent” (“A und B sind äquivalent”);

• “A if and only if B” (“A genau dann, wenn B”, “A dann und nur dann,
wenn B”);

• “A iff B” (“A gdw B”);

• “A is necessary and sufficient for B” (“A ist notwendig und hinreichend
für B”);

• equiv(A, B).

The last line denotes the input syntax of the Logic Evaluator.

Definition 10 (Semantics of Equivalence) Let A and B be formulas.
The meaning of A⇔ B is defined by the following truth table:

A B A⇔ B
false false true
false true false
true false false
true true true

In other words, A ⇔ B is true if and only if A and B have the same truth
value.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.2 Propositional Logic 27

Operational Interpretation In the Logic Evaluator, an implication is
represented by an object of the Java type

public final class Equiv implements Formula
{

private Formula formula0;
private Formula formula1;

public Equiv(Formula _formula0, Formula _formula1)
{

formula0 = _formula0;
formula1 = _formula1;

}

public boolean eval() throws EvalException
{

return (formula0.eval() == formula1.eval());
}

}

The Java expression (new Equiv(A, B)).eval() computes the truth value
of A⇔ B. As one can see, the result is true only if A and B have the same
truth value.

Proposition 10 (Equivalence Laws) For all formulas A and B, the fol-
lowing holds:

A⇔ B iff B ⇔ A
A⇔ B iff (A ∧B) ∨ (¬A ∧ ¬B)
A⇔ B iff (A⇒ B) ∧ (B ⇒ A)

28 Chapter 2. The Language of Logic

Because of the last relationship, the equivalence A⇔ B is frequently defined
just as a syntactic abbreviation for (A⇒ B) ∧ (B ⇒ A).

Proposition 11 (Equivalence) For all formulas A and B, the formula
A⇔ B is true if and only if

A iff B

holds.

This law introduces a relationship between ‘⇒’ and the notion of equivalence
that justifies to call this operator by the same name.

2.2.7 Summary

Let A and B be formulas. We summarize the meanings of all connectives
presented so far in a single truth table:

A B F T ¬A A ∧B A ∨B A⇒ B A⇔ B
false false false true true false false true true
false true false true true false true true false
true false false true false false true false false
true true false true false true true true true

Furthermore, we have the following relationships between connectives:

A ∨B iff ¬(¬A ∧ ¬B)
A⇒ B iff ¬A ∨B
A⇔ B iff (A⇒ B) ∧ (B ⇒ A)

All connectives can therefore be ultimately reduced to negation and conjunc-
tion.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.3 Predicate Logic 29

Figure 2.2: A Domain

2.3 Predicate Logic

Propositional logic is just concerned about the composition of formulas; it
does not investigate the properties described by these formulas. We now enter
the realm of predicate logic that is able to describe objects and properties of
a domain, i.e., of some abstract model of the real world (see Figure 2.2).

Definition 11 (Domain) A domain (Bereich) or structure (Struktur) con-
sists of

1. A collection of values (Werte) or objects (Gegenstände); the number of
objects may be finite or infinite (but not zero).

2. A collection of functions (Funktionen), also called mappings (Abbil-
dungen, Zuordnungen); each function takes a certain number of values,
the arguments (Argumente), and returns a value, the result (Resultat,
Ergebnis). The number of arguments is the arity of the function.

A function with arity 0 is also called a constant (Konstante).

3. A collection of predicates (Prädikate), also called relations (Relationen,
Beziehungen), properties (Eigenschaften), attributes (Attribute); each
predicate takes a certain number of values, the predicate arguments,
and returns a truth value.

30 Chapter 2. The Language of Logic

If the predicate returns true, it is said to be true, to hold (halten), or
to be valid (gültig) for these values.

Example Various examples of domains are

• the set of natural numbers as values with constants “zero” and “one”
and functions “addition”, “multiplication”, and predicate “is less than’;

• the people in Austria as “values” with functions “mother of” and “fa-
ther of” and predicates, “is male”, “is female”, “are parents of”;

• the set of Java values of type int[] and int with function “indexed
array access” and predicate “is sorted”.

Predicate logic can be considered an extension of propositional logic, i.e., all
propositional logic formulas are also predicate logic formulas and all prop-
erties derived for propositional logic also hold (in a generalized form) in
predicate logic. While in propositional logic the only elementary formulas
are the logical constants ‘T’ and ‘F’, predicate logic allows elementary for-
mulas that express properties of objects. For this purpose, predicate logic
introduces means to denote objects in a given domain.

2.3.1 Terms

Definition 12 (Term) A term (Term, Begriff) is a syntactic phrase whose
meaning is a value (of the domain being considered).

The meaning of a term therefore depends on the domain; changing the do-
main also changes the meaning of a term.

Operational Interpretation In the Logic Evaluator, every term is an
instance of a Java class that implements the following interface:

public interface Term
{

Value eval() throws EvalException;
}

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.3 Predicate Logic 31

For every Term t, the evaluation of t.eval() returns the value denoted by t
(or throws an exception if some error has occurred).

Definition 13 (Variable, Assignment) A variable (Variable) is a name
that may represent any value of the domain.

A variable assignment (Zuweisung, Belegung) maps every variable to a value
of the domain.

The value of a variable therefore depends on a given assignment, e.g. the
assignment [x 7→ “one′′, y 7→ “two′′] on the domain of natural numbers maps
the variable y to the value “two”.

Please note that variables may be only mapped to values, i.e., to first order
objects (Objekte erster Ordnung), not to relations or functions, i.e., to higher
order objects (Objekte höherer Ordnung). The version of predicate logic that
imposes this restriction is called first order predicate logic (Prädikatenlogik
erster Stufe). As we will see in Chapter 3, we can encode functions and
relations as first order objects, such that this restriction does not limit the
expressiveness of the language from the practical point of view.

Definition 14 (Function Constant) A function constant (Funktionskon-
stante) is a name that may represent some function. The arity of the function
constant determines the arity of the functions it may stand for.

We call a function constant of arity 0 an object constant (Objektkonstante).

We use the notion name for any combination of characters (“x 2”) or symbols
(“
√

”). Since both variables and function constants are names, we apply in
this document the syntactic convention that only names starting with the
letters x, y, z denote variables (unless explicitly stated otherwise).

Example The following are function constants:

• 0, 1, 3.14, “Wolfgang Schreiner”, “Austria”, π (object constants);

• | |, sin(),
√

, “mother of” (unary constants);

• +, ◦, [] (binary constants);

32 Chapter 2. The Language of Logic

Terms are then constructed as follows.

Proposition 12 (Syntax of Terms)

• Every variable is a term.

• If fc is a function constant of arity n and t0, . . . , tn−1 are terms, then

fc(t0, . . . , tn−1)

is a term, called an elementary term (elementarer Term) or function
application (Funktionsanwendung).

Terms do not necessarily appear in the “standard form” denoted above but
they may appear in various syntactic formats.

Example The following are terms:

• 0, “Wolfgang Schreiner”, π (constant terms);

•
√

2, sin(x), sum(2, s), “the mother of Thomas” (prefix terms);

• |1|, a ◦ b, a[i], 1 + 2 (infix terms);

A natural language term

the roof of the house of her father

can be written in prefix form as

roof(house(father(she)))

with function constants “roof”, “house”, “father” and a variable “she”.

Definition 15 (Semantics of Terms) The meaning of a term t under an
assignment in some domain is defined as follows:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.3 Predicate Logic 33

• If t is a variable, then its meaning is the value to which the variable is
mapped by the assignment.

• If t is an elementary term fc(t0, . . . , tn−1), then its meaning is the result
of the application of the function f denoted by the function constant
fc to the values of the terms ti for the given assignment.

The value of a term therefore depends on the domain (determining the in-
terpretation of the constants as functions of the domain) as well as on the
variable assignment (determining the values of the variables).

Example Take the term

x+ (y + 0).

In the domain “natural numbers” with object constant 0 interpreted as the
number “zero”, the function constant + interpreted as addition and under
the variable assignment [x 7→ 1, y 7→ 2], the value of this term is the number
“three”. However, under the variable assignment [x 7→ 1, y 7→ 0], its meaning
is “one”.

In the domain “character strings” with object constant 0 interpreted as the
empty string, the function constant + interpreted as string concatenation
and under the variable assignment [x 7→ “hi, ′′, y 7→ “babe′′], the value of the
term is “hi, babe”.

The Logic Evaluator has the domain “natural numbers” builtin with object
constants 0, 1, . . . and function constants + and *. Since terms must be
entered always in prefix notation, terms can be evaluated as follows:

34 Chapter 2. The Language of Logic

Operational Interpretation Elementary terms are implemented by the
following Java class:

public final class Application implements Term
{

private String name;
private Term[] arguments;

public Application(String _name, Term[] _arguments)
{

name = _name;
arguments = _arguments;

}

public Value eval() throws EvalException
{

Function function = Model.getFunction(name, arguments.length);
if (function == null)

throw new EvalException("unknown function " + name +
"/" + arguments.length);

Value[] values = new Value[arguments.length];
for (int i=0; i< values.length; i++)

values[i] = arguments[i].eval();
return function.apply(values);

}
}

The Java term new Application(f, args).eval() evaluates to the mean-
ing of the term f(args) (where f is a function constant and args is the list of
arguments). As one can see, first we determine the interpretation function
of the function constant in the given domain (Model), then we evaluate the
arguments and apply the function to the results.

The operational interpretation of variables will be explained in Section 2.3.4.

2.3.2 Atomic Formulas

Constants may not only denote functions but also predicates.

Definition 16 (Predicate Constant) A predicate constant (Prädikaten-
konstante) is a name that may represent some predicate. The arity of the
predicate constant determines the arity of the predicates it may stand for.

Predicate constants may appear in various syntactic formats.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.3 Predicate Logic 35

Example The following are predicate constants:

• “is positive” (unary predicate constant);

• ≤, | (binary predicate constants);

• “is father of” (binary predicate constant);

• “is a child of . . . and of . . . ” (ternary predicate constant).

We now introduce formulas that allow us to express properties about objects.

Proposition 13 (Atomic Formula) If pc is a predicate constant of arity
n and t0, . . . , tn−1 are terms, then

pc(t0, . . . , tn−1)

is a formula, called atomic formula (atomare Aussage).

Atomic formulas may appear in various syntactic formats.

Example The following are atomic formulas:

• “1 is positive”;

• 2 ≤
√
x+ 3;

• 2|5;

• “Thomas is the father of Susanne”;

• “Susanne is a child of Thomas and of Birgit”.

A natural language formula

Bill Clinton is a better president than his predecessor.

can be written in prefix form as

36 Chapter 2. The Language of Logic

isBetterPresident(Bill Clinton, Predecessor(Bill Clinton))

with predicate constant “isBetterPresident” and function constants “Prede-
cessor” and “Bill Clinton”.

Definition 17 (Semantics of Atomic Formulas) The meaning of an
atomic formula pc(t0, . . . , tn−1) under an assignment in some domain is the
truth value of the predicate denoted by the predicate constant pc for the
values of the terms ti under the given assignment.

The truth value of an atomic formula thus depends on the domain (deter-
mining the interpretation of the predicate constant and the interpretation
of the function constants in the argument terms) as well as on the variable
assignment (determining the values of the variables).

Example Take the formula

x ≤
√
y + 1

in the domain of real numbers with ‘≤’ interpreted as the “less than or equal”
relation, ‘

√
’ interpreted as “square root”, ‘+’ interpreted as addition, and

‘1’ interpreted as “one”. For assignment [x 7→ 3, y 7→ 8], above formula is
true; for assignment [x 7→ 4, y 7→ 3], it is false.

Now take the domain of points on a plane with ‘≤’ interpreted as “is not
farther from the zero point than”, ‘

√
’ interpreted as “projection of a point

to the horizontal axis”, ‘+’ interpreted as addition of point coordinates, ‘1’
interpreted as point (1, 0). Is the formula true for the assignment [x 7→
(2, 2), y 7→ (1, 1)] or not?

The Logic evaluator has the predicates = and <= on natural numbers built
in; all formulas have to be entered in prefix notation:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.3 Predicate Logic 37

Operational Interpretation Atomic formulas are implemented by the
following Java class:

public final class Atomic implements Formula
{

private String name;
private Term[] arguments;

public Atomic(String _name, Term[] _arguments)
{

name = _name;
arguments = _arguments;

}

public boolean eval() throws EvalException
{

Predicate predicate = Model.getPredicate(name,arguments.length);
if (predicate == null)

throw new EvalException("unknown predicate " + name +
"/" + arguments.length);

Value[] values = new Value[arguments.length];
for (int i=0; i<values.length; i++)

values[i] = arguments[i].eval();
return predicate.apply(values);

}
}

The Java term new Atomic(pc, args).eval() evaluates to the meaning of
the predicate f(args) (where pc is a predicate constant and args is the list of
arguments). As one can see, first we determine the interpretation predicate
of the predicate constant in the given domain (Model), then we evaluate the
arguments and apply the predicate to the results.

38 Chapter 2. The Language of Logic

2.3.3 Equality

Typically we operate in a version of predicate logic that provides a binary
predicate constant ‘=’ with the following properties (independently of the
domain being considered).

Proposition 14 (Equality) For all x, y, and z, the following holds:

Reflexivity (Reflexivität)

x = x;

Symmetry (Symmetrie)

x = y ⇒ y = x;

Transitivity (Transitivität)

(x = y ∧ y = z)⇒ x = z.

Furthermore, let f be a function constant and p be a predicate constant.
Then we have:

Equality Axioms (Gleichheitsaxiome)

x = y ⇒ f(. . . , x, . . .) = f(. . . , y, . . .);
x = y ⇒ p(. . . , x, . . .)⇔ p(. . . , y, . . .).

If we know x = y, the equality axioms allow us to replace x by y in any
phrase without changing the meaning of the phrase.

2.3.4 Quantified Formulas

In elementary terms and atomic formulas (applications of functions and pred-
icates), the meaning of variables depends on a given assignment. We say that
these variables are free (frei) in the corresponding phrases. We now intro-
duce a concept to give phrases with variables a meaning independently of
any variable assignment.

Definition 18 (Quantifier) A quantifier (Quantor) is a syntactic operator
that combines a variable and a phrase to form a new phrase. The meaning

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.3 Predicate Logic 39

of the new phrase does not depend on a given assignment to determine the
value of the quantified variable; we say that this variable is bound (gebunden)
by the quantifier.

If every variable in a syntactic phrase is bound by a quantifier, the phrase is
said to be closed (geschlossen).

The meaning of a phrase does not depend on the name of the bound variable;
we can replace this name by any other name without making a difference.
Above definition implies that the meaning of a closed phrase does not depend
on a given variable assignment but only on the considered domain.

In predicate logic, we have two important kinds of quantified formulas.

Proposition 15 (Quantified Formulas) If x is a variable and A is a
formula then the following are formulas with bound variable x:

Universal Quantification “for all x, A” (“für alle x, A”)

(∀x : A)

Existential Quantification “there exists x, A” (“es existiert x, A”)

(∃x : A)

We omit the parentheses, if A is unambiguous.

When writing a quantified formula like (∀f : A) it is clear that any occurrence
of f within A should denote a variable (not a constant). Consequently, we
do not need to rely on any special convention for the names of quantified
variables to distinguish them from function constants.

Alternative Forms The formula ∀x : A appears in various syntactic forms:

• ∀x A

•
∧
x
A;

• “for all x we have A” (“für alle x gilt A”);

40 Chapter 2. The Language of Logic

• “every x has A” (“jedes x hat die Eigenschaft A”);

• “A, for all x” (“A gilt für alle x”);

• forall(x:A).

The last line denotes the input syntax of the Logic Evaluator.

Likewise, ∃x : A may be expressed as:

• ∃x A

•
∨
x
A;

• “there exists x with A” (“es existiert ein x mit Eigenschaft A”);

• “there is some x with A” (“es gibt ein x mit Eigenschaft A”);

• “some x has A” (“ein x hat die Eigenschaft A”);

• “A, for some x” (“A gilt für ein x”).

• exists(x:A).

Again, the last line is the input syntax of the Logic Evaluator.

Example The following formulas are quantified:

• ∀x : even(x) ∨ odd(x);

• ∀y : x ≤ y;

• “every x is non-negative”

∀x : ¬(x < 0);

• “prime numbers exist”

∃x : isPrime(x).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.3 Predicate Logic 41

The correct syntactic structure of formulas with nested quantifiers has to be
often deduced from the free variables; parentheses should be used whenever
necessary to resolve ambiguities.

Example The formula

∀x : p(x)⇒ ∃y : q(f(x), y)

is to be interpreted as

∀x : (p(x)⇒ ∃y : q(f(x), y)).

and not as (∀x : p(x))⇒ ∃y : q(f(x), y).

Its syntactic structure is as follows (we list in parentheses the free variables
of every term/formula and denote by the suffix ‘/n’ the arity n of func-
tion/predicate constants):

Formula

∀
Var

x :

Formula(x)

Formula(x)

Predicate/1

p (

Term(x)

Var

x) ⇒

Formula(x)

∃
Var

y :

Formula(x, y)

Predicate/2

q (

Term(x)

Function/1

f (

Term(x)

Var

x),

Term(y)

Var

y)

Definition 19 (Semantics of Quantified Formulas) Let x be a vari-
able and A be a formula. The meaning of a quantified formula under an
assignment in some domain is defined as follows:

• The formula ∀x : A is true if and only if A is true for every value of x
(i.e., A is true in every assignment extension where x is mapped to a
value from the domain).

• The formula ∃x : A is true if and only if A is true for some value of x
(i.e., A is true in some assignment extension where x is mapped to a
value from the domain).

42 Chapter 2. The Language of Logic

Example The universal formula ∀x : y ≤ x is true in assignment [y 7→ 0]
over the domain of natural numbers with the usual interpretation of ‘≤‘,
because 0 ≤ x is true for every natural number x:

0 ≤ 0, 0 ≤ 1, 0 ≤ 2, . . .

Likewise, the existential formula ∃x : x|15 is true for every assignment over
the natural numbers with ‘|’ interpreted as ‘divides’, because x|15 is true for
some natural number x (e.g. for 3):

3|15.

Example Take the formula

∀x : a(x)⇒ b(x, f(x)).

In the domain of integer numbers with a interpreted as “is non-negative”, f
interpreted as “square of” and b interpreted as “is less than or equal”, the
formula expresses the (true) statement

Every non-negative integer number is less than or equal its square.

In the domain of character strings with a interpreted as “is non-empty”, f
interpreted as “string without first character” and b interpreted as “is longer
than”, the formula expresses the (true) statement

Every non-empty character string is longer than the string with-
out the first character.

Free and Bound Variables As said above, the meaning of a formula does
not depend on the name of a bound variable. For instance, the meaning of

∀x : ∃y : x ∗ y ≤ z

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.3 Predicate Logic 43

is the same as the meaning of

∀y : ∃w : y ∗ w ≤ z

but it is not the same as the meaning of

∀x : ∃y : x ∗ y ≤ w.

(because a free variable must not be renamed).

When stating a proposition, we usually operate with closed formulas, since
their meaning is independent of any variable assignment. For instance, as-
sume that we consider the domain of natural numbers with ‘≤’ interpreted
as usual. The statement

∀y : x ≤ y

is true, if the current assignment maps the free variable x to 0, and false,
otherwise. On the contrary, the closed formula

∃x : ∀y : x ≤ y

is true independently of the variable assignment. Sometimes, it is assumed
that all free variables in a formula are universally quantified such that a
formula

∀x : ∀y : x ≤ x+ y

could be also written as

x ≤ x+ y.

We recommend to always write all quantifiers to avoid misinterpretations.

We will sometimes use the following notation.

Definition 20 (Free Variable Substitution) For every syntactic phrase
P , variable x, and term T we denote by

P [x← T]

44 Chapter 2. The Language of Logic

the phrase we get from P by replacing every free occurrence of x by T .

Example Let F := p(x) ∧ r(x, y) ∧ ∀x : p(x). Then

F [x← 1] = p(1) ∧ r(1, y) ∧ ∀x : p(x)

Patterns A frequently occuring formula pattern is ∀x : Ax ⇒ B where Ax
is a formula with free variable x. Such a formula is often written as

∀Ax : B

provided that the quantified variable x is clear from the context. Another
such pattern is ∃x : Ax ∧B which is typically written as

∃Ax : B.

Example

• The formula

∀x : ∃0 ≤ y ≤ x : |x− 2 ∗ y| ≤ 1

is an abbreviation for the formula

∀x : (∃y : (0 ≤ y) ∧ (y ≤ x) ∧ (|x− 2 ∗ y| ≤ 1)).

• The natural language sentence

“All Ferraris are red”

is an abbreviation for the sentence

“It holds for all objects that, if the object is a Ferrari, then
the object is red”

which is represented by the formula

∀x : isFerrari(x)⇒ isRed(x).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.3 Predicate Logic 45

• The natural language sentence

“Some Ferraris are black”

is an abbreviation for the sentence

“There exists an object such that the object is a Ferrari and
the object is black”

which is represented by the formula

∃x : isFerrari(x) ∧ isBlack(x).

The Logic Evaluator can evaluate quantified formulas that are input in prefix
form; however, we have to denote the domain that we consider (which must
be finite). In the following example, our domain is the range of natural
numbers less than or equal 100.

We may however also explicitly set the domain for a quantified variable:

46 Chapter 2. The Language of Logic

Operational Interpretation Variables are implemented by the following
Java class:

public final class Variable implements Term
{

private String variable;

public Variable(String _variable)
{

variable = _variable;
}

public String name()
{

return variable;
}

public Value eval() throws EvalException
{

Value value = Context.get(variable);
if (value == null) throw

new EvalException("no variable " + variable + " in context");
return value;

}
}

As we can see, the value of a variable is just determined by the context (the
current variable assignment). This context is, e.g. provided by a universally
quantified formula as an instance of the following Java class:

public final class ForAll implements Formula
{

private String variable;
private Term domain;
private Formula formula;

public ForAll(String _variable, Term _domain, Formula _formula)
{

variable = _variable;
domain = _domain;
formula = _formula;

}

public boolean eval() throws EvalException
{

Iterator iterator = Model.iterator(domain);
while (iterator.hasNext())
{

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.3 Predicate Logic 47

Context.begin(variable, iterator.next());
boolean result = formula.eval();
Context.end();
if (!result) return false;

}
return true;

}
}

The Java expression (new Forall(x, d, A)).eval() computes the truth
value of ∀x : A in domain d. As one can see, we iterate over d and establish
new contexts in which x is assigned each value of the domain in turn. In
each context, we evaluate A. Only if the result is true for every value, the
overall result is true.

Likewise, we have the following implementation of existential quantification:

public final class Exists implements Formula
{

private String variable;
private Term domain;
private Formula formula;

public Exists(String _variable, Term _domain, Formula _formula)
{

variable = _variable;
domain = _domain;
formula = _formula;

}

public boolean eval() throws EvalException
{

Iterator iterator = Model.iterator(domain);
while (iterator.hasNext())
{

Context.begin(variable, iterator.next());
boolean result = formula.eval();
Context.end();
if (result) return true;

}
return false;

}
}

To compute the value of the expression (new Exists(x, d, A)).eval(),
we iterate over d and establish all contexts in which A is evaluated. If we
find some value for which this result is true, the overall result is true.

48 Chapter 2. The Language of Logic

Convention Multiple quantifiers of the same kind are often “merged”, i.e.,
instead of writing ∀x : ∀y : A we often write

∀x, y : A

and instead of writing ∃x : ∃y : A we write

∃x, y : A.

The same is true for the Logic Evaluator where you can write

forall(x0, ..., xn−1: A)
exists(x0, ..., xn−1: A)

with any number of quantified variables.

Duality Existential and universal quantification are dual concepts:

Proposition 16 (De Morgan’s Laws) For every variable x and formula
A, we have

¬∀x : A iff ∃x : ¬A
¬∃x : A iff ∀x : ¬A

In other words, “not all x have A” means the same as “there exists some x
such that not A” and “there does not exist an x with A” means the same as
“for all x, not A”.

From these laws, it follows that ∃x : A means the same as ¬∀x : ¬A; therefore
frequently existential quantification is defined just as a syntactic abbreviation
in terms of universal quantification (or vice versa).

2.3.5 Local Definitions

Apart from universal and existential quantification of formulas, there exist
several other frequently occurring quantifiers, most notably quantifiers for
introducing local definitions.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.3 Predicate Logic 49

Proposition 17 (Local Definitions) Let x be a variable, T and S be terms,
and A be a formula. Then the following are formulas with bound variable x:

(let x = T : A)
(A where x = T)

The following are terms:

(let x = T : S)
(S where x = T)

We omit the parentheses, if A, T , and S are unambiguous.

This definition shows that also terms (not only formulas) may be quantified.

Alternative Forms Various syntactic forms express local definitions.

• Let x be T . Then we have A.

• Let x be T in A.

• A, where x = T .

• f(x) := Sx,y, where y = Tx;

• let(x = T: A)

The last line denotes the input syntax for the Logic Evaluator.

Proposition 18 (Semantics of Local Definitions) Let x be a variable, A
be a formula, and T and S be terms. Under a given assignment in a domain,

• the meaning of (let x = T : A) respectively that of (A where x = T)
is the meaning of A in the extended assignment where x is mapped to
the value of T ;

• the meaning of (let x = T : S) respectively that of (S where x = T)
is the value of S in the extended assignment where x is mapped to the
value of T .

50 Chapter 2. The Language of Logic

Thus both operators let and where are just different syntactic forms for the
same concept.

Example Take the domain of natural numbers and assignment [x 7→ 1].
Then the proposition

let y = 0 : x ≤ y

is false because 1 ≤ 0 does not hold.

The function f defined as

f(x) := s ∗ x+ s where s = x+ 1

has the same meaning as if it were defined as

f(x) := (x+ 1) ∗ x+ (x+ 1).

The last example shows that local definitions are just convenient forms for
structuring formulas by giving names to values. We can always remove the
quantifier by replacing any free occurrence of the quantified variable x by its
defining term T .

Example The formula

x|y ∧ ∃z : y|z
where y = 2x

is equivalent to

x|2x ∧ ∃z : 2x|z

Likewise, the formula

x|y ∧ ∃y : y|x
where y = 2x

is equivalent to

x|2x ∧ ∃y : y|x

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.3 Predicate Logic 51

However, it is not equivalent to

x|2x ∧ ∃y : 2x|x

because the second occurrence of y is within the scope of another quantifier
that binds this variable.

Actually, local definitions can be replaced by existential respectively universal
quantifiers.

Proposition 19 (Replacement of Local Definitions) Let x be a variable,
T be a term, and A be a formula. Then we have

(let x = T : A) iff (∀x = T : A)
(let x = T : A) iff (∃x = T : A)

The universal/existential formulas in above proposition are the previously in-
troduced shortcuts for (∀x : x = T ⇒ A) and (∃x : x = T ∧ A). The propo-
sition is true, because for every term T there exists exactly one x such that
x = T .

In the Logic Evaluator, local definitions are implemented for formulas as well
as for terms as shown below:

Operational Interpretation A term with a local definition is implemented
in the evaluator by an object of the following Java class:

52 Chapter 2. The Language of Logic

public final class LetTerm implements Term
{

private String variable;
private Term term;
private Term body;

public LetTerm(String _variable, Term _term, Term _body)
{

variable = _variable;
term = _term;
body = _body;

}

public Value eval() throws EvalException
{

Context.begin(variable, term.eval());
Value result = body.eval();
Context.end();
return result;

}
}

The Java expression new LetTerm(x, T, S) thus evaluates to the meaning
of let x = T : S. As one can see, we construct a new context in which x is
bound to the value of T and evaluate S in this context.

Formulas with local definitions are implemented analogously.

Convention We merge multiple local definitions, i.e., instead of writing
(let x = 1 : let y = 2 : (x+ y) ∗ (x− y)), we usually write

let x = 1, y = 2 : (x+ y) ∗ (x− y)

or correspondingly

(x+ y) ∗ (x− y) where x = 1, y = 2

Also the Logic Evaluator implements local definitions

let(x0 = T0, ..., xn−1 = Tn−1: A)

with any number of quantified variables.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.4 Example 53

2.4 Example

We demonstrate the beauty and usefulness of the language of logic on a
simple example. Suppose we are given the following problem statement:

Write a program that takes a number and returns the next prime
number.

Specification The task can be formally specified as follows:

• Input: n such that isNumber(n);

• Output: p such that isNextPrime(n, p).

Here isNumber is the input condition (Eingabebedingung), a unary predicate
that describes the property that every well-formed input n has; isNextPrime
is the output condition (Ausgabebedingung), a binary predicate that describes
how the output p shall be related to n. Our goal is to construct these two
conditions.

As for the input condition, we can reasonably assume from the problem
statement that the input is a natural number. We denote by N the set of
natural numbers and define

isNumber(n) :⇔ n ∈ N

using the set theoretic predicate ‘∈’ (“is element of”) to be introduced in the
next chapter and the notion ‘:⇔’ to define a new predicate.

The output condition is a bit more complicated. Apparently, the result p
shall be again an object of the same kind as input n; but it shall be also a
prime and it shall be the “next” such number. Thus we define

isNextPrime(n, p) :⇔ isNumber(p) ∧ isPrime(p) ∧ isNextP(n, p).

A natural number p greater than 1 is a prime if and only if there is no number
n between 1 and p that divides p

isPrime(p) :⇔
1 < p ∧
¬(∃1 < n < p : n|p).

54 Chapter 2. The Language of Logic

This can be written a bit more elegantly as

isPrime(p) :⇔
1 < p ∧
∀1 < n < p : n 6 | p.

The number n divides m if there exists some p such that the product of n
and p is m:

n|m :⇔ ∃p : n ∗ p = m.

Thus we have reduced the description of the predicate isPrime to formulas
that only use the function constant ∗ and the predicates = and < with their
usual interpretation on natural numbers.

Now we proceed to the question what n’s next prime p is. A little thinking
reveals that the notion “next” intends to express that there is no other num-
ber between n and p that is also a prime. But what if n is itself prime? Shall
we then return n itself or the smallest prime greater than n? The natural
language term “next” is somewhat ambiguous in this respect, so we discuss
with our client and learn that the first interpretation is the desired one. Thus
we write:

isNextP(n, p) :⇔
n ≤ p ∧
¬(∃n ≤ q < p : isPrime(q)).

The predicate isNumber is rather trivial and the predicate isNextP in isola-
tion does not describe a very interesting property; thus we insert the corre-
sponding formulas to yield the final specification:

• Input: n ∈ N;

• Output: p ∈ N such that isNextPrime(n, p).

isNextPrime(n, p) :⇔
n ≤ p ∧ isPrime(p) ∧
¬(∃n ≤ q < p : isPrime(q))

isPrime(p) :⇔
1 < p ∧
∀1 < n < p : n 6 | p

n|m :⇔ ∃p : n ∗ p = m.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.4 Example 55

These predicates can be defined in the Logic Evaluator as follows:

pred <(m, n) <=> and(<=(m, n), not(=(m, n)));
pred divides(n, m) <=> exists(p in nat(1, m): =(*(n, p), m));
pred isPrime(p) <=>

and(<(1, p),
forall(n in nat(2, -(p, 1)): not(divides(n, p))));

pred isNextPrime(n, p) <=>
and(<=(n, p), isPrime(p),

not(exists(q in nat(n, -(p, 1)): isPrime(q))));

The only difference to the mathematical definitions is that we have to explic-
itly restrict the range of the existentially quantified variable p in the definition
of divides (which is easy, because any divisor of m is in the range [1 . . .m]).

We can use these definitions to check the validity of input/output pairs:

We will now use the “such” quantifier (see page 292)

such(x: A, T)

which returns a value of term T such that A holds (for some value of x,
provided that such an x exists). With the help of this quantifier we can
define a function

56 Chapter 2. The Language of Logic

fun program(n) =

such(p in nat(n, *(2, n)): isNextPrime(n, p), p);

We restrict our search for the next prime to the range [n . . . 2n] applying the
mathematical knowledge that between every number and its double there
exists at least one prime number. Thus we can simulate a program that
satisfies our specification:

Operational Interpretation From the formal specification constructed
above, one can already derive a straight-forward program that solves the
stated problem. We recall the operational interpretations of formulas intro-
duced in the previous sections and encode every formula (∀a ≤ x ≤ b : A) as
the following piece of code

boolean forallX = true;
for (int x = a; x <= b; x++)
{

// value of A(x)
boolean isTrue = ...;
...

if (!isTrueA)
{

forallX = false;

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.4 Example 57

break;
}

}

Then the variable forallX is true after the termination of the loop if and
only if the universal formula is true.

Correspondingly, we can encode (∃a ≤ x ≤ b : A) as

boolean existsX = false;
for (int x = a; x <= b; x++)
{

// value of A(x)
boolean isTrue = ...;
...

if (isTrueA)
{

existsX = true;
break;

}
}

Here the variable existsX is true after the termination of the loop if and
only if the existential formula is true.

Based on this idea, we implement the predicates as the following Java meth-
ods:

// ---
// divides(m, n) :<=> (exists p in 1..n: m*p = n)
// ---
boolean divides(int m, int n)
{

// exists p in 1..n
boolean existsP = false;
for (int p = 1; p <= n; p++)
{

// m*p = n
boolean equalsMPN = (m*p == n);
if (equalsMPN)
{

existsP = true;
break;

}
}
return existsP;

}

58 Chapter 2. The Language of Logic

// ---
// isPrime(p) :<=>
// 1 < p /\
// (forall n in 2..p-1: ~divides(n, p))
// ---
boolean isPrime(int p)
{

// p > 1 /\
if (p > 1)
{

// forall n in 2..p-1
boolean forallN = true;
for (int n = 2; n <= p-1; n++)
{

// ~divides(n, p)
boolean notDividesNP = !divides(n, p);
if (!notDividesNP)
{

forallN = false;
break;

}
}
return forallN;

}
else

return false;
}

// ---
// isNextPrime(n, p) :<=>
// n <= p /\ isPrime(p) /\
// ~exists(q in n..p-1: isPrime(q))));
// ---
boolean isNextPrime(int n, int p)
{

// n <= p /\
if (n <= p)
{

// isPrime(p) /\
if (isPrime(p))
{

// ~exists q in nat(n, p-1):
boolean existsQ = false;
for (int q = n; q <= p-1; q++)
{

boolean isPrimeQ = isPrime(q);
if (isPrimeQ)
{

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

2.4 Example 59

existsQ = true;
break;

}
}
if (existsQ)

return false;
else

return true;
}
else
return false;

}
else

return false;
}

// ---
// program(n) := such(p in n..2*n: isNextPrime(n, p))
// ---
int program(int n)
{

for (int p = n; p <= 2*n; p++)
{

if (isNextPrime(n, p))
return p;

}
return -1; // not reached

}

While above program solves the stated problem, a little bit of thinking reveals
that we can do this more efficiently. The first prime number found is exactly
the wanted “next” prime such that we do not need an extra check for this
property. Thus we write:

// --
// program(n) := such(p in n..2*n: isPrime(p))
// --
int program(int n)
{

for (int p = n; p <= 2*n; p++)
{

if (isPrime(p))
return p;

}
return -1;

}

Chapter 3

Sets, Relations, and Functions

Frequently, logical formulas are interpreted in a domain whose objects are
of the datatype set (Menge). The importance of this domain stems from its
universality: virtually all other types of objects that occur in mathematical
work (relations, functions, numbers, arrays, lists, trees, databases, . . .) can
with the help of a few basic constructions be modelled as sets. The properties
of these objects are then determined entirely by the properties of sets; the
theory of sets thus provides the building material for most other theories.

Intuitively, a set is a collection of elements. However, since sets shall serve
as a fundamental kind of objects, there is no point in asking what (other
object) a set is (if we could answer this question, we would have a more
fundamental kind of object). Sets are therefore not defined by what they
are but by what one knows about (respectively can do with) them. In other
words, the domain of sets is characterized by various axioms (Axiome), i.e.,
propositions that are stipulated to be true.

A common axiomatization of set theory (Mengenlehre) is due to Zermelo and
Fraenkel; this form of set theory is called ZF set theory. We will not list all
ZF axioms but focus on their consequences for practical work.

3.1 The Datatype Set

The domain of sets has a single binary predicate is element of (ist Element
von) denoted by the infix constant ‘∈’. All other predicates and functions
are defined by this predicate.

The formula x ∈ y is read as

60

3.1 The Datatype Set 61

• x is element of y;

• x is part of y;

• y contains x.

Please note that in set theory all objects are sets (e.g. also the number 1 is
just a particular set). Thus in a statement x ∈ y, both x and y denote sets
the first of which is element of the second one.

The following axiom states that sets have no other property than being ele-
ment containers:

Axiom 1 (Equality of Sets) Two sets are equal if and only if they have
the same elements, i.e., for all x and y, we have

x = y ⇔ (∀z : z ∈ x⇔ z ∈ y).

Furthermore, we have a “minimal” set:

Axiom 2 (Empty Set) There exists a set that is empty, i.e., that does not
contain any elements:

∃x : ∀y : y 6∈ x.

Because of Axiom 1, there is only one empty set such that we can define

∅ := such x : ∀y : y 6∈ x.

Finite sets (i.e., sets with a finite number of elements) can be constructed by
explicit enumeration.

Proposition 20 (Set Enumeration) Let T0, T1, . . . , Tn−1 be terms (for
any n). Then

{T0, T1, . . . , Tn−1}

62 Chapter 3. Sets, Relations, and Functions

is a term that denotes the set of all the T i values, i.e., for every x, we have

x ∈ {T0, T1, . . . , Tn−1} ⇔ (x = T0 ∨ x = T1 ∨ . . . ∨ x = Tn−1).

As a special case, we have {} = ∅.

Example The set S := {1, ∅, {1, 2}, a} contains the values

1, ∅, {1, 2}, a,

i.e., 1 ∈ S, ∅ ∈ S, {1, 2} ∈ S, a ∈ S.

We have the following set equalities:

{1, 2} = {2, 1};
{1, 2} = {1, 1, 2, 1}.

Logic Evaluator The predicate “is element of” is denoted by (prefix) in

and the empty set is denoted by {}. The binary function join adds an
element to a set, i.e.,

join(T0, join(T1, . . . , join(Tn−1, {}))) = {T0, T1, . . . , Tn−1}.

The binary predicate = also denotes set equality (we will see later how we
can define a corresponding predicate ourselves).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.1 The Datatype Set 63

Sets have an important “ordering” relationship:

Definition 21 (Subset) x is a subset (Teilmenge) of y, if every element of
x is also an element of y, i.e.,

x ⊆ y :⇔ (∀z ∈ x : z ∈ y).

The subset relationship is an ordering in the following sense.

Proposition 21 (Subset Properties) For every x, y, and z we have:

Minimum (Kleinstes Element)

∅ ⊆ x;

Reflexivity (Reflexivität)

x ⊆ x;

Antisymmetry (Antisymmetrie)

(x ⊆ y ∧ y ⊆ x)⇒ y = x;

Transitivity (Transitivität)

(x ⊆ y ∧ y ⊆ z)⇒ x ⊆ z.

64 Chapter 3. Sets, Relations, and Functions

Furthermore, we have the following relationship between equality and the
subset predicate:

Proposition 22 (Equality and Subset) For every x and y, we have

x = y ⇔ (x ⊆ y ∧ y ⊆ x).

Proof Take arbitrary x and y. We have to prove x = y ⇔ (x ⊆ y ∧ y ⊆ x).

• We prove x = y ⇒ (x ⊆ y ∧ y ⊆ x). Assume x = y, i.e., by definition
of ‘=’,

(1) ∀z : z ∈ x⇔ z ∈ y.

We have to prove x ⊆ y ∧ y ⊆ x.

– We prove x ⊆ y, i.e., by definition of ‘⊆’, ∀z ∈ x : z ∈ y. Take
arbitrary z. We have to prove z ∈ x⇒ z ∈ y. Assume (2) z ∈ x.
We have to prove z ∈ y which is a consequence of (1) and (2).

– The proof of y ⊆ x proceeds analogously.

• We prove (x ⊆ y ∧ y ⊆ x) ⇒ x = y. Assume x ⊆ y ∧ y ⊆ x, i.e., by
definition of ‘⊆’

(1) ∀z ∈ x : z ∈ y;
(2) ∀z ∈ y : z ∈ x.

We prove x = y, i.e., by definition of ‘=’, ∀z : z ∈ x⇔ z ∈ y. Take
arbitrary z. We have to prove z ∈ x⇔ z ∈ y.

– We prove z ∈ x ⇒ z ∈ y. Assume (3) z ∈ x. We have to prove
z ∈ y which is a consequence of (1) and (3).

– We prove z ∈ y ⇒ z ∈ x. Assume (4) z ∈ y. We have to prove
z ∈ x which is a consequence of (2) and (4).

Logic Evaluator Using the knowledge proved above, we may define equality
of sets as follows:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.1 The Datatype Set 65

Most frequently, sets are constructed with the help of the following special
quantifier that builds a term from a term and a formula:

Proposition 24 (Set Quantifier) Let x be a variable, S a term, and A a
formula; then the following is a term:

{x ∈ S : A}.

The value of this term is the set of all elements x in S such that A holds,
i.e., for all x, we have

x ∈ {x ∈ S : A} ⇔ (x ∈ S ∧ A).

We call S the variable domain (Variablenbereich) of x. If S is clear from the
context, we may just write {x : A}.

Example Let S be {1, 2, 3, . . . , 10}. Then the set

{x ∈ S : x ≤ 3 ∨ x is even}

is {1, 2, 3, 4, 6, 8, 10}.

Remark The set quantifier allows us to construct sets only from elements
of a (possibly implicitly) given set. We might want to lift this restriction,
i.e., work with a general quantifier

{x : A},

66 Chapter 3. Sets, Relations, and Functions

such that, for every x, x ∈ {x : A} ⇔ A. However, with such a general
quantifier we could also define a set S := {x : x 6∈ x}, i.e., the set of all
sets that do not contain themselves as elements. Then we might ask ourself
whether S ∈ S. If yes, then this would contradict the construction principle.
If no, then S ∈ S would be true by the construction principle, which would
contradict our assumption. In any case, we would have a contradiction,
therefore neither S ∈ S nor S 6∈ S could hold. This so called Russel Paradox
is avoided by restricting the quantifier as shown above.

Generalization The set quantifier is often used in a more general form.
Let Tx be a term with free variable x, S be a term, and A be a proposition.
Then the term

{Tx : x ∈ S ∧ A}

denotes the set of all values of Tx such that A holds where x is an element
of S, i.e., it is the same as

{y : (∃x ∈ S : y = Tx ∧ A)}.

If S is clear, the formula x ∈ S is often skipped; the bound variable x then
has to be deduced from the context.

Example The term

{2 ∗ x : 1 ≤ x ≤ 5}

is usually interpreted as

{2 ∗ x : x ∈ N ∧ 1 ≤ x ≤ 5}

(where N is the set of natural numbers) which denotes the set {2, 4, 6, 8, 10}.
Likewise, the term

{x+ y : 1 ≤ x ≤ 5}

denotes in assignment [y 7→ 1] the set {2, 3, 4, 5, 6} (assuming that y is not
bound by the set quantifier).

Logic Evaluator The general form of the set quantifier is available as

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.1 The Datatype Set 67

set(x in S: A, T) = {Tx : x ∈ S ∧ A}.

Generalization Set quantifiers may also range over multiple variables, e.g.

{Zx,y : x ∈ S ∧ y ∈ T ∧ A}

with the meaning

{z : (∃x ∈ S, y ∈ T : z = Zx,y ∧ A)}.

Again, the formula x ∈ S ∧ y ∈ T is frequently skipped and the quantified
variables have to be deduced from the context.

Example The term

{x+ y : 1 ≤ x ≤ 3 ∧ 0 ≤ y ≤ 2}

is usually interpreted as

{x+ y : x ∈ N ∧ y ∈ N ∧ 1 ≤ x ≤ 3 ∧ 0 ≤ y ≤ 2}.

Its value is the same as that of the term

{s : (∃x ∈ N, y ∈ N : s = x+ y ∧ 1 ≤ x ≤ 3 ∧ 0 ≤ y ≤ 2)}.

which is the set

{1 + 0, 1 + 1, 1 + 2, 2 + 0, 2 + 1, 2 + 2, 3 + 0, 3 + 1, 3 + 2}

which again equals

{1, 2, 3, 4, 5}.

Logic Evaluator The set quantifier also binds multiple variables:

68 Chapter 3. Sets, Relations, and Functions

Operational Interpretation In the Logic Evaluator, set quantifiers with
single variables are instances of the following Java class:

public final class SetTerm implements Term
{

private String variable;
private Term domain;
private Formula formula;
private Term element;

public SetTerm(String _variable, Term _domain,
Formula _formula, Term _element)

{
variable = _variable;
domain = _domain;
formula = _formula;
element = _element;

}

public Value eval() throws EvalException
{

Set set = new Set();
Iterator iterator = Model.iterator(domain);
while (iterator.hasNext())
{

Context.begin(variable, iterator.next());
if (formula.eval())

set.addElement(element.eval());
Context.end();

}
return set;

}
}

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.1 The Datatype Set 69

The evaluation of the Java term (new SetTerm(x, S, A, T)).eval() re-
sults in the set {Tx : x ∈ S ∧ A}. We iterate over the set denoted by S and
establish new contexts in which x is mapped to each element of S in turn.
In each context, we evaluate the formula A and, if the result is true, evaluate
the term T whose value is added to the set.

With the help of the set quantifier, we can define a number of important
functions on sets1:

Definition 22 (Set Functions) We define the following functions on sets:

Union (Vereinigung)

“the union of x and y”

x ∪ y := {z : z ∈ x ∨ z ∈ y}

also denoted by x+ y;

“the union of all elements of x”⋃
x := {z : (∃y ∈ x : z ∈ y)}

also used as a quantor
⋃
x∈S∧A T :=

⋃
{T : x ∈ S ∧ A}.

Intersection (Durchschnitt)

“the intersection of x and y”

x ∩ y := {z ∈ x : z ∈ y}

also denoted by x ∗ y;

“the intersection of all elements of x”⋂
x := {z ∈

⋃
x : (∀y ∈ x : z ∈ y)}

also used as a quantor
⋂
x∈S∧A T :=

⋂
{T : x ∈ S ∧ A}.

Difference (Differenz)

“the difference of x and y” (“the complement of y in x”).

x\y := {z ∈ x : z 6∈ y}

also denoted by x− y;

1See the followup comments on the definition of “union” and “powerset”.

70 Chapter 3. Sets, Relations, and Functions

Powerset (Potenzmenge)

“the powerset of x”

P(x) := {y : y ⊆ x}

also denoted by 2x.

Example Let S := {1, 2, 3, 4, 5}, T := {2, 5, 7}, U := {1, 3, 5, 7, 9}. Then
we have

S ∩ T = {2, 5};
S ∪ T = {1, 2, 3, 4, 5, 7};⋂
{S, T, U} = {5};⋃
{S, T, U} = {1, 2, 3, 4, 5, 7, 9};

P(T) = {∅, {2}, {5}, {7}, {2, 5}, {2, 7}, {5, 7}, {2, 5, 7}}.

Let N denote the set of natural numbers and Nn := {x ∈ N : x < n}. Then
we have⋃

i∈NNi = N;⋂
i∈NNi = {};

The syntactic structure of
⋃
i∈NNi is as follows (with free variables denoted

in parentheses):

Term

Quantor⋃
Formula(i)

Var

i ∈
Term

N

Term(i)

NVar

i

.

Remark Above definitions of union and powerset make use of the general
set quantor whose potential problems have been discussed before. Actually,
in set theory union and powerset are introduced in a different way: there

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.1 The Datatype Set 71

is an axiom that stipulates the existence of a unary function
⋃

with the
property that, for every x,

(∀z : z ∈
⋃

x⇔ (∃y ∈ x : z ∈ y))

which is equivalent to the definition given above. Based on this axiom, binary
union is then defined as x ∪ y :=

⋃
{x, y}. Likewise, there is an axiom that

stipulates the existence of a unary function ‘P’ with the property that, for
every x,

(∀y : y ∈ P(x)⇔ (∀z ∈ y : z ∈ x))

which is equivalent to the definition given above.

Logic Evaluator Also the implementation of unary and binary union as
well as of powersets is not based on the set quantifier but on set reduction (see
page 304). We can use these functions (∪ is denoted by ++, P by Powerset)
by loading a file set.txt.

However, binary and unary intersection can be defined with the help of the
set quantifier as follows (∩ is denoted by **, please compare with the math-
ematical definitions):

72 Chapter 3. Sets, Relations, and Functions

We have a number of laws that relate the basic set operations; some of them
are listed below.

Proposition 25 (Set Identities) For every A, B, and C we have:

Idempotency, Identity and Domination

A ∪ A = A, A ∪ ∅ = A,
A ∩ A = A, A ∩ ∅ = ∅;

Commutativity

A ∪B = B ∪ A,
A ∩B = B ∩ A;

Associativity

A ∪ (B ∪ C) = (A ∪B) ∪ C,
A ∩ (B ∩ C) = (A ∩B) ∩ C;

Distributivity

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C);

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.1 The Datatype Set 73

Cancellation

A ∪ (A ∩B) = A,
A ∩ (A ∪B) = A;

De Morgan

C\(A ∪B) = C\A ∩ C\B,
C\(A ∩B) = C\A ∪ C\B.

Because of associativity, we may write A ∪ B ∪ C respectively A ∩ B ∩ C
without parentheses.

We now argue for the correctness of A ∪B = B ∪ A.

Proof Take arbitrary A and B. By definition of =, we have to prove

(1) ∀x : x ∈ A ∪B ⇔ x ∈ B ∪ A.

Take arbitrary x.

• We prove x ∈ A ∪B ⇒ x ∈ B ∪ A. Assume

(2) x ∈ A ∪B.

We have to prove x ∈ B ∪ A. By definition of ∪, we have to prove

(3) x ∈ B ∨ x ∈ A.

If x ∈B, we are done. Thus assume (4) x 6∈ B. By (2) and definition
of ∪, we have (5) x ∈ A∨x ∈ B. From (4) and (5), we have x ∈ A and
thus (3).

• The proof of x ∈ B ∪ A⇒ x ∈ A ∪B proceeds analogously.

Many other set identities may be proved with the help of above identities by
“equality reasoning” (which relies on the transitivity of =).

Example For all A, B, C we have:

(B ∪ A) ∩ (C ∪ A) = (B ∩ C) ∪ A.

as illustrated by the following Venn diagram (Venn-Diagramm):

74 Chapter 3. Sets, Relations, and Functions

We prove this claim as follows:

(B ∪ A) ∩ (C ∪ A) = (commutativity)
(A ∪B) ∩ (A ∪ C) = (distributivity)

A ∪ (B ∩ C) = (commutativity)
(B ∩ C) ∪ A.

3.2 Tuples

The elements in a set do not have a particular order, i.e., there is no “first”,
“second”, or “last” set element. The concept of containers that preserve a
particular order among their components needs some additional mechanisms.

Proposition 27 (Tuple) For every n, there is an n-ary function 〈 〉 (the
tuple constructor) and n unary functions .0, .1, . . . , .n−1 (the tuple selectors
or projections) such that for all x0, x1, . . . , xn−1 we have

〈x0, x1, . . . , xn−1〉0 = x0;
〈x0, x1, . . . , xn−1〉1 = x1;
. . .
〈x0, x1, . . . , xn−1〉n−1 = xn−1.

We call 〈x0, x1, . . . , xn−1〉 an n-tuple (Tupel).

Please do not confuse in above proposition a variable name xi with the ap-
plication of the tuple selector .i to a tuple t, denoted as ti. Please also note

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.2 Tuples 75

that we use the same symbol 〈 〉 for the tuple constructors of all arities and
the same function symbol .i for the selection of the i-th component of ev-
ery n-tuple with i < n. Frequently, tuple construction is just denoted by
(x0, x1, . . . , xn−1).

Example Let T := 〈1, 2〉. Then

T0 = 1;
T1 = 2.

Let U := 〈2, T, {1}〉. Then

U0 = 2;
U1 = T ;
U2 = {1}.

Proposition 28 (Equality of Tuples) Two n-tuples are equal if and only
if their components are equal, i.e., for every n and all x0, x1, . . . , xn−1 and all
y0, y1, . . . , yn−1, we have

〈x0, x1, . . . , xn−1〉 = 〈y0, y1, . . . , yn−1〉 ⇔
(x0 = y0 ∧ x1 = y1 ∧ . . . xn−1 = yn−1).

Example

〈1, 2〉 6= 〈2, 1〉;
〈1, 2〉 6= 〈1, 2, 2〉.

Construction from Sets Tuples are not a basic concept: they can be built
from sets as follows. First, we define the constructor for 2-tuples as

〈x, y〉 := {{x}, {y, x}}.

76 Chapter 3. Sets, Relations, and Functions

If x = y, then t has a single element {x} that determines both x and y.
If x 6= y, then t contains two elements {x} and {x, y}. The 1-element set
determines x and its complement in the 2-element set determines y. Thus
the selectors can be uniquely defined as:

t0 := such x : ∃y : t = 〈x, y〉;
t1 := such y : ∃x : t = 〈x, y〉.

An n-ary tuple is then constructed from 2-tuples as

〈x0, x1, . . . , xn−1〉 := 〈x0, 〈x1, 〈. . . , 〈xn−2, xn−1〉〉〉〉

with the selectors being defined accordingly.

Logic Evaluator The constructor 〈 〉 is represented by the function tuple

with selector .i being represented as (prefix) .i; the predicate = can be also
applied to tuples. The unary predicate Tuple returns true for tuples only.

Definition 23 (Cartesian Product) The Cartesian Product (Kartesisches
Produkt) of n sets S0, . . . , Sn−1 is the set of all n-tuples whose i-th component
is in Si:

S0 × . . .× Sn−1 := {〈x0, . . . , xn−1〉 : x0 ∈ S0 ∧ . . . ∧ xn−1 ∈ Sn−1}.

In the Logic Evaluator, we define the binary Cartesian product as follows:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.3 Predicates as Sets 77

3.3 Predicates as Sets

The language of first order predicate logic introduced in Chapter 2 provides
variables that represent objects of the considered domain; a variable may not
stand for a predicate or a function. Consequently, we cannot state proposi-
tions like “for all predicates p” or “there is a function f”, which is necessary
in a lot of situations. Set theory however provides means to represent predi-
cates and functions as sets, such that we can talk about “higher order objects”
(predicates and functions) in a first order framework (using the domain of
sets).

Definition 24 (Relation) A relation (Relation, Beziehung) is a subset of a
Cartesian product:

R is a relation between S0, . . . , Sn−1 :⇔ R ⊆ S0 × . . .× Sn−1.

An n-ary relation is a subset of a Cartesian product of n sets:

R is a relation of arity n (an n-ary relation) :⇔
∃S0, . . . , Sn−1 : R is a relation between S0, . . . , Sn−1;

R is an n-ary relation on S :⇔
R ⊆S ×. . .×S (cartesian product of n instances of S).

R is a relation on S :⇔ R is a 2-ary (binary) relation on S.

78 Chapter 3. Sets, Relations, and Functions

Let R be an n-ary relation. We define the (n+ 1)-ary predicate

R(x0, . . . , xn−1) :⇔ 〈x0, . . . , xn−1〉 ∈ R.

and read this as R holds on (ist gültig für) x0, . . . , xn−1. If R is a binary
relation, we may write this as x0Rx1.

A relation is thus the set-theoretic counterpart of a predicate; the notation
R(x0, . . . , xn−1) is convenient to hide the distinction between relations and
predicate constants. We may now quantify over “predicates” as in

∀x : ∃R : (∀y : R(x, y)⇒ x = y)

with the understanding that this is interpreted in the domain of sets as

∀x : ∃R : (∀y : 〈x, y〉 ∈ R⇒ x = y)

where R represents a relation, i.e., a set.

Example Take the relation R := {〈x, y〉 : x ∈ N ∧ y ∈ N ∧ x ≤ y} on the
natural numbers N. R is also a relation on the integer numbers Z, because
N ⊆ Z.

Take S := {〈x, x/2〉 : x ∈ N}. S is a relation between N and Q (the set of all
rational numbers) and it is also a relation on Q; however, it is not a relation
on N (because 1/2 6∈ N).

The empty set ∅ is a relation on every set S.

Logic Evaluator We define the predicates Relation(R) (R is a relation),
isRelation(R, A, B) (R is a relation between A and B) as shown below:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.3 Predicates as Sets 79

Relations can be represented in various forms.

Example Take the relation R := {〈x, y〉 : x ∈ N ∧ y ∈ N ∧ x < y < 5}. It
may be represented by enumerating its elements

{〈0, 1〉, 〈0, 2〉, 〈0, 3〉, 〈0, 4〉, 〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 3〉, 〈2, 4〉, 〈3, 4〉}.

Another representation is a truth matrix where an entry true for 〈x, y〉 indi-
cates xRy (all entries not shown are false):

x\y 0 1 2 3 4 . . .
0 false true true true true
1 false false true true true
2 false false false true true
3 false false false false true
4 false false false false false

. . .

A graphical representation is that by a directed graph where an arrow x→ y
indicates xRy:

80 Chapter 3. Sets, Relations, and Functions

We now introduce a notion by which we can denote those values that are
affected by a relation.

Definition 25 (Domain, Range) Let R be a binary relation. The do-
main (Definitionsbereich) of R is the set of all first components of the tuples
in R:

domain(R) := {r0 : r ∈ R}.

The range (Wertebereich) of R is the set of all second components of the
tuples in R:

range(R) := {r1 : r ∈ R}.

An equivalent characterization is given by the following law:

Proposition 29 (Domain, Range) Let R be a binary relation. Then

(∀x : x ∈ domain(R)⇔ ∃y : 〈x, y〉 ∈ R);
(∀y : y ∈ range(R)⇔ ∃x : 〈x, y〉 ∈ R).

Example Take the relation R := {〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈1, 2〉}. We have
domain(R) = {0, 1} and range(R) = {0, 1, 2}.
For the empty relation, we have domain(∅) = range(∅) = ∅.

Logic Evaluator The functions domain and range are defined as shown in
the corresponding mathematical definitions:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.3 Predicates as Sets 81

The order of elements in a binary relation can be inverted.

Definition 26 (Inverse of a Relation) Let R ⊆ A×B. The inverse of R
is the following relation between B and A:

R−1 := {〈b, a〉 : a ∈ A ∧ b ∈ B ∧ 〈a, b〉 ∈ R}.

Above definition uses the notion R ⊆ A × B to denote that R is a binary
relation between A and B (as is common mathematical practice). The clause
a ∈ A∧ b ∈ B is only added to make the set quantifier conform to the syntax
given on page 66.

Example Take the relation R := {〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈1, 2〉}. We have
R−1 = {〈0, 0〉, 〈1, 0〉, 〈2, 0〉, 〈2, 1〉}.

Logic Evaluator We can define the function ^-1(R) (i.e., R−1) as shown
below:

82 Chapter 3. Sets, Relations, and Functions

Two relations may be combined via an intermediate set to form another
relation.

Definition 27 (Composition of Relations) LetR ⊆ A×B and S ⊆ B×C.
The composition (Verknüpfung, Produkt) of R and S is the following relation
between A and C:

R ◦ S := {〈a, c〉 : a ∈ domain(R) ∧ c ∈ range(S) ∧
(∃b : 〈a, b〉 ∈ R ∧ 〈b, c〉 ∈ S)}.

The clause a ∈ A∧ c ∈ C may be omitted in above definition; it is only used
to make the set quantifier conform to the syntax given on page 66.

Example The composition of relations R ⊆ A×B and S ⊆ B × C can be
visualized by the composition of arrows:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.3 Predicates as Sets 83

An arrow between an element of A and an element of C exists only if there
exist two arrows that are correspondingly connected via some intermediate
point in B.

Logic Evaluator We can define o(R, S) (i.e, R ◦ S) as follows:

84 Chapter 3. Sets, Relations, and Functions

Proposition 30 (Relation Laws) For every A, B, C, D and every R ⊆
A×B, S ⊆ B × C, and T ⊆ C ×D, we have:

(R−1)−1 = R;
R ◦ (S ◦ T) = (R ◦ S) ◦ T ;
(R ◦ S)−1 = S−1 ◦R−1.

We argue for the correctness of the first law.

Proof Take arbitrary A, B and R ⊆ A×B. We prove

(1) (R−1)−1 = R.

Because of the definition of =, we have to show

(2) ∀r : r ∈ (R−1)−1 ⇔ r ∈ R.

Take arbitrary r.

• We prove r ∈ (R−1)−1 ⇒ r ∈ R. We assume

(3) r ∈ (R−1)−1

and show r ∈ R.

We have R ⊆ A×B, therefore we know by definition of −1 that R−1 ⊆
B×A and (R−1)−1 ⊆ A×B. Thus we can find by (3) some a ∈ A and
b ∈ B such that r = 〈a, b〉. By definition of −1, we have 〈b, a〉 ∈ R−1.
Again, by definition of −1, we know that 〈a, b〉 ∈ R, therefore r ∈ R.

• The proof that r ∈ R⇒ r ∈ (R−1)−1 proceeds in a similar way.

Logic Evaluator We may test whether our definitions of inversion and
composition of relations conform to these laws:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.4 Functions as Sets 85

3.4 Functions as Sets

Like relations provide a set theoretic substitute for predicates, we can also
model functions by sets. In fact, functions are just considered as special
relations.

Definition 28 (Function) A function (Funktion) is a binary relation where
every element of the domain is in relation to at most one element of the
range:

f is a function :⇔
f is a binary relation ∧
∀x, y0, y1 : (〈x, y0〉 ∈ f ∧ 〈x, y1〉 ∈ f)⇒ y0 = y1.

A partial function (partielle Funktion/Abbildung) from A to B is a function
that is a relation between A and B:

f : A
partial−→ B :⇔

f is a function ∧
f ⊆ A×B.

86 Chapter 3. Sets, Relations, and Functions

A (total) function (totale Funktion/Abbildung) from A to B is a partial func-
tion from A to B where every element of A is in relation to some element
of B:

f : A→ B :⇔
f : A

partial−→ B ∧
∀x ∈ A : ∃y ∈ B : 〈x, y〉 ∈ f.

Since a function is a relation, the notions domain, range, inverse, and com-
position also apply to functions (but see the comments on function inversion
below).

While above definition only introduces unary functions, the case of n-ary
functions (for every n) is reduced to the unary case by taking a Cartesian
product as the function domain: e.g. a function

f : A×B → C

maps a tuple 〈a, b〉 with a ∈ A and b ∈ B to some value c ∈ C.

Example The following are functions:

• ∅;

• {〈0, 0〉, 〈1, 0〉, 〈2, 1〉, 〈3, 2〉};

• {〈x, x2〉 : x ∈ N};

• {〈x, x2〉 : x ∈ N ∧ x is even} ∪ {〈x, 0〉 : x ∈ N ∧ x is odd};

• {〈x, y〉 : x ∈ N ∧ y ∈ N ∧ x+ y = 100};

• {〈〈x, y〉, x+ y〉 : x ∈ N ∧ y ∈ N}.

The following are not functions:

• {〈0, 0〉, 〈0, 1〉};

• {〈x, x2〉 : x ∈ N ∧ x is prime} ∪ {〈x, 0〉 : x ∈ N ∧ x is odd};

• {〈x, y〉 : x ∈ N ∧ y ∈ N ∧ x+ y ≤ 100};

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.4 Functions as Sets 87

Logic Evaluator We define the corresponding predicates Function(f) (i.e.,

f is a function), isPartialFunction(f , A, B) (i.e., f : A
partial−→ B) and

isFunction(f , A, B) (i.e., f : A→ B) as follows:

The result of a function application is determined by “looking up” the set
that represents the function.

Definition 29 (Function Application) Let f be a function and let x ∈
domain(f). The value (Wert) of f at x is the y such that 〈x, y〉 ∈ f :

f(x) := such y ∈ range(f) : 〈x, y〉 ∈ f.

Since f is a function, above statement indeed defines a unique y ∈ range(f)
for every x ∈ domain(f).

88 Chapter 3. Sets, Relations, and Functions

Please note that this definition introduces a binary function ‘()’ (“apply”)
that takes two arguments f and x. This syntax is convenient to hide the
distinction between set-theoretic functions and function constants. We are
now able to quantify over functions as in

∀y : ∃f : ∀x : f(x) = y

with the understanding that f denotes a particular set and above formula
has to be interpreted as

∀y : ∃f : ∀x : 〈x, y〉 ∈ f.

Instead of writing f(〈x0, . . . , xn−1〉), we usually simply write f(x0, . . . , xn−1).

Logic Evaluator We can define the binary function apply(f , x) (i.e., f(x))
as follows:

Notation Functions are usually defined in one of the following formats
(where x is a variable and T is a term):

• f : A→ B
x 7→ T

• f : A→ B
f(x) := T

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.4 Functions as Sets 89

• f : A→ B
f := λx.T

• f(x : A) : B = T

All of this is to be interpreted as

f : A→ B ∧ ∀x ∈ A : f(x) = T

or, equivalently, as

f = {〈x, T 〉 : x ∈ A} ∧ ∀x ∈ A : T ∈ B.

If the function domain is a Cartesian product, we usually write

f : A0 × . . .× An−1 → B
f(x0, . . . , xn−1) := T

to denote

f : A0 × . . .× An−1 → B
f(t) := let x0 = t0, . . . , xn−1 = tn−1 : T.

Example The statement

div : N× N→ Q

div(x, y) := x/y;

should be read as

div := {〈〈x, y〉, x/y〉 : x ∈ N, y ∈ N} ∧
∀x ∈ N, y ∈ N : div(x, y) ∈ Q.

Function Inversion While the inverse of a function is well defined, it is
not necessarily a function.

Example Take function f = {〈0, 0〉, 〈1, 0〉, 〈2, 1〉}. Then

f−1 = {〈0, 0〉, 〈0, 1〉, 〈1, 2〉}

90 Chapter 3. Sets, Relations, and Functions

is a binary relation but not a function, because it contains 〈0, 0〉 and 〈0, 1〉.

We will learn in Proposition 70 on page 170 under which condition the inverse
of a function is indeed a function.

On the other hand, we have the following result.

Proposition 32 (Function Composition) The composition of two func-
tions is also a function, i.e., for all A, B, and C, and all f : A → B and
g : B → C, we have:

f ◦ g : A→ C.

Proof Take arbitrary A, B, C, f : A → B, and g : B → C. We have to
prove f ◦ g : A→ C, i.e., by definition of ◦, that

(1) (f ◦ g) : A
partial−→ C;

(2) ∀x ∈ A : ∃y ∈ C : 〈x, y〉 ∈ (f ◦ g).

• We prove (1), i.e., by definition of
partial−→ , that

(3) (f ◦ g) ⊆ A× C;
(4) ∀x, y0, y1 : (〈x, y0〉 ∈ (f ◦ g) ∧ 〈x, y1〉 ∈ (f ◦ g))⇒ y0 = y1.

We know (3) from the definition of ◦; we still have to show (4). Take
arbitrary x, y0, y1 and assume

(5) 〈x, y0〉 ∈ (f ◦ g);
(6) 〈x, y1〉 ∈ (f ◦ g).

We have to show y0 = y1.

From (5), (6), and the definition of ◦, we know y0 ∈ C, y1 ∈ C, and

(7) ∃b ∈ B : 〈x, b〉 ∈ f ∧ 〈b, y0〉 ∈ g;
(8) ∃b ∈ B : 〈x, b〉 ∈ f ∧ 〈b, y1〉 ∈ g.

By (7), we have some b0 ∈ B such that 〈x, b0〉 ∈ f ∧ 〈b0, y0〉 ∈ g; by
(8), we have some b1 ∈ B such that 〈x, b1〉 ∈ f ∧ 〈b1, y0〉 ∈ g. From
〈x, b0〉 ∈ f , 〈x, b1〉 ∈ f and the fact that f is a function, we know that
b0 = b1. From this and from 〈b0, y0〉 ∈ g, 〈b1, y1〉 ∈ g, and the fact that
g is a function, we know that y0 = y1.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.4 Functions as Sets 91

• We prove (2). Take arbitrary (3) x ∈ A. We have to show

(4) ∃y ∈ C : 〈x, y〉 ∈ (f ◦ g).

From (3) and f : A → B, we know (5) 〈x, f(x)〉 ∈ f and (6) f(x) ∈
B. From (6) and g : B → C, we know (7) 〈f(x), g(f(x))〉 ∈ g and
(8) g(f(x)) ∈ C.

To show (4), we take (9) y := g(f(x)) and show

(10) y ∈ C;
(11) 〈x, y〉 ∈ (f ◦ g).

We know (10) from (8) and (9). To show (11), we have to show, by
definition of ◦, that

(12) x ∈ A ∧ y ∈ C;
(13) ∃b : 〈x, b〉 ∈ f ∧ 〈b, y〉 ∈ g.

We know (12) from (3), (8), and (9). To show (13), we take (14) b :=
f(x) and have to show:

(15) 〈x, b〉 ∈ f ;
(16) 〈b, y〉 ∈ g.

We know (15) from (5) and (14). We know (16) from (7), (9), and (14).

92 Chapter 3. Sets, Relations, and Functions

As a consequence, we have the following “direct” characterization of function
composition.

Proposition 34 (Function Composition) For all A, B, and C, and all
f : A→ B and g : B → C, we have:

∀x ∈ A : (f ◦ g)(x) = g(f(x)).

We then have the following result:

Proposition 35 (Associativity of Function Composition) The compo-
sition of two functions is associative, i.e.,

∀A,B,C,D, f : A→ B, g : B → C, h : C → D :
f ◦ (g ◦ h) = (f ◦ g) ◦ h

Proof Take arbitrary A, B, C, D, f : A→ B, g : B → C, and h : C → D.
We have to show

∀x ∈ A : (f ◦ (g ◦ h))(x) = ((f ◦ g) ◦ h)(x).

Take arbitrary x ∈ A. Then we have by Proposition 32

(f ◦ (g ◦ h))(x) =
(g ◦ h)(f(x)) =
h(g(f(x))) =

h((f ◦ g)(x)) =
((f ◦ g) ◦ h)(x).

Commutative Diagrams Relationships between functions and composite
functions are often stated by a diagram where the nodes represent sets and
an arrow f between nodes A and B indicates that f is a function from A to
B. A path from one node to another represents the composition of all the
functions represented by the individual arcs on the graph. The diagram is
said to commute if any two paths with same initial node and same terminal
node represent the same function, e.g., the diagram

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.5 Sequences and Matrices 93

asserts that h = f ◦ g for f : A → B and g : B → C and h : A → C. The
diagram

says that f ◦ g = h ◦ k, for f : A → B, g : B → D, h : A → C, k : C → D.
Proposition 35 is asserted by the following diagram:

3.5 Sequences and Matrices

Tuples are intended to model sequences of objects of a fixed length; for every
n-tuple, there are n unary functions to select each component of the tuple
but there is no binary function that takes a tuple t and an arbitrary index i
and returns the i-th component of t.

While we could extend tuples accordingly, we have a more convenient concept
to model sequences of objects of arbitrary (possibly infinite) length:

94 Chapter 3. Sets, Relations, and Functions

Definition 30 (Sequence) A sequence (Folge) of length n over S is a func-
tion from Nn, the set of the first n natural numbers, to S:

s is a sequence of length n over S :⇔ s : Nn → S.

The length of a finite sequence s is that n such that s maps Nn to some S:

length(s) :=
such n ∈ N: ∃S : s is a sequence of length n over S.

A finite sequence over S is a sequence of length n over S, for some n:

s is a finite sequence over S :⇔
∃n ∈ N : s is a sequence of length n over S.

An infinite sequence over S is a function from N, the natural numbers, to S:

s is an infinite sequence over S :⇔ s : N→ S.

Sequences appear under various names:

• tables,

• arrays,

• vectors,

• lists.

The i-th component s(i) of a sequence s is also denoted as

• si;

• s[i];

• s.i.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.5 Sequences and Matrices 95

Example Take the sequence S := {〈0, 2〉, 〈1, 3〉, 〈2, 4〉, 〈3, 4〉, 〈4, 5〉} typically
written as

[2, 3, 4, 4, 5].

The length of S is 5 and we have

S0 = 2, S1 = 3, S2 = 4, S3 = 4, S4 = 5.

We also have

∀i ∈ N5 : 0 < Si < 10.

Take the infinite sequence T := {〈i, i2〉 : i ∈ N}, i.e.,

[0, 1, 4, 9, 16, 25, . . .].

We have

∀i ∈ N : Si = i2.

The same concept may be extended to two dimensions.

Definition 31 (Matrix) A matrix (Matrix) with m rows and n columns
over S is a function from Nm × Nn to S:

M is a m× n-matrix over S :⇔ M : Nm × Nn → S.

A matrix component M(〈i, j〉) is often denoted as:

• M(i, j);

• M [i, j];

• Mi,j.

96 Chapter 3. Sets, Relations, and Functions

Example Take the matrix

M := {
〈〈0, 0〉, 1〉, 〈〈0, 1〉, 2〉, 〈〈0, 2〉, 3〉,
〈〈1, 0〉, 4〉, 〈〈1, 1〉, 5〉, 〈〈1, 2〉, 6〉,
〈〈2, 0〉, 7〉, 〈〈2, 1〉, 8〉, 〈〈2, 2〉, 9〉}

which is typically depicted as: 1 2 3
4 5 6
7 8 9


We have

∀i ∈ N3, j ∈ N3 : Mi,j = 3i+ j + 1.

The matrix concept can be extended to an arbitrary number of dimensions
in an alogous way.

When constructing sequences or matrices by iterative updates, the following
notations come handy:

Definition 32 (Sequence Updates) The n-element a-sequence is the se-
quence of length n that maps every index to a:

new(n, a) := {〈i, a〉 : i ∈ Nn}.

The sequence constructed from s by setting i to a is the same as s with the
exception that i is mapped to a:

s[i 7→ a] := {〈i, a〉} ∪ {t ∈ s : t0 6= i}.

Example Take the sequence

A := new(5, 0)[3 7→ 1][2 7→ 5][4 7→ 1][2 7→ 3].

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

3.5 Sequences and Matrices 97

Then we have length(A) = 5 and

A0 = 0, A1 = 0, A2 = 3;A3 = 1;A4 = 2.

Logic Evaluator We can only represent finite sequences; we define the
sequence functions len(s) (based on the function #(s) that gives the number
of elements in a set s), new(n, a) and [](s, i, a) (i.e, s[i 7→ a]).

Chapter 4

Numbers

Much of our knowledge about numbers consists of rules (heuristics, methods,
algorithms) that tell us how to compute the values of arithmetic expressions
(“what is (27*56)/13?”) or solve equations for some unknowns (“for which x
does x2 +x = 15.75 hold?”). This is what we have been trained in school and
practice in daily life. However when being asked “What exactly is a (natural,
integer, rational, real, complex) number?” or “Why is x+ y = y + x?”, our
school wisdom does usually not suffice to give a satisfactory answer.

The goal of this chapter is to provide some deeper insight into the hierarchy
of number domains, i.e., to look below the surface of arithmetic rules and
to shed some light on the internal structure of the domains. Much of what
we have been taught to believe in school can here be easily justified; it is
not necessary to learn a lot of rules by heart if one is able to derive them on
demand from a few basic principles.

We will focus in this chapter on a constructive approach that explicitly defines
a domain by concepts that have an algorithmic interpretation (with set theory
as the fundamental basis). The constructions themselves are interesting from
the computer science point of view, because they illustrate how a particular
hierarchy of datatypes is systematically developed. Another approach that
demonstrates some more abstract mathematical techniques will be discussed
in Chapter 7.

4.1 The Natural Numbers

Intuitively, the natural numbers are the numbers of counting distinct objects:
there may be no object, one object, two objects, While the domain of

98

4.1 The Natural Numbers 99

natural numbers looks very simple and familiar, it is surprisingly powerful;
e.g. every computer program can be encoded as a natural number. However,
only discrete realities can be described by natural numbers; there are also
continuous realities where the distinction between objects is so “fine” that
they cannot be modelled by this domain.

Peano Arithmetic We may consider the natural numbers as an elementary
domain by a theory (see p. 281) that is due to the mathematician Peano.

Axiom 3 (Peano Arithmetic) The theory of natural numbers has an ob-
ject constant 0 (zero) and a unary function constant ′, the successor (Nach-
folger), that satisfy the following axioms.

1. 0 is not the successor of any natural number:

∀x : x′ 6= 0.

2. Different natural numbers have different successors:

∀x, y : x′ = y′ ⇒ x = y.

3. For every formula F , we have an axiom that states: F holds for every
natural number, if F holds for 0 and with every number also for its
successor, i.e.,

(F [x← 0] ∧ (∀x : F ⇒ F [x← x+ 1]))⇒ ∀x : F.

We call these axioms the induction axioms (Induktionsaxiome).

The Peano axioms essentially state that the natural numbers are a single
infinite chain

0→ 0′ → 0′′ → 0′′′ → . . .

We will see later how all operations on the natural numbers can be defined
just on the basis of 0 and ′.

Construction from Sets It is not necessary to consider the natural num-
bers as elementary objects; they can be defined within the framework of set
theory that provides a more fundamental kind of objects.

100 Chapter 4. Numbers

Definition 33 (Natural Numbers from Set) We define a constant 0 and
a unary function ′ as follows:

0 := ∅;
x′ := x ∪ {x}.

The first two axioms of Peano arithmetic are consequences of this definition.

Proof We sketch the proof of the first two laws of Peano.

• We prove ∀x : x′ 6= 0. Take arbitrary x. By definition of 0 and ′, we
have to prove

x ∪ {x} 6= ∅

which is true because x ∈ (x ∪ {x}) but x 6= ∅.

• We prove ∀x, y : x′ = y′ ⇒ x = y. Take arbitrary x and y. We assume

(1) x′ = y′

and have to show x = y. We assume (2) x 6= y and show a contradic-
tion. From (1), we know by the definition of ′

(3) x ∪ {x} = y ∪ {y}.

By the definition of ∪ and set enumeration, we know (4) x ∈ x ∪ {x}
and (5) y ∈ y ∪ {y}. From (3), (4), and the definition of =, we have
(6) x ∈ y ∪ {y} which implies with (2)

(7) x ∈ y.

Likewise, we have from (3), (5), and the definition of = that (8) y ∈
x ∪ {x} which implies with (2)

(9) y ∈ x.

The conjunction of (7) and (9) is in contradiction to the set-theoretic
axiom of regularity (Regularität) that prohibits such “cycles” (in general
any infinitely descending chains) with respect to ∈.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.1 The Natural Numbers 101

The construction of natural numbers proceeds with the definition of a set N
(which we do not give) such that the following proposition holds.

Proposition 38 (Natural Numbers) N, the set of natural numbers (natür-
liche Zahlen), is the smallest set that satisfies the following properties:

0 ∈ N;
∀x ∈ N : x′ ∈ N;
for every formula F :

(F (0) ∧ ∀x ∈ N : F (x)⇒ F (x+ 1))⇒ ∀x ∈ N : F (x).

Thus also the third law of Peano holds in the set-based construction of natural
numbers. Sometimes the following notations will be used.

Definition 34 (Natural Number Subsets)

N>0 := {x ∈ N : x > 0};
Nn := {x ∈ N : x < n}.

Arithmetic Operations Independently of how we have introduced the
natural numbers, we can define the basic arithmetic operations with the help
of the functions 0 and ′ and the following auxiliary operation.

Definition 35 (Predecessor) The predecessor (Vorgänger) of a natural
number x is the natural number whose successor is x:

x− := such y : x = y′.

Because of the second Peano law, the predecessor is uniquely defined (if it
exists). However, because of the first Peano law, there is no x such that
x′ = 0 and thus 0− is undefined (and we must not assume 0−

′
= 0).

We now introduce the arithmetic operations by A.5. In the rest of this
section, all variables denote natural numbers.

Definition 36 (Natural Numbers Operations) We define the follow-
ing functions and predicates (for all recursive definitions, a corresponding
termination function is r(x, y) := y).

102 Chapter 4. Numbers

Constants

1 := 0′, 2 := 1′;

Addition

x+ y := if y = 0 then x else (x+ y−)′

Multiplication

x ∗ y := if y = 0 then 0 else x+ (x ∗ y−)

Total Order

x ≤ y :⇔
if x = 0 then T
else if y = 0 then F
else x− ≤ y−

The recursive definitions are constructive in the sense that they can be exe-
cuted by repeated “unfolding” of the definition.

Example We compute (1+2):

1 + 2 = (definitions of 1 and 2)
0′ + 0′′ = = (definition of +)

(if 0′′ = 0 then 0′ else (0′ + 0′′−)′) = (second Peano law)
(0′ + 0′′−)′ = (definition of −)

(0′ + 0′)′ = (definition of +)
(if 0′ = 0 then 0′ else (0′ + 0′−)′)′ = (second Peano law)

(0′ + 0′−)′′ = (definition of −)
(0′ + 0)′′ = (definition of +)

(if 0 = 0 then 0′ else (0′ + 0−)′)′′ = (reflexivity of =)
0′′′.

Natural Number Laws Immediate consequences of these definitions are
the following laws.

Proposition 39 (Natural Numbers Operations) For all natural numbers
x and y, we have:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.1 The Natural Numbers 103

Addition

x+ 0 = x,
x+ y′ = (x+ y)′;

Multiplication

x ∗ 0 = 0,
x ∗ y′ = x+ (x ∗ y);

Total Order

0 ≤ x ⇔ T,
x ≤ 0 ⇔ x = 0,
x′ ≤ y′ ⇔ x ≤ y.

Furthermore, the following well known laws hold.

Proposition 40 (Natural Number Laws) For all natural numbers x, y,
z, we have:

x+ 0 = x,
x ∗ 1 = x,
x+ y = y + x,
x ∗ y = y ∗ x,

x+ (y + z) = (x+ y) + z,
x ∗ (y ∗ z) = (x ∗ y) ∗ z,
x ∗ (y + z) = (x ∗ y) + (x ∗ z),

x ≤ x,
(x ≤ y ∧ y ≤ x) ⇒ x = y,
(x ≤ y ∧ y ≤ z) ⇒ x ≤ z.

We will use the following abbreviations for every domain that provides a
binary predicate ≤.

Definition 37 (Order Predicates)

x < y :⇔ x ≤ y ∧ x 6= y;
x > y :⇔ x 6≤ y;
x ≥ y :⇔ x 6< y.

104 Chapter 4. Numbers

We often write a ≤ x < b to denote x ≤ a ∧ x < b and similar for all other
combinations of the order predicates.

Logic Evaluator Although there is a builtin implementation of the natural
numbers, we are going to simulate the construction on the base of 0 and and ′;
we use the letter N to distinguish the natural number function and predicate
constants from those that are going to be introduced in the following sections.
These and the subsequent definitions are collected in Appendix C.3 (file
natural.txt).

More Operations Since we have addition, we would also like to have the
inverse operation.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.1 The Natural Numbers 105

Definition 38 (Difference) z is a difference of x and y if x = y + z.

x− y := such z : x = z + y.

Please note that a difference between two natural numbers does not always
exist, e.g. 1 − 2 is undefined because there is no z with 1 = z + 2 (and we
must not assume 1 = (1− 2) + 2). However, we have the following result.

Proposition 41 (Difference) If a difference exists, it is unique:

∀x, y, z0, z1 : (x = z0 + y ∧ x = z1 + y)⇒ z0 = z1.

If x ≥ y, the difference of x and y is defined:

∀x, y : x ≥ y ⇒ x = (x− y) + y.

At the moment, we state these propositions without proofs. In Chapter 5,
we will discuss in detail how to prove properties about natural numbers.

While the natural numbers do not have an operation for exact division, they
provide the following pair of functions.

Definition 39 (Quotient and Remainder) The quotient (Quotient) and
remainder (Rest) of two natural numbers are defined as follows:

x div y := such q : ∃r : r < y ∧ x = (q ∗ y) + r;
x mod y := such r : ∃q : r < y ∧ x = (q ∗ y) + r.

By above definition (x div 0) and (x mod 0) are undefined for every x. On
the other side, we have the following positive results.

Proposition 42 (Quotient and Remainder) If quotient respectively re-
mainder of two numbers exist, they are unique.

∀x, y, q0, q1, r0 < y, r1 < y :
(x = (q0 ∗ y) + r0 ∧ x = (q1 ∗ y) + r1)⇒ (q0 = q1 ∧ r0 = r1).

106 Chapter 4. Numbers

If the divisor is not null, quotient and remainder exist:

∀x, y 6= 0 : (∃q, r : r < y ∧ x = (q ∗ y) + r).

We thus have the following relationship between quotient and remainder:

∀x, y 6= 0 : x = (x div y) ∗ y + (x mod y).

We define exponentiation as shown below.

Definition 40 (Exponentiation) We define recursively with termination
function r(x, n) := n:

.. : N× N→ N,

xn := if n = 0 then 1 else x ∗ xn− .

A corresponding construction can be applied in every domain D with a con-
stant 1 and a binary function ∗ such as the number domains that will be
introduced in the following sections; we will then assume the existence of a
corresponding function .. : D × N→ D.

Logic Evaluator Difference, quotient, remainder and exponentiation are
defined as shown below.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.1 The Natural Numbers 107

Other important notions on natural numbers can be introduced as follows.

Definition 41 (Natural Number Operations)

• x divides y if x ∗ z = y for some z:

x|y :⇔ ∃z : x ∗ z = y.

• The greatest common divisor (größter gemeinsamer Teiler) of x and y
is the largest number that divides both x and y:

gcd(x, y) := such z : z|x ∧ z|y ∧ (∀w : (w|x ∧ w|y)⇒ w ≤ z).

• The least common multiple (kleinstes gemeinsames Vielfaches) of x and
y is the smallest number that both x and y divide:

lcm(x, y) := such z : x|z ∧ y|z ∧ (∀w : (x|w ∧ y|w)⇒ z ≤ w).

• Two numbers are relatively prime (relativ prim) if their greatest com-
mon divisor is 1:

x and y are relatively prime :⇔ gcd(x, y) = 1.

• A number greater than 1 is prime (prim) if its only divisors are are 1
and itself:

x is prime :⇔ x > 1 ∧ (∀y : y|x⇒ (y = 1 ∨ y = x)).

The definition of prime numbers is motivated by the fact that every positive
natural number n has a unique prime number factorization (which will be
stated formally in Proposition 60 on page 134).

Logic Evaluator Above notions are defined as shown below (to speed up
computation, we we revert to builtin natural number arithmetic using the
file natural0.txt.

108 Chapter 4. Numbers

4.2 The Integer Numbers

As we have seen in the previous section, the domain of natural numbers is
“open” in the sense that, for certain arguments, some important operations
have no value in this domain. For instance, there does not exist a natural
number x with

0 = x+ 1,

i.e., (0− 1) is undefined.

We therefore introduce a domain Z of integer numbers such that

1. N can be “embedded” into Z, and

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.2 The Integer Numbers 109

2. for all integers a and b there is an integer x with a = x + b (and
consequently a− b is defined).

We are going to give a corresponding set-theoretic construction of Z that
meets these requirements. For the purpose of this endeavor (which is based
on the construction of the naturals given in the previous section), we will
denote by a constant cN the function or predicate c in N.

Definition 42 (Integer Numbers) The set Z of integer numbers (ganze
Zahlen) is defined as the following subset of N× N:

Z := Z≥0 ∪ Z<0;
Z≥0 := {〈x, 0N〉 : x ∈ N};
Z<0 := {〈0N, x〉 : x ∈ N\{0N}};
Z>0 := Z≥0\{〈0N, 0N〉}.

We define a corresponding constructor function:

I : N× N→ Z

I(x, y) := if x ≥N y then 〈x−N y, 0N〉 else 〈0N, y −N x〉;

The intuition of this construction is that a tuple 〈a, 0N〉 represents a non-
negative integer a, while a tuple 〈0N, b〉 represents a negative integer −b.
This particular representation has the advantage that the definition of the
arithmetic operations on integers becomes relatively easy.

Definition 43 (Integer Operations)

Constants

0 := I(0N, 0N); 1 := I(1N, 0N); 2 := I(2N, 0N).

Basic Arithmetic

x+ y := I(x0 +N y0, x1 +N y1);
x ∗ y := I((x0 ∗N y0) +N (x1 ∗N y1), (x0 ∗N y1) +N (x1 ∗N y0));
−x := 〈x1, x0〉;
x− y := x+ (−y).

110 Chapter 4. Numbers

Total Order

x ≤ y :⇔ (x0 + y1 <N y0 + x1).

More Arithmetic

|x| := if 0 ≤ x then x else − x;
sign(x) := if x = 0 then 0 else if 0 ≤ x then 1 else − 1;
x div y := such q : ∃r :
|r| < |y| ∧ x = q ∗ y + r ∧ (sign(r) = 0 ∨ sign(r) = sign(y));

x mod y := such r : ∃q :
|r| < |y| ∧ x = q ∗ y + r ∧ (sign(r) = 0 ∨ sign(r) = sign(y)).

Logic Evaluator The implementation of basic arithmetic correspond to
the mathematical definitions (see Appendix C.4, file integer.txt).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.2 The Integer Numbers 111

For the implementation of quotient and remainder, we need to define the
“search range” using an auxiliary function.

One can now show that the operations satisfy the laws stated for their coun-
terparts in N (Propositions 40, 41, and 42); we give an example.

Proof We show

∀x ∈ Z, y ∈ Z : x+ y = y + x.

Take arbitrary x ∈ Z, y ∈ Z. We have

x+ y = (definition of +)
I(x0 +N y0, x1 +N y1) = (commutativity of +N)
I(y0 +N x0, y1 +N x1) = (definition of +)

y + x.

112 Chapter 4. Numbers

In addition, however, the domain Z is closed with respect to the computation
of differences.

Proposition 44 (Difference) For every integer x and y the difference is
defined:

∀x ∈ Z, y ∈ Z : x = (x− y) + y.

Proof Take arbitrary x ∈ Z and y ∈ Z. We have

(x− y) + y = (definition of −)
(x+ (−y)) + y = (associativity of+)
x+ ((−y + y)) = (∗)

x+ 0 = (definition of + and 0)
x.

(*) We show −y + y = 0:

−y + y = (definition of −)
〈y1, y0〉+ y = (definition of +)

I(y1 +N y0, y0 +N y1) = (definition of I, computation in N)
(0N, 0N) = (definition of 0)

0.

Thus our definition of Zmeets one of the two requirements stated at the begin
of this section. In what sense also the other requirement (the embedding of N
into Z) is met will be discussed in Section 6.3. Despite the fact that such an
embedding is possible, we will also see in Section 6.2 that there are actually
no “more” integer numbers than natural numbers.

We will give in Chapter 7 another construction of Z which is in some sense
“structurally equal” to the definition above but mathematically more elegant
(because it is an instance of a more general technique that can be applied in
many situations). The definition above however has the advantage that it is
constructive, i.e., it gives rise to algorithms that can be used for implemen-
tation on a computer.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.3 The Rational Numbers 113

4.3 The Rational Numbers

The integer numbers are not yet closed with respect to all operations. For
instance, there does not exist a natural number x with

1 = x ∗ 2.

i.e., the quotient 1/2 is undefined.

We therefore introduce a domain Q of rational numbers such that

1. Z can be “embedded” into Q, and

2. for all integers a and b there is an integer x with a = x ∗ b (and
consequently a/b is defined).

We proceed by a set-theoretic construction that represents a rational r as a
tuple of integers 〈x, y〉 such that r ∗ y = x (i.e., r = x/y). In the following,
we denote by cZ the operation c in Z.

First, we need some auxiliary functions.

Definition 44 (Integer Conversions) We define the following conversion
functions between natural numbers and integers.

Z : N→ Z≥0, Z(x) := 〈x, 0N〉;
N : Z→ N, N(x) := |x|0;

It is easy to see that, for every n ∈ N, N(Z(n)) = n and, for every i ∈ N,
Z(N(i)) = |i|.

Definition 45 (Rational Numbers) The set Q of rational numbers (ra-
tionale Zahlen) is the following subset of Z× Z:

Q := {〈x, y〉 : x ∈ Z ∧ y ∈ Z>0 ∧ N(x) and N(y) are relatively prime}.

We define a corresponding constructor function ∗
∗ : Z× Z>0 → Q

x

y
:= 〈sign(x ∗Z y) ∗Z (|x| divZ g), |y| divZ g〉

114 Chapter 4. Numbers

where g = Z(gcd(N(x),N(y))).

Let r ∈ Q and take x and y such that r = 〈x, y〉. We call x the numerator
(Zähler) of r and y its denominator (Nenner):

numerator(r) := such x : ∃y : r ∈ Q ∧ r = 〈x, y〉;
denominator(r) := such y : ∃x : r ∈ Q ∧ r = 〈x, y〉.

This construction makes the tuple components relatively prime and places
the sign into the first component.

Example We have for 1 ∈ Z, 2 ∈ Z:

1

2
= 〈1, 2〉, 1

−2
= 〈−1, 2〉, 2

2
= 〈1, 1〉.

Consequently, every rational number is represented by a unique tuple.

Proposition 46 (Uniqueness) We have for all integers a, b, c, d:

(b 6= 0Z ∧ d 6= 0Z ∧ a ∗Z d = b ∗Z c)⇒
a

b
=
c

d
.

This gives us the well known simplification rule for every integer a, b, and c:

(a 6= 0Z ∧ c 6= 0Z)⇒ a ∗Z b
a ∗Z c

=
b

c
.

Logic Evaluator The conversion functions and the basic constructors are
implemented as shown below (@x, y denotes x

y
); all rational operations are

collected in Appendix C.5, file rational.txt).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.3 The Rational Numbers 115

We are now ready to define the usual operations on rational numbers.

Definition 46 (Rational Number Operations)

Constants

0 :=
0Z
1Z

; 1 :=
1Z
1Z

; 2 :=
2Z
1Z
.

Arithmetic

x+ y :=
(x0 ∗Z y1) +Z (x1 ∗Z y0)

x1 ∗Z y1

;

x ∗ y :=
x0 ∗Z y0

x1 ∗Z y1

;

−x :=
−Z x0

x1

;

x− y := x+ (−y);

116 Chapter 4. Numbers

x−1 :=
x1

x0

;

x/y := x ∗ y−1.

Total Order

x ≤ y :⇔ x0 ∗Z y1 ≤Z y0 ∗Z x1.

Logic Evaluator The corresponding executable definitions are listed below.

Rational Number Laws Again we can show that the operations satisfy
the laws stated for their counterparts in N (Propositions 40, 41, and 42). In
addition, however, the domain Q is closed with respect to the computation
of quotients.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.3 The Rational Numbers 117

Proposition 47 (Quotient) For all rationals x and y 6= 0 the quotient is
defined:

∀x ∈ Q, y ∈ Q\{0} : x = (x/y) ∗ y.

Proof Take arbitrary x ∈ Q and y ∈ Q\{0}. We have

(x/y) ∗ y = (definition of /)
(x ∗ y−1) ∗ y = (associativity of ∗)
x ∗ (y−1 ∗ y) = (∗)

x ∗ 1 = (definition of ∗ and 1)
x.

(*) We show y−1 ∗ y = 1:

y−1 ∗ y = (definition of −1)
y1

y0
∗ y = (definition of ∗∗)

〈sign(y1 ∗Z y0) ∗Z (|y1| divZ g), |y0| divZ g〉 ∗ y = (def. ∗, g 6= 0)
(sign(y1∗Zy0)∗Z(|y1| divZ g))∗Zy0

(|y0| divZg)∗Zy1
= (Prop. 46, g 6= 0)

sign(y1∗Zy0)∗Z|y1|∗Zy0

|y0|∗Zy1
= (Prop. 46, y 6= 0)

sign(y1∗Zy0)∗Zsign(y0)
sign(y1)

= (arithmetic in Z)
sign(y1)∗Zsign(y0)∗Zsign(y0)

sign(y1)
= (Pr. 46, y1 6= 0)

sign(y0)∗Zsign(y0)
1Z

= (arithmetic in Z)
1Z
1Z

= (definition of 1)

1.

Our definition of Q meets one of the two requirements stated at the begin of
this section. How Z is embedded into Q will be discussed in Section 6.3. In
Chapter 3, we will give a construction of Q which is “structurally equal” to
the definition above (and which is another instance of the general technique
that is used for a corresponding definition of Z).

Another characteristic property that distinguishes Q from Z is stated next.

118 Chapter 4. Numbers

Proposition 49 () Between any two rational numbers, there is another
rational number:

∀x ∈ Q, y ∈ Q : x < y ⇒ ∃z ∈ Q : x < z < y.

Proof Take any x ∈ Q and y ∈ Q with x < y. Then x < (x+ y)/2 < y.

As a consequence, between any two rational numbers there are infinitely
many other rational numbers. Q can be therefore used for modelling arbi-
trarily “fine-grained” realities. However, we will see in Section 6.2 that there
are not more rational numbers than there are integer numbers (or natural
numbers). Furthermore, the next section shows that there are truly “contin-
uous” realities that cannot be modelled even by rationals.

4.4 The Real Numbers

The rational numbers are still not complete with respect to the basic opera-
tions: there does not exist an x ∈ Q with

x ∗ x = 2.

i.e., there is no square root of 2 in Q.

Proof We show

∀x ∈ Q : x ∗ x 6= 2.

Take arbitrary x ∈ Q. We assume (1) x ∗ x = 2 and show a contradiction.
From the construction of Q, we know x = a

b
for some a ∈ Z and b ∈ Z>0

such that (2) N(a) and N(b) are relatively prime. We have a ∗Z a
b ∗Z b

= 2 and

thus (from now on we operate in Z and drop the corresponding subscripts):

(3) a ∗ a = 2 ∗ b ∗ b.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.4 The Real Numbers 119

From (3) we know N(2)|N(a ∗ a) and thus also (4) N(2)|N(a) (a proposition
that has to be proved extra). Therefore there exists some c ∈ Z such that

(5) a = 2 ∗ c.

From (3) and (5) we have 2 ∗ c ∗ 2 ∗ c = 2 ∗ b ∗ b, i.e., 2 ∗ c ∗ c = b ∗ b, thus
(6) N(2)|N(b ∗ b) and therefore (7) N(2)|N(b). (4) and (7) contradict (2).

We will now introduce the domain R of real numbers which provides a solu-
tion for the equation stated above. While there exist also relatively concrete
set-theoretic constructions of R (e.g. as a set of infinite decimal fractions),
the usual construction is another instance of the kind that will be stated for
Z and Q in Chapter 3.

In this section, we will characterize R in an inconstructive way by a number
of axioms.

Axiom 4 (Real Numbers) The domain of real numbers (reelle Zahlen) is a
set R with constants 0 ∈ R and 1 ∈ R, functions + : R×R→ R, − : R→ R,
∗ : R× R → R, −1 : R\{0} → R and predicate ≤⊆ R × R such that, for all
x ∈ R, y ∈ R, and z ∈ R, the following holds:

Field Axioms (Körperaxiome)

x+ y = y + x,
x+ (y + z) = (x+ y) + z,
x+ (−y) = 0,

x ∗ y = y ∗ x,
x ∗ (y ∗ z) = (x ∗ y) ∗ z,
x ∗ (x−1) = 1,

x ∗ 1 = x,
x ∗ (y + z) = (x ∗ y) + (x ∗ z);

Order Axioms (Ordnungsaxiome)

x ≤ x,
x ≤ y ∨ y ≤ z,
(x ≤ y ∧ y ≤ z)⇒ x ≤ z,
x ≤ y ⇒ x+ z ≤ y + z,
(x ≤ y ∧ 0 ≤ z)⇒ x ≤ y ∗ z.

120 Chapter 4. Numbers

Completeness Axiom (Vollständigkeitsaxiom)

Every non-empty subset of R that has an upper bound also has an
upper limit.

∀S ⊆ R : S 6= ∅ ⇒
((∃B ∈ R : B is upper bound of S)⇒

(∃L ∈ R : L is upper limit of S)).

The predicates used in the completeness axiom are defined below.

Definition 47 (Bounds and Limits) An upper bound (obere Schranke) of
S is as large as every element of S:

B is upper bound of S :⇔ ∀x ∈ S : x ≤ B.

An upper limit (obere Grenze) of S is the smallest upper bound of S:

L is upper limit of S :⇔
L is upper bound of S ∧
(∀M : M is upper bound of S ⇒ B ≤M).

Intuitively, the completeness axiom makes the real numbers much more
“dense” than the rational numbers where above property does not hold.

Example Take the set S := {si : i ∈ N} where si is the sum of the first i
components of the sequence

a : N→ Q

a(i) = 1
i!

and ! denotes the factorial function, i.e.,

a = [
1

1
,
1

1
,

1

1 ∗ 2
,

1

1 ∗ 2 ∗ 3
,

1

1 ∗ 2 ∗ 3 ∗ 4
, . . .]

and

S = {1

1
, (

1

1
+

1

1
), (

1

1
+

1

1
+

1

1 ∗ 2
), (

1

1
+

1

1
+

1

1 ∗ 2
+

1

1 ∗ 2 ∗ 3
), . . .}.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.4 The Real Numbers 121

S has an upper bound 3
1

but no upper limit in Q. However, it has an upper
limit in R traditionally denoted by the constant e (= 2.718281828. . .).

Then we have the following result which implies that the problem stated at
the begin of this section can be solved.

Proposition 52 (Existence of Real Roots) In R every non-negative num-
ber has an n-th root, i.e., for R≥0 := {x ∈ R : x ≥ 0} the following holds:

∀a ∈ R≥0, n ∈ N>0 : ∃x ∈ R : xn = a.

Since we can show that, for every x ∈ R, x∗x = x2N , this implies the existence
of a square root of 2 in R.

Definition 48 (Real Root Function)

n
√
x := such y : xn = y√
x := 2

N

√
x.

As a consequence of Proposition 52, we have

∀a ∈ R≥0, n ∈ N>0 : (n
√
a)n = a.

Contiguous subsets of the reals are often denoted as shown below.

Definition 49 (Intervals) We define the following intervals (Intervalle):

[a, b] := {x ∈ R : a ≤ x ≤ b};
[a, b[:= {x ∈ R : a ≤ x < b};
]a, b] := {x ∈ R : a < x ≤ b};
]a, b[:= {x ∈ R : a < x < b}.

For all a ∈ R and b ∈ R, the intervals [a, b] and [a, b[are called left closed
(linksseitig abgeschlossen), and the intervals [a, b] and]a, b] are called right
closed (rechtsseitig abgeschlossen).

122 Chapter 4. Numbers

Intervals are contiguous in the sense that if two values are in an interval S,
then also every intermediate value is in this interval, i.e.,

(∀x ∈ S, y ∈ S : x ≤ y ⇒ (∀z ∈ R : x ≤ z ≤ y ⇒ z ∈ S)).

The set R “embeds” Q in the sense that will be discussed in Section 6.3.
However, unlike the relationship between Z and Q (which are essentially of
the “same” size), there are considerably “more” reals than there are rationals.
Actually we will see in Section 6.2 that there are so many elements of R that
this set cannot be represented in a computer even with an infinite number
of memory cells.

Consequently the Logic Evaluator does in file real.txt not implement the
reals but fakes real number operations (without square root computation) by
rational number operations (see Appendix 339).

In Chapter 3 we will sketch a “structurally equal” construction that is an
instance of the general technique that can be applied for the construction of
Z, and Q.

4.5 The Complex Numbers

Even R does not allow to solve all equations that can be formulated with +
and ∗, e.g. there is no x ∈ R such that

x ∗ x = −1.

Proof We prove ∀x ∈ R : x ∗ x 6= −1. Take arbitrary x ∈ R. If x ≥ 0, then
x ∗ x ≥ 0. If x < 0, then also x ∗ x ≥ 0. Since −1 6≥ 0, x ∗ x 6= 0.

We introduce a domain in which all equations of this kind can be solved.

Definition 50 (Complex Numbers) The set C of complex numbers (kom-
plexe Zahlen) is defined as follows:

C := R× R.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.5 The Complex Numbers 123

We define a corresponding constructor

+ i : R× R→ C

x+ yi := 〈x, y〉.

Let c ∈ C and take x and y such that c = 〈x, y〉. We call x the real part
(Realteil) of c and y its imaginary part (Imaginärteil):

real(c) := such x : ∃y : c ∈ C ∧ c = 〈x, y〉;
imaginary(c) := such y : ∃x : c ∈ C ∧ c = 〈x, y〉.

So the question what a complex number x+ yi is, can be easily answered: it
is the tuple 〈x, y〉.

Logic Evaluator The corresponding executable definitions (on the basis of
rationals instead of reals) are given in Appendix C.7, file complex.txt.

The usual operations on complex numbers are then defined as follows:

Definition 51 (Complex Number Operations)

124 Chapter 4. Numbers

Constants

0 := 0R + 0Ri; 1 := 1R + 0Ri; 2 := 2R + 0Ri;

The imaginary constant (imaginäre Konstante):

i := 0R + 1Ri.

Arithmetic

x+ y := (x0 +R y0) + (x1 +R y1)i;
x− y := (x0 −R y0) + (x1 −R y1)i;
−x := (−Rx0) + (−Rx1)i;
x ∗ y := ((x0 ∗R y0)−R (x1 ∗R y1)) + ((x0 ∗R y1) + (x1 ∗R y0))i;
x/y :=

(((x0 ∗R y0) +R (x1 ∗R y1))/R d)+
(((x1 ∗R y0)−R (x0 ∗R y1))/R d)i

where d = (y0 ∗R y0) +R (y1 ∗R y1);
x−1 := 1/x.

Special Operations

The complex conjugate (konjugiert komplexe Zahl):

x := x0 + (−Rx1)i.

The absolute value (Absolutbetrag):

|x| :=
√

(x0 ∗R x0) +R (x1 ∗R x1).

Please note that an application x+yi of the constructor function denotes the
tuple 〈x, y〉 while the imaginary constant i denotes (0R + 1Ri), i.e., 〈0R, 1R〉.
This imaginary constant is the “missing value” that solves the equation stated
at the begin of this section.

Proof We prove i ∗ i = −1.

i ∗ i = (definition of i)
(0R + 1Ri) ∗R (0R + 1Ri) = (definition of ∗)

((0R ∗R 0R)−R (1R ∗R 1R))+
((0R ∗R 1R) +R (1R ∗R 0R))i = (arithmetic in R)

(−R1R) + (−R0R)i = (definition of −)
−(1R + 0Ri) = (definition of 1)

−1.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.5 The Complex Numbers 125

Logic Evaluator Function conj computes the complex conjugate and ||^2

returns the square of the absolute value:

The following proposition tells us that our quest for a closed number domain
has reached its goal.

Proposition 55 (Fundamental Theorem of Algebra) For every a0 ∈
C, . . . , an−1 ∈ C, there exists an x ∈ C such that

a0 ∗ x0 + . . .+ an−1 ∗ xn−1 = 0.

We now introduce the complex root function analogously to the correspond-
ing operation on the reals.

126 Chapter 4. Numbers

Definition 52 (Complex Root Function)

n
√
x := such y : xn = y

As a consequence of Proposition 55, we then have

∀a ∈ C, n ∈ N>0 : (n
√
a)n = a.

For the special case of the square root function, we give a definition that
immediately allows us to “compute” the square of a complex number.

Definition 53 (Complex Square Root)

√
. : C→ C√
x :=
if x1 ≥R 0R then u+ vi else u+ (−Rv)i
where

u =
√

(x0 +R

√
x0

2 +R x1
2) /R 2R

v =
√

(−Rx0 +R

√
x0

2 +R x1
2) /R 2R.

The equation x ∗ x = a has in general two solutions, the one denoted by the
definition above and the one we get by multiplying the value with (-1). In
other words, the following holds:

∀x ∈ C :
let r =

√
x :

x = r ∗ r ∧ x = (−r) ∗ (−r).

Absolute Value Out definition of the absolute value implies, for every
x ∈ R, |x+ 0i| = √x ∗R x, i.e.,

|x+ 0i| = if x ≤R 0R then −R x else x

which corresponds to the usual definition of | | on R. The absolute value
satisfies the following equations and inequalities.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.6 Relationships between Number Domains 127

Proposition 56 (Absolute Value) For every x ∈ C, y ∈ C, z ∈ C, the
following holds:

|x| ≥R 0R,
| − x| = |x|,

|x| = 0R ⇔ x = 0,
|x+ y| ≤R |x|+R |y|,
|x− y| ≤R |x|+R |y|,

||x| −R |y|| ≤R |x+ y|,
||x| −R |y|| ≤R |x− y|,
|x ∗ y| = |x| ∗R |y|,

y 6= 0 ⇒ |x/y| = |x| /R |y|.

Likewise we have the following laws for the complex conjugate.

Proposition 57 (Complex Conjugate) For every x ∈ C, y ∈ C, z ∈ C,
the following holds:

x = x,
x+ y = x+ y,
x ∗ y = x ∗ y,

y 6= 0⇒ x/y = x/y,
x1 = 0R ⇔ x = x,

x = ((x+ x)/2) + ((x− x)/2)i,

|x| =
√
z ∗ z

The set C “embeds” R in the sense that will be discussed in Section 6.3.

4.6 Relationships between Number Domains

In the previous sections we have introduced the sets N, Z, Q, R, and C with
the property

N ⊆0
Z,Z ⊆1

Q,Q ⊆2
R,R ⊆3

C

128 Chapter 4. Numbers

where the relations ⊆i denote the corresponding embeddings that we will dis-
cuss in Section 6.3. These embeddings preserve all relevant notions (functions
and predicates) and the corresponding properties such that we can operate
in the domains as if we actually had the relationship

N ⊆ Z,Z ⊆ Q,Q ⊆ R,R ⊆ C.

Indeed there exists for every domain D an “identical twin” D′ which is a
subset of the next larger domain:

We will from now on operate with these twins pretending that they are the
siblings that we have actually defined.

Consequently, we do not any more bother whether + denotes +Z or +Q; they
have essentially the same properties with respect to computing and reasoning.
Of course, we must still take care of that some functions have no result in a
particular domain (the difference of two natural numbers is not necessarily
a natural number) but only in an enclosing domain (the difference of two
natural numbers is always an integer number).

4.7 Arithmetic Notions

We introduce additional notions that can be used in all domains that have
constants 0, 1,+, ∗,≤ with “number-like” properties.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.7 Arithmetic Notions 129

4.7.1 Minimum and Maximum

Definition 54 (Minimum and Maximum Quantifier) If x is a variable
and F is a formula, then the following are terms with bound variable x:

minx F ;
maxx F.

The value of the first term is the smallest value of x such that F holds; the
value of the second term is the largest such value, i.e.,

minx F := such x : F ∧ (∀y : F [x← y]⇒ x ≤ y);
maxx F := such x : F ∧ (∀y : F [x← y]⇒ x ≥ y).

Usually the variable x is dropped and has to be deduced from the context.

We can use this notion to define corresponding functions on sets as follows.

Definition 55 (Minimum and Maximum Functions)

min(S) := minx x ∈ S;
max(S) := maxx x ∈ S;

Please note that the definition of “min” and “max” depends on the choice of
the predicate ≤. Furthermore, minimum and maximum are not necessarily
defined.

Example

• We have

maxx(prime(x) ∧ x|100) = 5.

• The value of

min({1/x : x ∈ N>0})

is undefined because for every x in {1/1, 1/2, 1/3, 1/4, . . . } there is
always an y in this set with y < x, namely 1/(x+ 1).

130 Chapter 4. Numbers

4.7.2 Arithmetic Quantifiers

Frequently we want to construct the sum of a collection of values.

Definition 56 (Sum Quantifier) If x is a variable, F is a formula and T
is a term, then the following is a term with bound variable x:∑

x,F

T.

The value of this term is 0, if F does not hold for any x; otherwise it is, for
some x that satisfies F , the sum of the value of T and of the value of the
term for all other x, i.e.,

(∀x : ¬F) ⇒
∑

x,F T = 0;

(∀y : F [x← y] ⇒
∑

x,F T = T [x← y] +
∑

x,F∧x 6=y T).

Please note that the value of the term is only defined if there do not exist
infinitely many x such that F holds.

Usually F contains the condition x ∈ N, which is therefore not written
explicitly. Also the variable x is usually not written but has to be deduced
from the context. Frequently also the form

b∑
i=a

T

is used to denote
∑

0≤i≤a T .

Example∑
1≤i≤n

i2 =
∑

i,(i∈N∧1≤i∧i≤n)

i2;

∑
1≤i≤5

i2 = 12 + 22 + 32 + 42 + 52;

∑
1≤i≤0

i5 = 0;

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.7 Arithmetic Notions 131

∑
1≤i≤9

(x− i)2 = (x− 1)2 +
∑

2≤i≤9

(x− i)2

∑
1≤i≤n

xi =
∑

1≤i≤n∧even(i)

xi +
∑

1≤i≤n∧odd(i)

xi

Example Let a := [3, 1, 2, 9, 0, 7]. We have∑
0≤i≤5

ai ∗ 10i = 709213.

In general, for any finite sequence d of “decimal digits” the term∑
0≤i<length(d)

di ∗ 10i

denotes the value of this sequence in the decimal number system. Likewise,
for any finite sequence b of binary digits 0 and 1, the value∑

0≤i<length(b)

bi ∗ 2i

denotes the value of this sequence in the binary number system, e.g., the
value of [0, 1, 1, 0, 1] is

1 ∗ 24 + 0 ∗ 23 + 1 ∗ 22 + 1 ∗ 21 + 0 ∗ 20 = 22.

The quantifier may also bind multiple variables.

Example∑
1≤i≤5,1≤j≤3

i ∗ j = 1 ∗ 1 + 1 ∗ 2 + 1 ∗ 3 +
∑

2≤i≤5,1≤j≤3

i ∗ j

∑
1≤i≤3,1≤j≤i

i ∗ j = 1 ∗ 1 + 2 ∗ 1 + 2 ∗ 2 + 3 ∗ 1 + 3 ∗ 2 + 3 ∗ 3.

132 Chapter 4. Numbers

We have a number of important identities.

Proposition 58 (Sum Quantifier) For all variables i and j and formulas
F (in which j does not occur freely), G (in which i does not occur freely),
and H and terms T and U we have:∑

i,F

T ∗
∑
j,G

U =
∑
i,F

∑
j,G

T ∗ U.

∑
i,F

∑
j,G

T =
∑
j,G

∑
i,F

T =
∑

i,j,F∧G

T.

∑
i,F

T +
∑
i,H

T =
∑
i,F∨H

T +
∑
i,F∧H

T.

Furthermore, if term C is a term in which i does not occur freely, we have:∑
i,F

C ∗ T = C ∗
∑
i,F

T.

∑
i,F

C = n ∗ C (where n is the number of i for which F holds).

Example∑
1≤i≤n

xi ∗
∑

1≤j≤m

xj =
∑

1≤i≤n

∑
1≤j≤m

xi+j =
∑

1≤i≤n∧1≤j≤m

xi+j.

∑
1≤i≤n

∑
1≤j≤m

i ∗ xj =
∑

1≤i≤n

(i ∗
∑

1≤j≤m

xj).

Likewise we often wish to construct the product of a collection of values.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.7 Arithmetic Notions 133

Definition 57 (Product Quantifier) If x is a variable, F is a formula and
T is a term, then the following is a term with bound variable x:∏

x,F

T.

The value of this term is 1, if F does not hold for any x; otherwise it is, for
some x that satisfies F , the product of the value of T and of the value of the
term for all other x, i.e.,

(∀x : ¬F) ⇒
∏

x,F T = 1;

(∀y : F [x← y] ⇒
∏

x,F T = T [x← y] +
∏

x,F∧x 6=y T).

The same remarks apply as for the definition of the sum quantifier.

Example∏
1≤i≤0

i5 = 1;

∏
0≤i≤5

ai = a0 ∗ a1 ∗ a2 ∗ a3 ∗ a4 ∗ a5

∏
0≤i≤100

ai = a0 ∗ a1 ∗ a2 ∗
∏

3≤i≤100

ai

∏
0≤i≤100

ai =
∏

0≤i≤50

ai ∗
∏

51≤i≤100

ai

∏
1≤i≤3
1≤j≤i

i+ j = (1 + 1) ∗ (2 + 1) ∗ (2 + 2) ∗ (3 + 1) ∗ (3 + 2) ∗ (3 + 3).

We have the following identities.

134 Chapter 4. Numbers

Proposition 59 (Product Quantifier) For all variables i and j and for-
mulas F (in which j does not occur freely), G (in which i does not occur
freely), and H and terms T and U we have:

∏
i,F

∏
j,G

T =
∏
j,G

∏
i,F

T =
∏

i,j,F∧G

T.

∏
i,F

T ∗
∏
i,H

T =
∏
i,F∨H

T ∗
∏
i,F∧H

T.

Furthermore, if term C is a term in which i does not occur freely, we have:∏
i,F

C ∗ T = Cn
∏
i,F

T (where n is the number of i for which F holds).

∏
i,F

C = Cn (where n is the number of i for which F holds)

With the help of the product quantifier we can now formulate the uniqueness
of prime number composition stated in Section 4.1.

Proposition 60 (Prime Number Factorization) For every natural num-
ber n 6= 0, there exists a unique prime number factorization:

∀n ∈ N>0 : (∃p : pf(n, p) ∧ (∀q : pf(n, q)⇒ p = q)).

A prime number factorization of n is a sequence of pairs (p, e) ordered by the
primes p such that n is the product of all pe.

pf(n, p) :⇔
p : N→ N× N ∧
(∀i ∈ N : p(i)0 is prime ∧ p(i)0 < p(i+ 1)0) ∧
(∃k ∈ N : n =

∏
0≤i≤k p(i)0

p(i)1 ∧ ∀i > k : p(i)1 = 0)

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.7 Arithmetic Notions 135

Example Because 300 = 22 ∗ 31 ∗ 52, we have for 300 the prime number
factorization

[〈2, 2〉, 〈3, 1〉, 〈5, 2〉, 〈7, 0〉, 〈11, 0〉, 〈13, 0〉, . . .].

Likewise, 1 has the prime number factorization

[〈2, 0〉, 〈3, 0〉, 〈5, 0〉, 〈7, 0〉, 〈11, 0〉, 〈13, 0〉, . . .].

4.7.3 Binomials

In combinatorics (the branch of mathematics that solves questions of the
kind “how many objects do exist such that . . . ?”), the following notions are
of importance.

Definition 58 (Factorial) The factorial (Fakultät) of a natural number n
is the product of all non-zero numbers less than or equal n:

n! :=
∏

1≤i≤n

i.

Please note that the definition of
∏

implies 0! = 1.

Definition 59 (Binomial Coefficient) The binomial coefficient (Binomi-
alkoeffizient) of two natural numbers is defined as follows:(

n
k

)
:= if 0 ≤ k ≤ n then

n!

k! ∗ (n− k)!
else 0.

We read this as “n choose k” (“n über k”).

The name “n choose k” stems from the fact that

(
n
k

)
is the number of ways

to choose a k element set from an n-element set.

136 Chapter 4. Numbers

Example The set {0, 1, 2, 3} has 6 =

(
4
2

)
subsets with 2 elements:

{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}.

By above definition we have for every n and k with 0 ≤ k ≤ n(
n
k

)
=

∏
n−k+1≤i≤n i∏

1≤i≤n i
.

Furthermore, we have the following important identities.

Proposition 61 (Binomial Identities) For every n ∈ N and k ∈ N with
0 ≤ k ≤ n, the following holds:(

n+ 1
k + 1

)
=

(
n
k

)
+

(
n

k + 1

)
,

(
n
k

)
=

(
n

n− k

)
,

(
n
0

)
=

(
n
n

)
= 1.

These three laws give rise to Pascal’s triangle:

1

1 1

1 2 1

1 3 3 1

. .

=

(
0
0

)
(

1
0

) (
1
1

)
(

2
0

) (
2
1

) (
2
2

)
(

3
0

) (
3
1

) (
3
2

) (
3
3

)
. .

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.7 Arithmetic Notions 137

This triangle is bounded by sides of 1 and where every interior element is the
sum of both parents:

(
n
k

) (
n

k + 1

)
.

(
n+ 1
k + 1

)
.

4.7.4 Matrix Operations

We define on matrices (see p. 95) over R the following arithmetic operations.

Definition 60 (Matrices over the Reals) The domain of real matrices of
dimension m× n is defined as follows:

Mm,n := Nm × Nn → R.

Definition 61 (Matrix Operations) For every m ∈ N, n ∈ N, and p ∈ N
we define the following operations on real matrices.

Constants

null matrix (Nullmatrix):

0 : Nm × Nn → R,
0i,j := 0.

unity matrix (Einheitsmatrix):

1 : Nn × Nn → R,
1i,j := if i = j then 1 else 0.

Addition

+ : Mm,n ×Mm,n →Mm,n

A+B := such C ∈Mm,n :
∀i ∈ Nm, j ∈ Nn : Ci,j = Ai,j +Bi,j.

short: (A+B)i,j := Ai,j +Bi,j.

138 Chapter 4. Numbers

Scalar Product

∗ : R×Mm,n →Mm,n

c ∗ A := such C ∈Mm,n :
∀i ∈ Nm, j ∈ Nn : Ci,j = c ∗ Ai,j.

short: (c ∗ A)i,j := c ∗ Ai,j.

Matrix Product

+ : Mm,n ×Mn,p →Mm,p

A ∗B := such C ∈Mm,p :
∀i ∈ Nm, j ∈ Np : Ci,j =

∑
0≤k<nAi,k ∗Bk,j.

short: (A+B)i,j :=
∑

0≤k<nAi,k ∗Bk,j.

Determinant

| . | : Mn,n → R,
if n = 1 :
|A| := A0,0,

if n > 1 :
|A| :=

∑
0≤j<nA0,j ∗ (−1)j ∗ |B|

where B = such B ∈Mn−1,n−1 :
∀k ∈ Nn−1, l ∈ Nn−1 :
Bk,l = (if l < j then Ak+1,l else Ak+1,l+1).

The determinant of an n × n matrix A is defined by the determinants of
a number of (n − 1) × (n − 1) matrices B that are constructed from A by
deleting the first row and some column j.

Example∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ = 1 ∗
∣∣∣∣ 5 6

8 9

∣∣∣∣− 2 ∗
∣∣∣∣ 4 6

7 9

∣∣∣∣+ 3 ∗
∣∣∣∣ 4 5

7 8

∣∣∣∣
∣∣∣∣ 5 6

8 9

∣∣∣∣ = 5 ∗ 9− 6 ∗ 8 = −3.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.7 Arithmetic Notions 139

[
1 2 3
4 5 6

]
∗

 a b
c d
e f

 =

[
1a+ 2c+ 3e 1b+ 2d+ 3f
4a+ 5c+ 6e 4b+ 5d+ 6f

]

The matrix operations satisfy many equations that also hold for numbers,
e.g., A ∗ (B + C) = A ∗ B + A ∗ C. However, unlike in number domains,
matrix multiplication is not commutative.

Example[
1 2
3 4

]
∗
[

3 1
2 4

]
=

[
7 9
17 19

]
[

3 1
2 4

]
∗
[

1 2
3 4

]
=

[
6 10
14 20

]

4.7.5 Polynomials

We are used to think of a polynomial x + 1 as a term with a variable x;
the term can be manipulated according to various rules that preserve the
value of the polynomial for any substitution of the variable. However, we
need not introduce concepts like “terms” and “variables” in order to deal
with polynomials; we can construct them directly from the basic material
(functions and numbers) that we have introduced in the previous sections.

Definition 62 (Polynomials over the Reals) A polynomial (Polynom)
over the reals is an infinite sequence of real numbers, the coefficients (Koef-
fizienten), of which only finitely many are different from 0:

p is polynomial :⇔ p : N→ R ∧ (∃k ∈ N : ∀i ≥ k : pi = 0).

The degree (Grad) of a polynomial is zero, if all coefficients are zero; other-
wise, it is the index of the largest non-zero coeffient:

deg(p) :=
if ∀i ∈ N : pi = 0

then 0
else (such k ∈ N : pk 6= 0 ∧ (∀i > k : pi = 0)).

140 Chapter 4. Numbers

We denote by “Poly” the set of all polynomials over the reals:

Poly := {p ∈ N→ R : p is polynomial}.

We then can define the following “number-like” operations on polynomials.

Definition 63 (Polynomial Operations)

.Poly : R → Poly
cPoly := such p ∈ Poly : p0 = c ∧ (∀i > 0 : pi = 0)

x := such p ∈ Poly : p0 = 0 ∧ p1 = 1 ∧ (∀i > 1 : pi = 0)

+ : Poly × Poly→ Poly
(p+ q)i := pi + qi

− : Poly × Poly→ Poly
(p− q)i := pi − qi

− : Poly→ Poly
(−p)i := −(pi)

∗ : Poly × Poly→ Poly
(p ∗ q)i :=

∑
0≤j≤i pj ∗ qi−j

One can show that the polynomial operations satisfy the laws that also hold
for the corresponding operations on numbers, e.g., p∗1Poly = p and p∗q = q∗p.
The first operation maps a real number c in a unique way to a polynomial
cPoly. Usually we write just c instead of cPoly, when the meaning is clear from
the context, e.g., if p is a polynomial, then p+ 1 actually denotes p+ 1Poly.

Example We have the following polynomial identities:

3Poly = [3, 0, 0, 0, 0, . . .]
x = [0, 1, 0, 0, 0, . . .]

x + 3 = [3, 1, 0, 0, 0, . . .]
x ∗ x = [0, 0, 1, 0, 0, . . .]

x ∗ x + 2 ∗ x + 1 = [1, 2, 1, 0, 0, . . .]
(x + 1) ∗ (x + 2) = [2, 3, 1, 0, 0, . . .]

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

4.7 Arithmetic Notions 141

The polynomial operations are closely related to their counterparts on R.

Proposition 62 (Constant Polynomials) For all real numbers a and b
we have

aPoly + bPoly = (a+R b)Poly,
aPoly − bPoly = (a−R b)Poly,

−aPoly = (−Ra)Poly,
aPoly ∗ bPoly = (a ∗R b)Poly.

In other words, a property like 1 + 1 = 2 also holds for polynomials 1Poly and
2Poly and + interpreted as the polynomial addition. Above law says that R
can be embedded into “Poly” in a sense that is discussed in Section 6.3.

Definition 63 answers the question what a polynomial x + 1 is: it is the sum
of two polynomials x and 1, i.e., the “variable” x in a polynomial is nothing
but a particular (constant) polynomial! However, the view of x as a variable
that can be substituted by a value is provided by the following operation.

Definition 64 (Polynomial Evaluation)

[] : Poly × R → R

p[a] :=
∑

0≤i≤deg(p) pi ∗ ai.

Example Let p := 2 + 3 ∗ x+ 4 ∗ x ∗ x, i.e., p = [2, 3, 4, 0, 0, 0, 0, . . .]. Then

p[5] = 2 ∗ 50 + 3 ∗ 51 + 4 ∗ 52 = 117.

The evaluation operation satisfies the following laws.

Proposition 63 (Evaluation Laws) For all polynomials p and q and all
real numbers c and a, we have:

cPoly[a] = cPoly,
x[a] = aPoly,

(p+ q)[a] = p[a] + q[a],
(p ∗ q)[a] = p[a] ∗ q[a].

142 Chapter 4. Numbers

When evaluating a polynomial p on a real number a, we thus just need to
substitute aPoly for every occurence of x in the term describing p and then
evaluate polynomial addition and multiplication. We can do this by simply
using the rules for addition and multiplication over the real numbers.

Example We have the following polynomial identities:

(x + 1)[2] = 2 + 1 (= 3Poly)
(x ∗ x)[2] = 2 ∗ 2 (= 4Poly)

(x ∗ x + 2 ∗ x + 1)[3] = 3 ∗ 3 + 2 ∗ 3 + 1 (= 16Poly)

In mathematical practice, we usually do not work with a fixed “polynomial
variable” x. Instead we rather introduce a set R[x] of polynomials with
coefficients in R (and correspondingly for other coefficent domains) such that
the constant x denotes the polynomial [0, 1, 0, 0, 0, . . .].

Example 2y + 1 is an element of R[y] denoting the polynomial

[1, 2, 0, 0, 0, . . .].

A multivariate polynomial is interpreted as a univariate polynomial whose
coefficents are themselves polynomials.

Example The bivariate polynomial

x2y + xy2 + 3x+ 2y + 1

which can be written as

y ∗ x2 + (y2 + 3) ∗ x+ (2y + 1)

is an element of R[y, x], i.e., (R[y])[x]:

[2y + 1, y2 + 3, y, 0, 0, 0, . . .].

The coefficient 2y + 1 is an element of R[y]:

[1, 2, 0, 0, 0, . . .].

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

Chapter 5

Induction and Recursion

The domain of natural numbers has a property (implied by the first two
Peano axioms) that allows us to define functions and predicates inductively,
i.e., by sets of equations respectively equivalences with a particular structure.
Likewise, the third Peano axiom give us induction as a technique for proving
properties about natural numbers. In this chapter, we investigate these two
aspects of induction, defining and proving, and demonstrate their relation-
ship by proving properties of inductively/recursively defined functions. We
also generalize the concept of inductive definitions and proofs from natural
numbers to inductively defined sets which are prominent in computer science.

5.1 Inductive Definitions

We have introduced in Section 4.1 multiplication over N by the following
recursive definition (with termination function r(x, y) := y)

∗ : N× N→ N

x ∗ y := if y = 0 then 0 else x+ (x ∗ y−)

from which we can infer the following knowledge (Proposition 39 on page 102)

x ∗ 0 = 0,
x ∗ y′ = x+ (x ∗ y).

or in another form

x ∗ 0 = 0,
x ∗ (y + 1) = x+ (x ∗ y).

143

144 Chapter 5. Induction and Recursion

Actually also the inverse is true: this pair of equations uniquely determines
the function ∗: the first Peano law implies that the left hand side of only
one equation “matches” a particular application a ∗ b (because b is either 0
or y + 1 for some y but not both) and the second Peano law implies that
argument b determines the value of parameter y uniquely.

We can therefore write the definition also in the form

∗ : N× N→ N

x ∗ 0 := 0,
x ∗ (y + 1) := x+ (x ∗ y).

The syntactic properties of these equations guarantee that the corresponding
function is well defined.

Definition 65 (Inductive Function Definition) An inductive definition
(induktive Definition) over N of an n-ary function f is a pair of equations

f(x0, . . . , 0, . . . , xn−1) := Tb,
f(x0, . . . , xi + 1, . . . , xn−1) := Tr

where Tb (whose free variables are among x0, . . . , xi−1, xi+1, . . . , xn−1) is the
base term in which f does not occur and where every application of f in the
recursion term Tr (whose free variables are among x0, . . . , xn−1) has the form

f(T0, . . . , xi, . . . , Tn−1)

for some terms T0, . . . , Tn−1. We say that the induction runs over xi.

If there exist A0, . . . , Ai−1, Ai+1, . . . , An−1, B with

∀x0 ∈ A0, . . . , xi−1 ∈ Ai−1, xi ∈ N, xi+1 ∈ Ai+1, . . . , xn−1 ∈ An−1 :
Tb ∈ B ∧ Tr ∈ B

then above definition introduces a function

f : A0 × . . .× Ai−1 × N× Ai+1 × . . .× An−1 → B

such that the following holds:

∀x0 ∈ A0, . . . , xi−1 ∈ Ai−1, xi ∈ N, xi+1 ∈ Ai+1, . . . , xn−1 ∈ An−1 :
f(x0, . . . , 0, . . . , xn−1) = Tb ∧
f(x0, . . . , xi + 1, . . . , xn−1) = Tr.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

5.1 Inductive Definitions 145

A function introduced by an inductive definition is uniquely defined.

One can generalize inductive definitions in various ways. For instance, it is
not necessary that the induction term is decreased by exactly 1. We may
use any non-zero decrement value as long as every possible case is covered
by a corresponding equation. For instance, in the definition of the Fibonacci
Numbers (Fibonacci-Zahlen)

fib(0) := 1,
fib(1) := 1,
fib(x+ 2) := fib(x) + fib(x+ 1)

we have two base equations because in the last equation the induction term
x is decreased by 2.

Furthermore, we may let the induction not just run over a single parameter
but over a combination of parameters as in

f(0, 0) := 0,
f(x+ 1, 0) := 1 + f(x, 0),
f(x, y + 1) := 1 + f(x, y).

which defines a function that computes (in an artificially complex way) the
sum of both arguments x and y. In this case, the induction is guarded by the
termination term x + y whose value is decreased by one in every recursive
application of f .

If the induction runs over multiple arguments, we have to take special care
that every possible argument pattern is covered by an equation. For instance,
the definition

f(0, 0) := 0,
f(x+ 1, 0) := 1 + f(x, 0),
f(0, y + 1) := 1 + f(0, y),
f(x+ 1, y + 1) := 2 + f(x, y),

uses four equations to cover all possible cases.

The more complicated the recursive structure of a function definition is, the
more important it becomes to show that a set of equations indeed defines
a total function. This can be done by giving a termination term or, more
general, by constructing a well-founded ordering (see page 298).

146 Chapter 5. Induction and Recursion

Example Ackerman’s function is defined as follows:

A(0, y) := y + 1,
A(x+ 1, 0) := A(x, 1),
A(x+ 1, y + 1) := A(x,A(x+ 1, y)).

We have A : N × N → N because we can construct the well-founded lexico-
graphic ordering (lexikographische Ordnung) on the function arguments

x ≺ y :⇔ x0 < y0 ∨ (x0 = x0 ∧ x1 < y1)

(e.g. 〈0, 0〉 ≺ 〈0, 1〉 and 〈0, 1〉 ≺ 〈1, 0〉) and show that the arguments decrease
in every recursive application with respect to this ordering, i.e., for the three
recursive applications in the equations above:

1. 〈x, 1〉 ≺ 〈x+ 1, 0〉,

2. 〈x+ 1, y〉 ≺ 〈x+ 1, y + 1〉,

3. 〈x,A(x+ 1, y)〉 ≺ 〈x+ 1, y + 1〉.

All three statements are true by definition of ≺.

Also predicates can be defined inductively.

Definition 66 (Inductive Predicate Definition) An inductive defini-
tion (Induktive Definition) over N of an n-ary predicate p is a pair of equiv-
alences

p(x0, . . . , 0, . . . , xn−1) :⇔ Fb,
p(x0, . . . , xi + 1, . . . , xn−1) :⇔ Fr

where Fb (whose free variables are among x0, . . . , xi−1, xi+1, . . . , xn−1) is the
base formula in which f does not occur and where every application of f in
the recursion formula Fr (whose free variables are among x0, . . . , xn−1) has
the form

p(T0, . . . , xi, . . . , Tn−1)

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

5.2 Induction as a Proof Technique 147

for some terms T0, . . . , Tn−1. We say that the induction runs over xi.

Above definition defines a predicate

p ⊆ A0 × . . .× Ai−1 × N× Ai+1 × . . .× An−1.

such that the following holds:

∀x0 ∈ A0, . . . , xi−1 ∈ Ai−1, xi ∈ N, xi+1 ∈ Ai+1, . . . , xn−1 ∈ An−1 :
(p(x0, . . . , 0, . . . , xn−1)⇔ Fb) ∧
(p(x0, . . . , xi + 1, . . . , xn−1)⇔ Fr).

A predicate introduced by an inductive definition is uniquely defined.

Example We can introduce the predicate iseven(x) :⇔ 2|x also by the
following recursive definition:

iseven(0) :⇔ T,
iseven(x+ 1) :⇔ ¬iseven(x).

We can define the same predicate also in the following way with two base
cases and an induction term x that is decreased by 2:

iseven(0) :⇔ T,
iseven(1) :⇔ F,
iseven(x+ 2) :⇔ iseven(x).

5.2 Induction as a Proof Technique

The Peano Axioms (page 99) include for every formula F an axiom

(F [x← 0] ∧ (∀x ∈ N : F ⇒ F [x← x+ 1]))⇒ ∀x ∈ N : F.

We may apply this axiom for proving properties of formulas involving natural
numbers.

Proposition 64 (Mathematical Induction) In order to prove

∀x ∈ N : F,

it suffices to prove

148 Chapter 5. Induction and Recursion

1. F [x ←0],

2. (∀x ∈ N : F ⇒ F [x← x+ 1]).

In natural language, this proof strategy is usually indicated by the following
triple of statements:

1. Induction Base: We show F [x← 0].

2. Induction Hypothesis: We take arbitrary x ∈ N and assume F .

3. Induction Step: We show F [x← x+ 1].

Several examples are given below.

Example We prove

∀n ∈ N : n < 2n

by induction on n.

The induction base holds because 0 < 1 = 20.

Now we take arbitrary n ∈ N and assume

(1) n < 2n.

We have to show

(2) n+ 1 < 2n+1.

By (1) we have

(3) n+ 1 < 2n + 1

and therefore

(4) n+ 1 < 2n + 1 ≤ 2n + 2n = 2 ∗ 2n = 2n + 1

which implies (2).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

5.2 Induction as a Proof Technique 149

(The derivation of (2) from (1) and 1 ≤ 2n are knowledge that we assume
granted in this proof).

Example We prove

∀n ∈ N : 3|n3 + 2n

by induction on n.

The induction base holds because 3|0 and 0 = 03 + 2 ∗ 0.

We take arbitrary n ∈ N and assume

(1) 3|n3 + 2n.

We have to show

(2) 3|(n+ 1)3 + 2(n+ 1).

By (1) and definition of | we have some a ∈ N such that

(3) 3a = n3 + 2n.

We therefore have

(n+ 1)3 + 2(n+ 1) =
(n3 + 3n2 + 3n+ 1) + (2n+ 2) =

(n3 + 2n) + (3n2 + 3n+ 3) = (3)
3a+ 3(n2 + n+ 1) =
3(a+ n2 + n+ 1)

which implies (2) by definition of |.
(In this proof we assume the computing rules in N as granted).

Example We prove

∀n ∈ N :
∑

1≤i≤n

i =
(n+ 1)n

2

150 Chapter 5. Induction and Recursion

by induction on n.

The induction base holds because∑
1≤i≤0

i = 0 =
(0 + 1) ∗ 0

2
.

We take arbitrary n ∈ N and assume

(1)
∑

1≤i≤n

i =
(n+ 1)n

2
.

We have to show

(2)
∑

1≤i≤n+1

i =
((n+ 1) + 1)(n+ 1)

2
.

We have ∑
1≤i≤n+1 i = (definition

∑
)∑

1≤i≤n i+ (n+ 1) = (1)
(n+1)n

2
+ (n+ 1) =

(n+1)n+2(n+1)
2

=
(n+1)(n+2)

2
=

(n+1)((n+1)+1)
2

.

which implies (2).

(In this proof we assume the computing rules in Q as granted).

In particular, we can prove by induction the “computing laws” stated in
Section 4.1 on page 103.

Example We prove

∀x ∈ N, y ∈ N, z ∈ N : x+ (y + z) = (x+ y) + z.

We take arbitrary x ∈ N and y ∈ N and prove

∀z ∈ N : x+ (y + z) = (x+ y) + z

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

5.2 Induction as a Proof Technique 151

by induction on z.

We have by definition of +

x+ (y + 0) = x+ y = (x+ y) + 0

and thus the induction base.

We assume

(1) x+ (y + z) = (x+ y) + z

and show

(2) x+ (y + (z + 1)) = (x+ y) + (z + 1).

We have

(x+ y) + (z + 1) = (definition +)
((x+ y) + z) + 1 = (1)
(x+ (y + z)) + 1 = (definition +)
x+ ((y + z) + 1) = (definition +)
x+ (y + (z + 1))

which implies (2).

Similar to inductive definitions with termination terms that are decreased
by values greater than one, proofs by induction may use a more general
induction rule which allows to rely on the truth of the formula to be proved
for all predecessors of the current number.

Proposition 65 (Complete Induction) In order to prove

∀x ∈ N : F

it suffices to prove

(∀x ∈ N : (∀n < x : F [x← n])⇒ F).

In complete induction, we use a generalized induction hypothesis in which we
assume that F holds for all previous values of x (not just for x− 1). There
is no need for a separate induction base, because for x = 0 the hypothesis
(∀n < x : F [x← n]) collapses to T.

The application of this proof strategy is usually indicated as follows:

152 Chapter 5. Induction and Recursion

1. Induction Hypothesis. We take arbitrary x ∈ N and assume

∀n < x : F [x← n].

2. Induction Step: We show F .

Complete induction can be applied not only in N but in every domain A with
a well-founded ordering ≺ ⊆ A× A (see page 298).

Example We prove that every natural number greater than 1 can be fac-
torized into a sequence of prime numbers, i.e.,

∀n ∈ N : n > 1⇒
(∃k ∈ N, f : Nk → N : n =

∏
0≤i<k f(i) ∧ ∀i ∈ Nk : f(i) is prime).

We proceed by complete induction over n.

We take arbitrary n ∈ N and assume

(1) ∀m < n : m > 1⇒
(∃k ∈ N, f : Nk → N : m =

∏
0≤i<k f(i) ∧ ∀i ∈ Nk : f(i) is prime).

We have to show

n > 1⇒
(∃k ∈ N, f : Nk → N : n =

∏
0≤i<k f(i) ∧ ∀i ∈ Nk : f(i) is prime).

We assume (3) n > 1 and show

(4) (∃k ∈ N, f : Nk → N : n =
∏

0≤i<k

f(i) ∧ ∀i ∈ Nk : f(i) is prime).

If n is prime, then take k := 1 and f0 := n and we are done.

If n is not prime, then, by definition of primality, there exists some a with
(5) 1 < a < n and (6) a|n. By (6) and definition of |, there exists some b
such that

(7) a ∗ b = n.

From (5) and (7), we have (8) 1 < b < n.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

5.2 Induction as a Proof Technique 153

By (1) and (5), we have some ka ∈ N and fa : Nka → N with

(9) a =
∏

0≤i<ka

fa(i) ∧ ∀i ∈ Nk : fa(i) is prime.

Likewise we have by (1) and (8) some kb ∈ N and fb : Nkb → N with

(10) b =
∏

0≤i<kb

fb(i) ∧ ∀i ∈ Nk : fb(i) is prime.

Take k := ka + kb and f(i) := if i < ka then fa(i) else fb(i). By (7), (9),
and (10), we have

(11) n =
∏

0≤i<k

f(i) ∧ ∀i ∈ Nk : f(i) is prime

which implies (4).

Similar to inductive definitions where the induction term may be a combina-
tion of the parameters, proofs by induction may proceed over the value of a
term.

Proposition 66 (Induction over Term Values) In order to prove a for-
mula F , it suffices to prove

(∀y ∈ N : y = T ⇒ F)

where y is a variable that does not occur freely in T or F and T is a term
that denotes a natural number.

To prove above formula, we may proceed by induction on y (using one of the
variants described above).

In particular, in order to prove

∀x0, . . . , xn−1 : F

we may prove

(∀x0, . . . , xn−1, y ∈ N : y = T ⇒ F)

where T is a term with free variables x0, . . . , xn−1. We can then take arbitrary
x0, . . . , xn−1 and prove (∀y ∈ N : y = T ⇒ F) by induction on y.

Actually, we do not need an explicite variable y; it suffices to state

154 Chapter 5. Induction and Recursion

“we prove by induction on T”

and then proceed with an induction proof on the value of T (which must
be a natural number). An example is given in the following section in the
verification of Euclid’s algorithm.

5.3 Properties of Recursive Definitions

The close relationship between inductive definitions and induction as a proof
strategy makes it natural that the same method can be applied to verify (ver-
ifizieren) the correctness of inductively/recursively defined functions. Given
the definition of a function

f : A→ B

we would like to show that the formula

∀x ∈ A : O(x, f(x))

holds where O is a binary predicate which expresses the desired relationship
between input x and output f(x). A more general statement of the problem
is given below.

Definition 67 (Specification) For every function f : A → B, a relation
I ⊆ A and a relation O ⊆ A×B, we call the formula

∀x : I(x)⇒ O(x, f(x))

a specification (Spezifikation) of function f with input condition (Eingabebe-
dingung) I and output condition (Ausgabebedingung) O.

If the domain of a function parameter is N, then the verification may proceed
by induction over this parameter.

Example Take the exponentiation function defined on page 106:

x0 := 1,
xn+1 := x ∗ xn.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

5.3 Properties of Recursive Definitions 155

We want to verify that the expected relationship

∀x, n ∈ N : xn =
∏

1≤i≤n

x.

is indeed true for above definition.

Take arbitrary x; we proceed by induction over n.

We have x0 = 1 =
∏

1≤i≤0 x and thus the induction base holds.

We take arbitrary n ∈ N and assume

(1) xn =
∏

1≤i≤n

x.

We have to prove

(2) xn+1 =
∏

1≤i≤n+1

x.

We know

xn+1 = (definition exponentiation)
x ∗ xn = (1)

x ∗
∏

1≤i≤n x = (definition
∏

)∏
1≤i≤n+1 x

which implies (2).

The usual purpose of verification is to show that a particular definition of
a function matches a specification that is defined in a more abstract away;
the function definition can be thus considered as an implementation of the
specification. While the specification may be inconstructive (i.e., it does
not directly yield an algorithm that can be implemented on a computer)
or constructive but algorithmically inefficient, the implementation is more
concrete and/or more efficient.

The proof that an implementation matches the specification typically requires
the derivation of additional mathematical knowledge; more knowledge yields
better algorithms.

Example We have defined the greatest common divisor on page 107 as

gcd(x, y) := such z ∈ N : z|x ∧ z|y ∧ (∀w : (w|x ∧ w|y)⇒ w ≤ z).

The corresponding implementation in the Logic Evaluator

156 Chapter 5. Induction and Recursion

fun gcd(x, y) =
let(m = if(=(x, N0), y, x):
such(z in nat(N0, m):
and(divides(z, x), divides(z, y),

forall(w in nat(+N(z, N1), m):
or(not(divides(w, x)), not(divides(w, y))))),

z));

is very inefficient because it tests every z ∈ Nm (for some m) whether it is a
divisor of the arguments and if it is the greatest such divisor.

Now we may realize (as the Greek mathematician Euclid did) that the fol-
lowing property holds (which is proved in Chapter B on page 326):

(0) ∀m ∈ N, n ≤ m : gcd(m,n) = gcd(m− n, n).

Based on this knowledge, we may define the following function

Euclid(m,n) :=
if m = 0 then n
else if n = 0 then m
else if n ≤ m then Euclid(m− n, n)
else Euclid(m,n−m).

which we claim to satisfy the specification

∀m ∈ N, n ∈ N : (m 6= 0 ∨ n 6= 0)⇒ Euclid(m,n) = gcd(m,n).

First we check that above equation defines a function

Euclid : Nat× Nat→ N

by constructing a termination term m+n (and check that it is appropriately
decreased in every recursive application).

Second we verify that this function meets the specification by complete in-
duction on the term m+n: we take arbitrary m ∈ N and n ∈ N and assume

(1) ∀x ∈ N, y ∈ N : x+ y < m+ n⇒
(x 6= 0 ∨ y 6= 0)⇒ Euclid(x, y) = gcd(x, y).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

5.3 Properties of Recursive Definitions 157

We have to prove

(2) (m 6= 0 ∨ n 6= 0)⇒ Euclid(m,n) = gcd(m,n).

We assume (3) (m 6= 0 ∨ n 6= 0) and prove (4) Euclid(m,n) = gcd(m,n).

We have, according to the definition of ‘Euclid’, four cases

1. m = 0.

By (3), we have n 6= 0 and, by definition of ‘gcd’ and ‘Euclid’,

gcd(m,n) = n = Euclid(m,n)

which implies (4).

2. m 6= 0 ∧ n = 0.

We have, by definition of ‘gcd’ and ‘Euclid’,

gcd(m,n) = m = Euclid(m,n)

which implies (4).

3. m 6= 0 ∧ n 6= 0 ∧ n ≤ m.

We know

gcd(m,n) = (0)
gcd(m− n, n) = (1)

Euclid(m− n, n) = (definition Euclid)
Euclid(m,n)

which implies (4).

4. m 6= 0 ∧ n 6= 0 ∧ n 6≤ m.

The proof is analogous to the previous case.

Thus we have shown that ‘Euclid’ indeed computes the ‘gcd’ (in an algorith-
mically much more efficient way than suggested by the definition of ‘gcd’).

From (0) we can derive the even more powerful property

(0′) ∀m ∈ N, n 6= 0 : gcd(m,n) = gcd(m,m mod n)

158 Chapter 5. Induction and Recursion

which triggers the following recursive function definition

Euclid′(m,n) :=
if m = 0 then n
else if n = 0 then m
else if n ≤ m then Euclid′(m mod n, n)
else Euclid′(m,n mod m)

with induction term m+ n.

The proof that this (algorithmically even more efficient) function also meets
the specification

∀m ∈ N, n ∈ N : (m 6= 0 ∨ n 6= 0)⇒ Euclid′(m,n) = gcd(m,n).

is similar to the proof given above.

One can give an algorithmically (essentially) equivalent but shorter definition

Euclid′′(m,n) :=
if n = 0 then m
else Euclid′′(n,m mod n)

which however requires the construction of an well-founded ordering (see
page 298) of the arguments to show termination (please try).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

5.4 Induction on Sets 159

A definition of Euclid’s algorithm (Euklidscher Algorithmus) in the Logic
Evaluator is given above. With larger input values, one soon notices the
difference to the efficiency of the naive implementation of the gcd.

5.4 Induction on Sets

The concept of induction is not limited to N; it can be applied to any set
whose construction is based on a corresponding principle.

Definition 68 (Inductive Set Definition) An inductive definition of a set
S is a collection of formulas

(∀x1, . . . , xm1 , y1 ∈ S, . . . , yn1 ∈ S :
f1(x1, . . . , xm1 , y1, . . . , yn1) ∈ S)

, . . . ,
(∀x1, . . . , xmc , y1 ∈ S, . . . , ync ∈ S :
fc(x1, . . . , xmc , y1, . . . , ync) ∈ S)

with object constant S and function constants f1, . . . , fc which denote the
constructors (Konstruktoren) of S.

By this definition, S denotes the smallest set on which the conjunction of
these formulas holds.

The notion “smallest” used in above definition implies that every element of
the defined set is denoted by a constructor term

fi(T1, . . . , Tmi , S1, . . . , Sni)

for some terms T1, . . . , Tmi , S1, . . . , Sni where the S1, . . . , Sni are also such
constructor terms.

Example

• The set N is inductively defined by

0 ∈ N,
∀x ∈ N : x′ ∈ N

160 Chapter 5. Induction and Recursion

for some constructors 0 and ’. Every element of N is of the form

0′...′,

e.g. 0′′′′ is interpreted as the number 4 in N.

• For every set T , the set “List(T)” is defined by

nil ∈ List(T),
∀e ∈ T, l ∈ List(T) : cons(e, l) ∈ List(T).

for some constructors “nil” and “cons”. Every element of List(T) is of
the form

cons(e0, . . . , cons(en−1, nil)),

e.g. “cons(2, cons(3, nil))” is interpreted as the list [2, 3] in List(N).

• For every set T , the set “Tree(T)” is defined by

empty ∈ Tree(T),
∀e ∈ T, l ∈ Tree(T), r ∈ List(T) : node(e, l, r) ∈ Tree(T).

for some constructors “empty” and “tree”. Every element of Tree(T)
is of the form

node(n0, node(n11, . . .), node(n21, . . .)),

e.g. “node(1, node(2, node(3, empty, empty), node(4, empty, empty)),
node(5, empty, empty))” is interpreted as the following tree in Tree(N):

1
2 5

3 4

• The set “Term” is defined by

0 ∈ Term,
1 ∈ Term,
∀x ∈ Term : −x ∈ Term,
∀x ∈ Term, y ∈ Term : x+ y ∈ Term,
∀x ∈ Term, y ∈ Term : x ∗ y ∈ Term

for some constructors 0, 1,−,+, ∗. An element of “Term” is “1 + (1 +
0) ∗ 1”.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

5.4 Induction on Sets 161

• The set “Formula” is defined by

T ∈ Formula
∀x ∈ Formula : not(x) ∈ Formula,
∀x ∈ Formula, y ∈ Formula : and(x, y) ∈ Formula,
∀x ∈ Variable, y ∈ Formula : forall(x, y) ∈ Formula

for some constructors “T”, “not”, “and”, “forall”. An element of “For-
mula” is “forall(X, and(T, or(T, F)))” (assuming X ∈ “Variable′′).

Inductive set definitions may appear in various notations; e.g., the set “Term”
in above example is more conveniently defined as

Term ::= 0 | 1 | −Term | Term+Term | Term∗Term.

in the syntax of BNF (Backus Naur Form) that is used to describe grammars
(Grammatiken) of formal languages.

We now constrain our notion of inductive sets such that the elements preserve
“knowledge” about their construction.

Definition 69 (Term Algebra) An inductively defined set is a term algebra
(Term Algebra) if we have for every constructor f of this set

∀x, y : f(x) = f(y)⇒ x = y

i.e., f is injective (injektiv). Furthermore, for all constructors f and g

∀x, y : f(x) 6= g(y)

i.e., different constructors yield different results.

Every element of a term algebra is denoted by one and only one constructor
term

fi(T1, . . . , Tmi , S1, . . . , Sni)

for some terms T1, . . . , Tmi , S1, . . . , Sni where the S1, . . . , Sni are also con-
structor terms. The name term algebra stems from this one to one corre-
spondence between set elements and the terms that denote these elements.

162 Chapter 5. Induction and Recursion

Example Because of the first two Peano axioms (page 99), N is a term
algebra with constructors 0 and ′.

A nice property of a term algebra is that they allow inductive function and
predicate definitions in the style of inductive definitions over N; we do not
introduce these definitions formally but give some examples.

Example

• Take the set List(T) defined in the previous example and assume that
it is a term algebra. We define the length of a list as

length : List(T)→ N

length(nil) := 0
length(cons(e, l)) := 1 + length(l).

Then we have length(cons(1, cons(2, nil))) = 2.

• Take the set List(T) defined in the previous example and assume that
it is a term algebra. We define the depth of a tree as

depth : Tree(T)→ N

depth(empty) := 0
depth(node(n, l, r)) := 1 + max(depth(l), depth(r)).

Then we have depth(node(1, empty, node(2, node(3, empty, empty),
empty))) = 3.

• Take the set Term defined in the previous example and assume that it
is a term algebra. We define the value of a term as

value : Term→ N

value(0) := 0N
value(1) := 1N
value(−x) := −Nvalue(x)
value(x+ y) := value(x) +N value(y)
value(x ∗ y) := value(x) ∗N value(y)

Then we have value(1 + (1 + 0) ∗ 1) = 2.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

5.4 Induction on Sets 163

On inductively defined sets (not necessarily term algebras) we have the fol-
lowing induction principle.

Proposition 67 (Structural Induction) In order to prove a property

∀x ∈ S : F

for an inductively defined set S, it suffices to prove

∀x1, . . . , xmi , y1 ∈ S, . . . , yni ∈ S :
(F [x := y1] ∧ . . . ∧ F [x := yni])⇒
F [x := fi(x1, . . . , xmi , y1, . . . , yni)]

for every constructor fi of S.

Intuitively, we let the induction run over the “structure” of every term

fi(x1, . . . , xmi , y1, . . . , yni).

denoting some element x in S. We assume that F holds for every “S-
component” yj of x and show that F is propagated to x itself.

Example Take the set “List(T)” defined inductively as

nil ∈ List(T),
∀e ∈ T, l ∈ List(T) : cons(e, l) ∈ List(T).

We define

append : List(T)× List(T)→ List(T)
append(nil, y) := y
append(cons(e, x), y) := cons(e, append(x, y))

and claim that (for the function “length” defined in the previous example)
the following holds:

∀x ∈ List(T), y ∈ List(T) :
length(append(x, y)) = length(x) + length(y).

We proceed by structural induction on x:

164 Chapter 5. Induction and Recursion

Case x = nil: We have to show

∀y ∈ List(T) :
length(append(nil, y)) = length(nil) + length(y).

Take arbitrary y ∈ List(T). We have

length(append(nil, y)) = (definition append)
length(y) =

0 + length(y) = (definition length)
length(nil) + length(y).

Case x = cons(e, l): Take arbitrary e ∈ T and l ∈ List(T).

We assume (induction hypothesis)

∀y ∈ List(T) :
length(append(l, y)) = length(l) + length(y)

and have to show

∀y ∈ List(T) :
length(append(cons(e, l), y)) = length(cons(e, l)) + length(y).

Take arbitrary y ∈ List(T). We have

length(append(cons(e, l), y)) = (definition append)
length(cons(e, append(l, y))) = (definition length)

1 + length(append(l, y)) = (induction hypothesis)
1 + (length(l) + length(y)) =
(1 + length(l)) + length(y) = (definition length)

length(cons(e, l)) + length(y).

Several formal concepts in computer science, e.g. datatypes and formal lan-
guages, can be reduced to inductively defined sets; the principle of structural
induction is therefore of great importance.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

Chapter 6

More on Functions

We have modelled in Chapter 3 functions as special relations, i.e., as sets of
tuples. In this chapter, we will elaborate this notion and its properties in
more detail and describe some important constructions and applications: we
will count set elements and compare the sizes of (also infinite) sets, embed
domains into other domains such that the properties of their operations are
preserved, model numeric sequences and series, discuss special functions over
the reals, and finally compare the asymptotic behavior of functions.

6.1 Further Notions

We start by introducing some additional notions that help to describe the
“shape” of functions.

Definition 70 (Image) Let f : A→ B, A′ ⊆ A. The image (Bild) of A′ at
f is the set of all values to which elements of A′ are mapped by f :

f(A′) := if A′ ⊆ domain(f) then {f(x) : x ∈ A′}.

The inverse image (Urbild) of B′ at f is the set of all elements that are
mapped to some elements of B′ by f :

f−1(B′) := {x ∈ domain(f) : f(x) ∈ B′}.

The set f(A′) is visualized in the following figure (where f−1(f(A′)) = A′):

165

166 Chapter 6. More on Functions

Logic Evaluator The corresponding definitions are as follows:

Next we define a particular classification of functions.

Definition 71 (Function Properties) Let f : A →B. f is injective (in-
jektiv) (also called one-to-one) if it does not map different arguments to the
same result:

f : A
injective−→ B :⇔

f : A→ B ∧ (∀x0 ∈ A, x1 ∈ A : f(x0) = f(x1)⇒ x0 = x1).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.1 Further Notions 167

f is surjective (surjektiv) (also called onto) if it every element of B is hit by
some argument:

f : A
surjective−→ B :⇔

f : A→ B ∧ (∀y ∈ B : ∃x ∈ A : f(x) = y).

f is bijective (bijektiv) if it is injective and surjective:

f : A
bijective−→ B :⇔

f : A
injective−→ B ∧ f : A

surjective−→ B.

These new notions are visualized in the following figure:

For an injective function, the image of the function domain is at least as large
as the domain; for a surjective function, the domain is at least as large as
the image. If a function is injective and surjective, the domain and its image
thus have the same size.

Example For functions on R, above properties can be demonstrated by
considering the number of intersections of the function graph with horizontal
lines:

• The identity function (Identität) f(x) := x is bijective because it inter-
sects every horizontal line exactly once:

168 Chapter 6. More on Functions

• The square function (Quadratfunktion) f(x) := x2 is neither injective
(because the horizontal lines with positive vertical coordinates are inter-
sected twice) nor surjective (because the horizontal lines with negative
coordinates are not intersected at all).

• The function f(x) := x3 − x is surjective but not injective (every hori-
zontal line is intersected at least once, some horizontal lines are inter-
sected more than once):

Logic Evaluator The new predicates are defined below.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.1 Further Notions 169

Bijectivity is preserved by function composition.

Proposition 68 (Composition of Bijective Functions) The composition
of two bijective functions is also bijective:

∀A,B,C, f : A
bijective−→ B, g : B

bijective−→ C :

f ◦ g : A
bijective−→ C.

Proof Take arbitrary f : A
bijective−→ B, g : B

bijective−→ C.

170 Chapter 6. More on Functions

• We show f ◦ g is injective. Take arbitrary x0 ∈ A and x1 ∈ A with
(f ◦ g)(x0) = (f ◦ g)(x1). We have to show x0 = x1.

We know, by definition of ◦, that g(f(x0)) = g(f(x1)) and thus, because
g is injective, f(x0) = f(x1). Since f is injective, we then have x0 = x1.

• We show f ◦g is surjective. Take arbitrary z ∈ C; we have to find some
x such that (f ◦ g)(x) = z.

Since g is surjective, we have some y ∈ B such that g(y) = z. Since f is
surjective, we have some x ∈ A such that f(x) = y. Thus (f ◦ g)(x) =
g(f(x)) = g(y) = z.

As we have seen in Section 3.4, the inverse of a function is not necessarily a
function. However, we have the following result.

Proposition 70 (Inverse of a Function) If a function is injective, its
inverse is also a function:

∀A,B, f : A
injective−→ B :

f−1 : B → A.

Proof Take arbitrary f : A
injective−→ B. We have to show f−1 : B → A.

By Proposition 26 on page 81, we have f−1 ⊆ B × A. By Definition 28 on
page 85, it remains to be shown

(∀x, y0, y1 : (〈x, y0〉 ∈ f−1 ∧ 〈x, y1〉 ∈ f−1)⇒ y0 = y1).

Take arbitrary x, y0, and y1 and assume

(1) 〈x, y0〉 ∈ f−1 ∧ 〈x, y1〉 ∈ f−1.

We have to show (2) y0 = y1.

From (1) and Definition 26 on page 81, we know

(3) 〈y0, x〉 ∈ f ∧ 〈y1, x〉 ∈ f,

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.1 Further Notions 171

i.e., f(y0) = x and f(y1) = x. Since f is injective, we thus know (2).

Logic Evaluator The fact that the inverse of an injective function is also a
function is demonstrated below at the example of negation on Z(which is in-
jective) and of the absolute value (which is not injective) using the definitions
in file function.txt (see Appendix C.8).

The following function is the result of the composition of a function with its
inverse.

172 Chapter 6. More on Functions

Definition 72 (Identity Function) 1A is the function that maps every
x ∈ A to itself:

1A : A→ A
1A(x) := x

Proposition 72 (Inverse Function Properties) For every A,B, f : A→
B, we have

f ◦ 1B = f
1A ◦ f = f.

If f is injective, then we have

f ◦ f−1 = 1A

If f is also surjective (i.e., bijective), then we have

f−1 ◦ f = 1B.

We can consider the set of all functions over some set A as a domain with a
binary operation ◦ (which is associative), a unary operation −1 (the inverse)
and a neutral element 1A.

Logic Evaluator We demonstrate the properties of the identity function
listed above.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.2 Counting Set Elements 173

6.2 Counting Set Elements

The notions introduced in Chapter 3 do not yet allow us to talk about the
number of elements in a set. This concept is usually introduced in the fol-
lowing (inconstructive) way:

Definition 73 (Number of Set Elements) A set is finite (endlich) if it
is empty or there exists a bijection to Nn for some n ∈ N>0. We then call 0
respectively n the size (Größe) or cardinality (Kardinalität) of the set:

S is finite :⇔ S = ∅ ∨
(∃n ∈ N>0, f : f : Nn

bijective−→ S);
|S| := if S = ∅ then 0 else

(such n ∈ N>0 : ∃f : f : Nn
bijective−→ S).

A set is infinite (unendlich) if is not finite:

S is infinite :⇔ ¬S is finite.

Sometimes the set size |S| is also denoted as #S. Please note that |S| is only
defined, if S is finite. In this case, however, it is uniquely defined because
the number of elements is independent of the order in which we count them,
i.e., independent of the particular bijection chosen.

Proposition 73 (Unicity of Bijection) If S is not empty and both f :
Nn → S and g : Nm → S are bijections, then n = m:

(∀S 6= ∅, n ∈ N,m ∈ N, f : Nn
bijective−→ S, g : Nm

bijective−→ S :
m = n).

Proof Take arbitrary S 6= ∅, n ∈ N, m ∈ N, f : Nn
bijective−→ S, g : Nm

bijective−→ S
and assume m 6= n. We show a contradiction.

Assume m < n (the case m > n proceeds analogously). We know f ◦ g−1 :

Nn
bijective−→ Nm. However, since Nn has n elements, Nm has m elements, and

174 Chapter 6. More on Functions

m < n, f ◦ g−1 cannot be injective (pigeonhole principle, a fact that has to
be proved separately).

Example

• The set S := {0, 2, 4} is finite; its size is 3 because we can define a

function f : N3
bijective−→ S as

f(0) := 0
f(1) := 2
f(2) := 4

i.e., f = [0, 2, 4]. The length of f is the same as the length of [0, 4, 2],
[4, 2, 0] or of any other bijection to S.

• The set N is infinite. If it were finite, we had some n ∈ N and some f :

Nn
bijective−→ N. Take k := 1+max{f(i) : i ∈ Nn}. Then, by construction,

k ∈ N but ∀i ∈ Nn : f(i) 6= k, i.e., f is not surjective on N.

A constructive way to determine the number of elements of a set is shown
by the following recursive definition:

size(S) :=
if S = ∅ then 0
else let e = (such x : x ∈ S) :

1 + size(S − e)

We then have |S| = size(S), for every finite set S. However, to show that
above recursive definition indeed defines a function itself relies on the termi-
nation term |S|: therefore we give a constructive definition in terms of set
reduction (see page 304):

|S| := reduce(count, S, 0);
count(e, i) := i+ 1.

Logic Evaluator The constructive definitions introduced above can be
implemented as follows:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.2 Counting Set Elements 175

We sometimes count the number of values for which a proposition holds.

Definition 74 (Number Quantifier) For every variable x and formula F ,
the phrase

#x : F

is a term where x is bound and whose value equals

|{x : F}|.

Please note that the value of such a “number” term is only defined if the base
formula is true for a finite number of assignments for the bound variable.

We state the following facts (whose proofs can be easily given by induction).

Proposition 75 (Set Sizes) If A and B are disjoint with sizes m and n,
respectively, then the size of their union is m+ n:

∀A,B,m ∈ N, n ∈ N :
(A ∩B = ∅ ∧ |A| = m ∧ |B| = n)⇒ |A ∪B| = m+ n.

The size of the Cartesian product of two sets is the product of their sizes:

∀A,B,m ∈ N, n ∈ N :
(|A| = m ∧ |B| = n)⇒ |A×B| = m ∗ n.

176 Chapter 6. More on Functions

If A and B have size m and n, respectively, then the size of the set of functions
from A to B is nm:

∀A,B,m ∈ N, n ∈ N :
(|A| = m ∧ |B| = n)⇒ |A→ B| = nm.

If A is of size n, then A has 2n subsets:

∀A, n ∈ N :
|A| = n⇒ |{S ∈ P(S) : T}| = 2n.

It may seem surprising, but we are able to distinguish between different kinds
of “infinity”, i.e., some sets are “more infinite” than others.

Definition 75 (Countable Sets) A set is countable (abzählbar unendlich)
if it has an enumeration (Aufzählung), i.e., a bijective mapping from N:

S is countable :⇔ ∃f : f : N
bijective−→ S.

Example

• The set Z is infinite but it is countable because we can define a function
f : N

bijective−→ Z as

f(x) := if x is even then − x/2 else (x+ 1)/2

i.e.,

f = [0, 1,−1, 2,−2, 3,−3, . . .].

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.2 Counting Set Elements 177

• The set Q is infinite but countable; we sketch the construction of a
corresponding enumeration. We can list all positive rationals in an
infinite matrix that holds at position 〈i, j〉 the rational i+1

j+1
:

1
1

1
2

1
3

1
4

. . .
↙ ↙ ↙

2
1

2
2

2
3

.
↙ ↙

3
1

3
2

.
↙

4
1

.

.

We can enumerate all elements in this matrix by first traversing all
fractions x

y
with x + y = 2, then all fractions with x + y = 3, then all

fractions with x + y = 4, and so on (always enumerating the fractions
x+ y = c in the order of increasing x).

From this sequence, we have to remove all “doubles” (such as 2
2

which
has already appeared previously as 1

1
) constructing a corresponding

sequence f ′ : N → Q that contains each positive rational number in
exactly one position. Finally we can define an enumeration of the ra-

tionals by g : N
bijective−→ Q defined as

g(x) :=
if x = 0 then 0
else if x is even

then − f ′(x/2)
else f ′((x− 1)/2)

i.e.,

g = [0, 1,−1,
1

2
,−1

2
,
2

1
,−2

1
,
1

3
,−1

3
,
3

1
,−3

1
, . . .].

• The set of all infinite sequences over {0, 1} is not countable: if it were,

we had some f : N
bijective−→ (N→ {0, 1}). Take s : N→ {0, 1} defined as

s(i) := f(i)i

178 Chapter 6. More on Functions

where d := 1 − d. Then s differs from f(i) in the i-th digit (for every
i ∈ N), thus s is not contained in f .

f(0) =
f(1) =
f(2) =
f(3) =
. . .

[f(0)0 f(0)1 f(0)2 f(0)3 . . .]
[f(1)0 f(1)1 f(1)2 f(1)3 . . .]
[f(2)0 f(2)1 f(2)2 f(2)3 . . .]
[f(3)0 f(3)1 f(3)2 f(3)3 . . .]
.

s := [f(0)0, f(1)1, f(2)2, f(3)3, . . .]

The argument called diagonalization (Diagonalisierung) has been in-
vented by Cantor to show the following result.

• The set R is not countable: every infinite sequence d of decimal dig-
its represents a real number 0.d0d1d2 Since the set of all infinite
sequences is not countable (and every real number is represented by a
countable set of such sequences), also R is not countable.

Above example shows us that there exists a bijection between N and Z, i.e.,
there is one distinct natural number for every integer number and vice versa.
It is therefore natural to consider N and Z of the same size1. The concept
of bijections can therefore be used to compare the size of sets.

Proposition 76 (Set Cardinalities) Two sets have same size or same
cardinality, if there is a bijection between them:

A and B are of same size :⇔ ∃f : f : A
bijective−→ B.

One set is not larger than another set, if there exists an injection from the
first set into the second set:

A is not larger than B :⇔ ∃f : f : A
injective−→ B.

1This does not contradict the statement that for every positive n ∈ N, there is a unique
pair −n ∈ Z and +n ∈ Z. Rather it shows us that the union of two disjoint copies of an
infinite set S still has the same size as S, i.e., that our intuition of set sizes cannot be
automatically applied to the infinite case.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.2 Counting Set Elements 179

One set is smaller than another set, if they are not of same size and the
second one is not larger than the first one.

A is smaller than B :⇔
(A is not larger than B) ∧ ¬(A and B have same size).

For finite sets, above notions clearly coincide with the definition of | |.

Proposition 77 (Finite Sets) For all finite sets A and B, the following
holds:

|A| = |B| ⇒ A and B have same size;
|A| ≤ |B| ⇒ A is not larger than B;
|A| < |B| ⇒ A is smaller than B.

However the new notions also allow us to compare the sizes of infinite sets.

Example By the arguments given in the previous example, we have the
following results:

• N has the same size as Z.

• Z has the same size as Q.

• Q is smaller than R.

One can also easily show

• R has the same size as C.

The number domains introduced in Section 4 therefore fall into two classes:

1. N, Z, Q (the enumerable ones),

2. R, C (the not enumerable ones).

180 Chapter 6. More on Functions

The hierarchy of “infiniteness” is not limited, because we can construct for
every (also infinite) set a still larger set.

Proposition 78 (Size of Powerset) Every set is smaller than its powerset:

∀S : S is smaller than P(S).

Proof Take arbitrary S. S is not larger than P(S) because we can define

f : S
injective−→ P(S)

f(x) := {x}.

Assume that S and P(S) are of the same size, i.e., there exists some f :

S
bijective−→ P(S). We show a contradiction.

Take A := {x ∈ S : x 6∈ f(x)}. Since f is surjective and A ⊆ S, i.e., A ∈
P(S), we have some a ∈ S with f(a) = A. But then we know

a ∈ A⇔ a 6∈ f(a)⇔ a 6∈ A.

Consequently, we know that N is smaller than P(N) which is smaller than
P(P(N)) which is smaller than P(P(P(N))) which is

We also have the following result.

Proposition 80 (Size of Function Space) Every set is smaller than the
set of all functions into it:

∀A,B : B is smaller than A→ B.

Permutations Bijections on subsets of N also of importance for sorting
elements in a particular order.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.2 Counting Set Elements 181

Definition 76 (Permutation) A permutation (Permutation) of length n is
a bijective function from Nn to Nn:

p is permutation of length n :⇔ p : Nn
bijective−→ Nn.

Example Take the sequence s = [a, b, c, d, e] and the permutation p =
[1, 0, 4, 3, 2]. Then we have

p ◦ s = [b, a, e, d, c].

Logic Evaluator Permutations can be easily implemented as follows.

Example The problem of sorting (Sortieren) a sequence of elements can be
specified as follows:

• Input:

182 Chapter 6. More on Functions

– A . . . the element domain,

– ≤ ⊆ A× A . . . a reflexive, antisymmetric, and transitive relation,

– n ∈ N . . . the length of the sequence,

– s : Nn → A . . . a sequence of length n on A.

• Output: t : Nn → A such that

– t is permutation of s,

– t is sorted with respect to ≤.

with the following auxiliary predicates:

t is permutation of s :⇔
let n = length(t) :
n = length(s) ∧
∃p : p is permutation of length n ∧ p ◦ s = t;

t is sorted with respect to ≤ :⇔
∀0 ≤ i < length(t) : ti ≤ ti+1.

The set of permutations is closed under function composition.

Proposition 81 (Composition of Permutations) The composition of
two permutations of the same length is also a permutation of this length:

∀n ∈ N, p0, p1 :
(p0 is permutation of length n ∧
p1 is permutation of length n) ⇒
p0 ◦ p1 is permutation of length n.

The inverse of a permutation is a permutation of the same length:

∀n ∈ N, p :
p is permutation of length n⇒
p−1 is permutation of length n.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.2 Counting Set Elements 183

Example Take the permutations p = [1, 0, 4, 3, 2] and q = [2, 1, 3, 4, 0].
Then

p ◦ q = [1, 2, 0, 4, 3],

e.g., (p ◦ q)(2) = q(p(2)) = q(4) = 0. We also have

p−1 = [2, 0, 1, 4, 3]

e.g., p−1(2) = 1 because p(1) = 2, and thus

p ◦ p−1 = p−1 ◦ p = [0, 1, 2, 3, 4].

The following establishes some basic combinatorial knowledge.

Proposition 82 (Number of Permutations) The number of permuta-
tions of length n is 2n:

∀n ∈ N : |{f : f is permutation of length n}| = 2n.

184 Chapter 6. More on Functions

Proof We proceed by induction on n.

If n=0, then the only permutation is p = [].

Assume |{f : f is permutation of length n}| = 2n.

We define

insert(x, i, f) :=
such s :

length(s) = 1 + length(f) ∧
∀j ∈ Nn+1 :
j < i⇒ s(j) = f(j) ∧
j = i⇒ s(j) = x ∧
j > i⇒ s(j) = f(j − 1)

which returns the sequence constructed from f by inserting element x at
position i.

Then we have

|{f : f is permutation of length n+ 1}| =
|{insert(n+ 1, i, f) : i ∈ Nn+1 ∧ f is permutation of length n}| =

(n+ 1) ∗ |{f : f is permutation of length n}| =
(n+ 1) ∗ n =

(n+ 1)!

6.3 Embedding Sets

We have introduced in Chapter 4 a sequence of number domains and stated
rather vaguely that each domain can be “embedded” into the successor do-
main such that the properties of the corresponding operations are preserved.
This statement can be made more precisely by the following concept.

Definition 77 (Homomorphism) Let f : An → A and f ′ : Bn → B.
We call h a homomorphism (Homomorphismus) from A to B (with re-

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.3 Embedding Sets 185

spect to f and f ′) if, for every x0 ∈ A, . . . , xn−1 ∈ A, h(f(x0, . . . , xn−1)) =
f ′(h(x0), . . . , f ′(xn−1)):

h : A
hom(f,f ′)−→ B :⇔

h : A→ B ∧
(∃n ∈ N :
f : An → A ∧ f ′ : Bn → B ∧
(∀x ∈ An : h(f(x0, . . . , xn−1)) = f ′(h(x0), . . . , h(xn−1)))).

A isomorphism (Isomorphismus) is a bijective homomorphism.

h : A
iso(f,f ′)−→ B :⇔

h : A
hom(f,f ′)−→ B ∧

h : A
bijective−→ B.

A homomorphism makes the following diagram commute:

In other words, it does not matter whether we first perform the operation f
in A and let h map the result to B or whether we let h map the arguments
of f to B and apply f ’ to them. In this sense, h embeds A into B and their
operations are structurally equal. If h is an isomorphism, then this embedding
works in both directions: A and B become “identical twins” that cannot be
distinguished by the behavior of f and f ’.

Example

186 Chapter 6. More on Functions

• Take h : N→ Z defined as (see Definition 42 on page 109)

h(x) := 〈x, 0〉.

Then we have, for all x ∈ N and y ∈ N,

h(x+N y) = h(x) +Z h(y);
h(x ∗N y) = h(x) ∗Z h(y)

i.e., h is a homomorphism from N to Z (for the operations + and ∗).

• Take h : Z→ Q defined as (see Definition 45 on page 113):

h(x) :=
x

1Z
.

Then we have, for all x ∈ Z and y ∈ Z,

h(x+Z y) = h(x) +Q h(y);
h(x−Z y) = h(x)−Q h(y);
h(x ∗Z y) = h(x) ∗Q h(y)

i.e., h is a homomorphism from Z to Q (for operations +, −, and ∗).

• Take the domain “List(T)” with functions “length” and “append” (see
the Examples on page 162 and 163).

We have for all x ∈ List(T) and y ∈ List(T)

length(append(x, y)) = length(x) + length(y)

i.e., “length” is a homomorphism from “List(T)” to N with respect to
“append” and +.

• Take the set of polynomials. We have, for all polynomials x and y and
a ∈ R,

(x+ y)[a] = x(a) +R y(a)
(x− y)[a] = x(a)−R y(a)

(−x)[a] = −Rx(a)
(x ∗ y)[a] = x(a) ∗R y(a)

i.e., polynomial evaluation is a homomorphism from the set of polyno-
mials to R (for operations +, −, ∗).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.3 Embedding Sets 187

As the previous example suggests, we have a homomorphism from each num-
ber domain introduced in Chapter 4 to its successor. Actually, each domain
is isomorphic to some subset of its successor, i.e.,

N ⊆′ Z ⊆′ Q ⊆′ R ⊆′ C

where

A ⊆′ B :⇔ ∃h,B′ ⊆ B : h : A
iso(OA,O

′
B)

−→ B′.

Here OA denotes the considered operations on A, O′B denotes the correspond-

ing operations on B’ and h : A
iso(OA,O

′
B)

−→ B′ states that h is an isomorphism
between A and B for each operation pair.

Logic Evaluator We demonstrate that (a finite subset of) N is isomorphic
to a subset of Z:

188 Chapter 6. More on Functions

Isomorphisms are also useful to demonstrate the equivalence of different con-
structions as shown below.

Another Construction of the Complex Numbers Every element x+yi
of C can be visualized as a point in the plane whose Cartesian coordinates
(kartesische Koordinaten) are denoted by the real part and by the imaginary
part of the complex number, respectively:

In polar coordinates (Polarkoordinaten), each point is represented by a pair
〈r, α〉 where r denotes the distance of the point from the origin and α denotes
the angle to the horizontal axis:

Thus we can define a “polar” variant of C

C
′ := R× [0, 2π[

assuming that angles are uniquely expressed in “radians” (i.e., π = 180◦).

A translation from the new domain into the original one is given by

cartesian : C′ → C

cartesian(z) = z0 ∗ cos(z1) + z0 ∗ sin(z1)i.

where “cos” and “sin” represent cosine and sine, respectively.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.3 Embedding Sets 189

The other direction is a bit more complicated:

polar : C→ C
′

polar(z) = (
√
z2

0 + z2
1 , α)

where α =
if z0 = 0 then

if z1 > 0 then π/2 else 3π/2
else

let a = arctan(z1/z0) :
shift(if z0 ≥ 0 then a else π − a)

where “arctan” is the inverse (“arcus”) tangent. Since the inverse tangent
does not determine the result uniquely, we have to make a case distinction
and normalize the result by the following auxiliary function:

shift : R→ [0, 2π[
shift(a) := (such b : b ∈ [0, 2π[∧ ∃i ∈ Z : a− b = 2πi)

One can now show

cartesian ◦ polar = 1C,
polar ◦ cartesian = 1C′

i.e., “cartesian” and “polar” are bijections.

We may define the following “multiplication” on C’:

x ∗C′ y := 〈x0 ∗ y0, shift(x1 + y1)〉

We then have

cartesian : C
iso(∗C,∗C′)−→ C

′

polar : C′
iso(∗

C′ ,∗C)−→ C

i.e., C and C’ are isomorphic with respect to their respective notions of
multiplication.

Proof We show that “cartesian” is a homomorphism with respect to mul-
tiplication:

∀x ∈ C′, y ∈ C′ : cartesian(x ∗C′ y) = cartesian(x) ∗C cartesian(y).

190 Chapter 6. More on Functions

Take arbitrary x ∈ C′ and y ∈ C′. We then have

cartesian(x ∗C′ y) =
cartesian(x0y0, shift(x1 + y1)) =

x0y0cos(shift(x1 + y1)) + (x0y0sin(shift(x1 + y1)))i = (∗)
x0y0cos(x1 + y1) + (x0y0sin(x1 + y1))i.

(*) holds because of the definition of “shift” and because, for every x ∈ R,

sin(x+ 2π) = sin(x),
cos(x+ 2π) = cos(x)

which we assume as granted knowledge.

We also have

cartesian(x) ∗C cartesian(y) =
(x0cos(x1) + x0sin(x1)i) ∗C (y0cos(y1) + y0sin(y1)i) =

(x0y0cos(x1)cos(y1)− x0y0sin(x1)sin(y1))+
(x0y0cos(x1)sin(y1) + x0y0sin(x1)cos(y1))i =

x0y0(cos(x1)cos(y1)− sin(x1)sin(y1))+
x0y0(cos(x1)sin(y1) + x0y0sin(x1)cos(y1))i

We assume the knowledge

cos(x1 + y1) = cos(x1)cos(y1)− sin(x1)sin(y1)
sin(x1 + y1) = cos(x1)sin(y1) + sin(x1)cos(y1)

as granted and are therefore done.

We may also define corresponding notions of addition, subtraction, and di-
vision in C’ such that they are isomorphic to their counterparts in C.

Consequently, we may operate in C or in C’, whatever is more convenient, and
translate the results into the other direction. In particular, if the computation
of some operation is rather awkward in one domain, it may be simpler to
translate the arguments into the other domain, perform the operation there,
and translate the result back into the original domain. This is in particular
true for the computation of complex roots.

Definition 78 (Complex Root)

√
: (N× C′)→ C

′

n
√
z := 〈 n√z0, z1/n〉.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.3 Embedding Sets 191

Proposition 85 (Complex Roots) For every n ∈ N>0 and z ∈ C′, the
n-th roots of z are n

√
z and the n-1 values that have the same distance from

the origin and their angle shifted by multiples of 2π/n:

∀n ∈ N>0, z ∈ C′ :
let r = n

√
z :

(∀s ∈ C′ : z = sn ⇔ ∃i ∈ N : s = 〈r0, shift(r1 + 2πi/n)〉).

In other words, the n-th roots of a complex number are on the same circle
and have equal distance from each other as shown in the following diagram
for the cube root of 〈r, α〉.

Since roots can be computed in C’ most easily, one usually does not bother
to introduce this concept in C but simply defines:

√
‘ : (N>0 × C)→ C

n
√
z := cartesian(n

√
polar(z)).

Vice versa, addition and subtraction are done more easily in C than in C’:

+C′ : (C′ × C′)→ C
′

x+C′ y := polar(cartesian(x) +C cartesian(y));
−C′ : (C′ × C′)→ C

′

x−C′ y := polar(cartesian(x) +C cartesian(y)).

192 Chapter 6. More on Functions

6.4 Sequences and Series

In this section, we discuss infinite sequences over R; we often write them in
the following form.

Definition 79 (Sequence Quantor) For every variable i and term T , the
phrase

[T]i

is a term with bound variable i whose value is the sequence

[T]i : N→ R

[T]i(i) := T.

Example [a2 + c]a = [0 + c, 1 + c, 4 + c, 9 + c, . . .].

The sequence elements may be ordered in a way that is compatible with the
order of the element domain.

Definition 80 (Monotonicity) Let f be an infinite sequence over R. f is
monotonically increasing (monoton wachsend) if every element of f is less
than or equal the next element:

f is monotonically increasing :⇔ f : N→ R ∧ ∀i ∈ N : fi ≤ fi+1.

f is strictly monotonically increasing (streng monoton wachsend) if every
element of f is less than the next element:

f is strictly monotonically increasing :⇔
f : N→ R ∧ ∀i ∈ N : fi < fi+1.

f is monotonically decreasing (monoton wachsend) if every element of f is
greater than or equal the next element:

f is monotonically decreasing :⇔ f : N→ R ∧ ∀i ∈ N : fi ≥ fi+1.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.4 Sequences and Series 193

f is strictly monotonically decreasing (streng monoton wachsend) if every
element of f is greater than the next element:

f is strictly monotonically decreasing :⇔
f : N→ R ∧ ∀i ∈ N : fi > fi+1.

The following figure illustrates a monotonically (not strictly monotonically)
decreasing sequence:

Example

• [i]i is strictly monotonically increasing:

[i]i = [0, 1, 2, 3, . . .]

• [1
i+1

]i is strictly monotonically decreasing:

[
1

i+ 1
]i = [1,

1

2
,
1

3
,
1

4
, . . .]

• [i div 2]i is monotonically increasing:

[i div 2]i = [0, 0, 1, 1, 2, 2, . . .]

• [(−1)i]i is neither monotonically increasing nor decreasing:

[(−1)i]i = [1,−1, 1,−1, . . .]

194 Chapter 6. More on Functions

The elements of an infinite sequence either become arbitrarily large or their
size is bounded.

Definition 81 (Upper and Lower Bounds) Let f be an infinite sequence
over R. f has an upper bound (obere Schranke) U if every element of f is
less than or equal U :

U is upper bound of f :⇔ f : N→ R ∧ ∀i ∈ N : fi ≤ U.

f has a lower bound (untere Schranke) L if every element of f is less than or
equal L:

L is lower bound of f :⇔ f : N→ R ∧ ∀i ∈ N : fi ≤ L.

The supremum (Supremum) of f is the smallest upper bound of f :

sup(f) := such S :
S is upper bound of f ∧
(∀S ′ : S ′ is upper bound of f ⇒ S ≤ S ′).

The infimum (Infimum) of f is the greatest lower bound of f :

inf(f) := such I :
I is lower bound of f ∧
(∀I ′ : I ′ is lower bound of f ⇒ I ≥ I ′).

The notions are visualized below:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.4 Sequences and Series 195

While there are infinitely many upper and lower bounds (if any), supremum
and infimum are uniquely defined.

Proof We define

S is supremum of f :⇔
S is upper bound of f ∧
(∀S ′ : S ′ is upper bound of f ⇒ S ≤ S ′)

(i.e., sup(f) = such S : S is supremum of f) and show

∀f, S0, S1 :
S0 is supremum of f ∧ S1 is supremum of f ⇒ S0 = S1.

Take arbitrary f and suprema S0 and S1 of f . Since S0 is a supremum and S1

is an upper bound of f , we have S0 ≤ S1. Conversely, since S1 is a supremum
and S0 is an upper bound of f , we have S1 ≤ S0. Since S0 ≤ S1 and S1 ≤ S0,
we have S0 = S1.

Example

• [i]i has infimum 0 but no upper bound.

• [1− i]i has supremum 1 but no lower bound.

• [1
i+1

]i has supremum 1 and infimum 0.

• [i3]i has no upper bound and no lower bound.

As above example shows, the infimum and supremum of a sequence need
not be among the values of the sequence; in this case the sequence values
arbitrarily close approach the bound without ever actually reaching it:

196 Chapter 6. More on Functions

Logic Evaluator We simulate some of the notions introduced above by
considering a finite initial segment of the sequence.

Please note that the predicate isMonoIncreasing(s, n) only checks whether
the sequence s is monotonically increasing in the first n elements and cor-
respondingly for the other predicates. In general we can describe in the
Logic Evaluator infinite notions only by finite approximations in the style
demonstrated above.

Correspondingly, the following definitions determine a pseudo-supremum and
pseudo-infimum among the first n values of the given sequence ; please note
that for infinite sequences supremum respectively infimum need not be among
the values of the sequence; please compare with the actual definitions of “sup”
and “inf” on page 194.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.4 Sequences and Series 197

Definition 82 (Convergence and Limit) An infinite sequence s over R
converges (konvergiert) to limit (Grenzwert, Limes) a, if its members ap-
proach a arbitrarily close:

s converges to a :⇔ ∀ε > 0 : ∃n ∈ N : ∀i ≥ n : |si − a| < ε;
lim(s) := such a : s converges to a.

A non-convergent series is called divergent (divergent):

s is divergent :⇔ ¬∃a : s converges to a.

A geometric interpretation of convergence is given by the following picture
that shows that, for every ε > 0, all members of a convergent sequence are
eventually in an “ε-tunnel” around limit a, i.e., in the interval]a− ε, a+ ε[:

198 Chapter 6. More on Functions

Example Let s := [(−1)i ∗ 1
i+1

]i. We show that s converges to 0. Take
arbitrary ε > 0. We have to find some n ∈ N such that

∀i ≥ n : |(−1)i ∗ 1

i+ 1
− 0| < ε

which can be simplified to

∀i ≥ n :
1

i
< ε.

Take n := such n ∈ N : 1
ε
< n. Because N is unbounded (i.e., ∀r ∈ R :

∃n ∈ N : r < n), we know 1
ε
< n.

Take arbitrary i ≥ n. We then have

1

i
≤ 1

n
<

1
1
ε

= ε.

Example Let s := [(−1)i]i. We show that s is divergent. Assume that s is
convergent, i.e., s converges to some limit a ∈ R. We show a contradiction.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.4 Sequences and Series 199

Let ε := 1
2
. There exists some n ∈ N such that

∀i ≥ n : |(−1)i − a| < 1

2
.

We thus have

|1− a| < 1
2
∧ | − 1− a| < 1

2

(substituting for i the values n and n + 1 one of which is even and one of
which is odd).

We then have (see the absolute value laws on page 127)

1 = 1
2

+ 1
2
> |1− a|+ | − 1− a|

= |1− a|+ |1 + a| ≥ |(1− a) + (1 + a)| = 2

which represents a contradiction.

The limit of a convergent sequence is uniquely defined.

Proposition 87 (Unicity of Limits) If s converges to both a0 and a1, then
a0 = a1:

∀s, a0, a1 : (s converges to a0 ∧ s converges to a1)⇒ a0 = a1.

Proof Take arbitrary s, a0 and a1 such that s converges to both a0 and a1.
Assume a0 6= a1. We show a contradiction.

Let ε := |a1−a0

2
|. We know ε > 0, therefore there exist n0 ∈ N and n1 ∈ N

such that

(∀i ≥ n0 : |si − a0| < ε) ∧ (∀i ≥ n1 : |si − a1| < ε).

Let n := max(n0, n1). We then know

|sn − a0| < ε ∧ |sn − a1| < ε.

200 Chapter 6. More on Functions

Consequently, we have (see the absolute value laws on page 127)

|a1 − a0| = 2ε = ε+ ε > |sn − a0|+ |sn − a0|
≥ |(sn − a0)− (sn − a1)| = |a1 − a0|

which represents a contradiction.

We often write limits in form of a quantor.

Definition 83 (Limit Quantor) For every variable i and term T , the
following phrase represents a term with bound variable i:

limi→∞ T

The value of this term is that of the term

lim([T]i).

We then have the following laws for the manipulation of limit terms.

Proposition 89 (Limit Laws) For all convergent sequences [A]i and [B]i,
we have

limi→∞(A+B) = (limi→∞ A) + (limi→∞ B),
limi→∞(A−B) = (limi→∞ A)− (limi→∞ B),
limi→∞(A ∗B) = (limi→∞ A) ∗ (limi→∞ B).

If limi→∞ B 6= 0, we also have

limi→∞(
A

B
) =

limi→∞ A

limi→∞ B
.

Furthermore, we have for every c ∈ R

limi→∞(c ∗ A) = c ∗ limi→∞ A.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.4 Sequences and Series 201

Proof Take arbitrary convergent sequences [A]i and [B]i. We prove

limi→∞(A+B) = (limi→∞ A) + (limi→∞ B).

Let a := limi→∞ A and b := limi→∞ B. We have to show

∀ε > 0 : ∃n ∈ N : ∀i > n : |A+B − (a+ b)| < ε.

Take arbitrary ε > 0. We know that there exist n0 ∈ N and n1 ∈ N such that

∀i ≥ n0 : |A− a| < ε
2
,

∀i ≥ n1 : |B − b| < ε
2
.

Let n := max(n0, n1). We have to show

∀i ≥ n : |A+B − (a+ b)| < ε.

Take arbitrary i ≥ n. We know

|A+B − (a+ b)| =
|(A− a) + (B − b)| ≤
|A− a|+ |B − b| <

ε
2

+ ε
2

= ε.

Example

limi→∞(
i+ 2

i− 3
) = limi→∞(

1 + 2
i

1− 3
i

) =
limi→∞(1 + 2

i
)

limi→∞(1− 3
i
)

=
limi→∞(1) + limi→∞(2

i
)

limi→∞(1)− limi→∞(3
i
)

=
1 + 0

1− 0
= 1.

An important mathematical constant is defined as a limit.

202 Chapter 6. More on Functions

Definition 84 (Euler’s Number)

e := limi→∞ (1 +
1

i
)i.

One can show that the sequence [(1 + 1
i
)i]i is convergent; thus e is indeed

well-defined with value is 2.71828

We now construct a new sequence by summing up the elements of another
sequence.

Definition 85 (Series) Let a be an infinite sequence over R. The series
(Reihe) corresponding to a is the sequence where every element sn is the sum
of the first n+ 1 elements of a:

series : (N→ R)→ (N→ R)
series(a)n :=

∑
0≤i≤n ai.

If a = [T]i, then series(a) is denoted by the term [
∑

0≤i≤n T]n.

Example Let a = [i2]i:

a = [0, 1, 4, 9, 16, 25, . . .].

Then series(a) = [
∑

0≤i≤n i
2]n:

series(a) = [0, 1, 5, 14, 30, 55, . . .].

Logic Evaluator A series can be simply defined as follows.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.4 Sequences and Series 203

The following example illustrates some important classes of series.

Example

Arithmetic Series For every c ∈ R, the sequence [i ∗ c]i is called an arith-
metic sequence (arithmetische Folge). Correspondingly, series([i ∗ c]i)
is called an arithmetic series (arithmetische Reihe). We have, for every
n ∈ N,

series([i ∗ c]i)n =
∑

0≤i≤n

i ∗ c = c ∗ n(n+ 1)

2
.

(which can be proved by induction on n).

For instance, for c = 1, we have

[i]i = [0, 1, 2, 3, 4, 5, . . .],
series([i]i) = [0, 1, 3, 6, 10, 15, . . .].

Geometric Series For every q ∈ R, the sequence [qi]i is called a geometric
sequence (geometrische Folge). Correspondingly, series([qi]i) is called a
geometric series (geometrische Reihe). We have, for every n ∈ N,

series([qi]i)n =
∑

0≤i≤n

qi =
qn − 1

q − 1
.

204 Chapter 6. More on Functions

(which can be proved by induction on n).

For instance, for q = 2, we have

[2i]i = [1, 2, 4, 8, 16, . . .],
series([2i]i) = [1, 3, 7, 15, 31].

The limit of a series is usually denoted as follows.

Definition 86 (Series Limit Quantor) For every variable i and term T ,
the following phrase denotes a term with bound variable i:

∞∑
i=0

T

The value of this term is

limn→∞
∑

0≤i≤n

T.

Please note that the value
∑∞

i=0 T is only well defined if [
∑

0≤i≤n T]n is con-
vergent.

We then have the following well-known result.

Proposition 91 (Limit of Geometric Series) For every q ∈ R with
|q| < 1, the series [

∑
0≤i≤n q

i]n converges to 1
1−q :

∀q ∈ R : |q| < 1⇒
∑∞

i=0 q
i = 1

1−q .

Proof Take arbitrary q ∈ R with |q| < 1. We then have∑∞
i=0 q

i =
limn→∞

∑
0≤i≤n T =

limn→∞
qn−1
q−1

=
limn→∞ (qn−1)
limn→∞ (q−1)

=
(limn→∞ qn)−(limn→∞ 1)

q−1
= (∗)

0−1
q−1

=
1

1−q .

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.5 Special Functions 205

(*) The fact limn→∞ qn = 0 has to be shown in a separate proof.

6.5 Special Functions

We now investigate the behavior of several important functions over R. Most
of the notations defined for sequences in the previous section (monotonicity,
upper and lower bound, supremum, infimum, convergence, limit) apply to
such functions as well; we do not repeat the corresponding definitions.

Real functions can be constructed in a modular manner by composing more
complex functions from simpler ones. The composition operations are defined
“pointwise”, i.e., the value of a composed function at point x is determined
only by the values of the component functions at this point.

Definition 87 (Pointwise Function Definition) Let RealFun = R→ R.
We define the following function composition operations:

. : R→ RealFun
c(x) := c;

+ : (RealFun× RealFun)→ RealFun
(f + g)(x) := f(x) + g(x);

− : (RealFun× RealFun)→ RealFun
(f + g)(x) := f(x)− g(x);

: (RealFun× RealFun)→ RealFun
(f ∗ g)(x) := f(x) ∗ g(x);

.

.
: (RealFun× RealFun)→ (R

partial−→ R)

(f
g
)(x) := f(x)

g(x)
;

.. : (RealFun× Z)→ (R
partial−→ R)

(fn)(x) := f(x)n;

√
: (Z× RealFun)→ (R

partial−→ R)

(n
√
f)(x) := n

√
f(x);

206 Chapter 6. More on Functions

The first composition operation makes a function from a constant, e.g., the
number 5 can be interpreted as the constant function 5(x) := 5. The domain
of a quotient function f/g is the set of all reals x such that g(x) 6= 0. The
domain of fn and of n

√
f is R, if n ≥ 0. Otherwise, their domain is the set of

all reals x such that f(x) > 0.

Example

• Let f(x) := 2x2 and g(y) := y + 4. Then, for every x ∈ R,

(
√
f + g)(x) =

√
2x2 + x+ 4.

• The function f(x) := 3x2 + x
√
x equals

3 ∗ g + h

where g(x) := x2 and h(x) = x
√
x.

• The function
1R

2+
√

1R+1
equals the function

f(x) :=
x2 +

√
x

x+ 1
.

Integer Functions Various functions map real numbers to integers.

Definition 88 (Floor and Ceiling) The floor of a real number x is the
largest integer less than or equal x.

bxc := max{y ∈ Z : y ≤ x}.

Analogously, the ceiling of x is the smallest integer greater than or equal x:

dxe := min{y ∈ Z : y ≥ x}.

In above definition, we consider Z as a subset of R (instead of writing h(Z)
where h is the homomorphism that actually maps Z into R).

The graphs of these functions are depicted by the following diagram (with
the floor denoted by a solid line and the ceiling denoted by the dotted line):

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.5 Special Functions 207

We see that the floor function lies on or below the first diagonal while the
ceiling lies above the diagonal. If we shift the diagonal line down one unit,
it lies completely below the floor function; if we shift it up one unit, it
lies completely above the floor function. Furthermore, functions intersect
with each other at the diagonal exactly for the integer points. Finally, the
functions are reflections of each other about both axes. We thus have the
following three results.

Proposition 93 (Floor and Ceiling) For every x ∈ R, we have:

x− 1 < bxc ≤ x ≤ dxe < x+ 1,
bxc = x⇔ x ∈ Z⇔ dxe = x,
b−xc = −dxe, d−xe = −bxc.

(We use in above proposition A⇔ B ⇔ C to denote (A⇔ B) ∧ (B ⇔ C)).

Furthermore, we have the following property that allows us to shift integer
terms out of a floor or a ceiling.

Proposition 94 (Floor and Ceiling Shifts) For every x ∈ R and i ∈ Z,
we have:

bx+ ic = bxc+ i,
dx+ ie = dxe+ i.

208 Chapter 6. More on Functions

Please note that above rule does not hold for multiplication, i.e., there exist
x ∈ R and i ∈ Z such that bx ∗ ic 6= bxc∗i (e.g., 2∗b0.5c = 0 6= 1 = b2 ∗ 0.5c).
The following rules help us to get rid of the floor and ceiling brackets under
certain circumstances.

Proposition 95 (Floor and Ceiling Removal) For every x ∈ R and
i ∈ Z, we have:

x < i ⇔ bxc < i,
i < x ⇔ i < dxe,
x ≤ i ⇔ dxe ≤ i,
i ≤ x ⇔ i ≤ bxc.

Computer languages and pocket calculators sometimes provide operations to
truncate the fractional part of a number.

Proposition 96 (Truncation) The truncated part (abgeschnittener Teil) of
a real number is the number without its fractional part:

trunc(x) := if x < 0 then dxe else bxc.

For this function, we have the following result.

Proposition 97 (Truncation) For every x ∈ R, the truncated part of the
negation of x is the negation of the truncated part of x:

∀x ∈ R : trunc(−x) = −trunc(x).

Apart from that, truncation does not have many nice mathematical prop-
erties (as we have for floor and ceiling), therefore it is rarely used in math-
ematical practice. A number of other interesting functions can be defined
with the help of floor and ceiling.

Example The graph of f(x) := x− bxc is depicted by

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.5 Special Functions 209

The graph in above example is an infinite replication of the graph in the
interval [0, 1[, i.e., the corresponding function has period 1.

Definition 89 (Periodic Functions) A function has period (Periode) a, if
the function values are repeated in intervals of width a:

f has period a :⇔
f : R→ R ∧ a ∈ R ∧ ∀x ∈ R : f(x+ a) = f(x).

A function is periodic (periodisch) if it has some period:

f is periodic :⇔ ∃a ∈ R : f has period a.

With the help of the floor function, we can also perform “integer division” (see
Proposition 43 on page 109) of two reals x and y as bx/yc. A corresponding
remainder operation is then defined as follows.

Definition 90 (Real Remainder)

mod : (R× R)→ R

x mod y := x− y ∗ bx/yc.

As an immediate consequence of this definition, we have, for every x ∈ R
and y ∈ R with y 6= 0,

x = y ∗ bx/yc+ x mod y.

For positive x and y, the intuitive meaning of integer quotient and remainder
in R can be easily grasped by imagining a circle of circumference y on which
we travel from a denoted starting point distance x:

210 Chapter 6. More on Functions

The number of times that we traverse the circle is bx/yc, the distance of the
final point from the starting point is x mod y.

Example

• b5.44/4c = 1; 5.44 mod 4 = 5.44− 4 ∗ 1 = 1.44.

• b−5.44/4c = −2; −5.44 mod 4 = −5.44− 4 ∗ (−2) = 2.56.

• b5.44/− 4c = −2; 5.44 mod − 4 = 5.44− (−4) ∗ (−2) = −2.56.

• b−5.44/− 4c = 1; −5.44 mod − 4 = −5.44− (−4) ∗ 1 = −1.44.

From above examples, we realize the following facts about the remainder
operation.

Proposition 98 (Remainder Laws) For every x ∈ R and y ∈ R, we have

y > 0⇒ (0 ≤ x mod y < y),
y < 0⇒ (0 ≥ x mod y > y).

Polynomial Functions and Rational Functions Functions may be de-
fined by polynomials.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.5 Special Functions 211

Definition 91 (Polynomial Function) For every n ≥ 0 and a : Nn+1 → R,
we call p : R→ R, p(x) :=

∑
0≤i≤n aix

i a polynomial function (Polynomfunk-
tion) of degree n with coefficients a:

p is polynomial function of degree n with coefficients a :⇔
n ∈ N ∧ a : Nn+1 → R ∧
∀x ∈ R : p(x) =

∑
0≤i≤n ai;

p is polynomial function :⇔
∃n ∈ N, a : p is polynomial function of degree n with coeff. a;

degree(p) := such n ∈ N : ∃a : Nn+1 ∈ R :
p is polynomial function of degree n with coefficients a;

coefficients(p) := such a : ∃n ∈ N :
a : Nn+1 ∈ R ∧
p is polynomial function of degree n with coefficients a.

Degree and coefficients of a polynomial function are uniquely defined (which
we do not show here). Every polynomial function can be pointwise defined
from identity and constant functions just by use of +, −, ∗ and exponentia-
tion (with non-negative exponents); vice versa, any function defined in such
a way is a polynomial function.

Example

• The constant function (konstante Funktion) f(x) := c (for any c ∈ R)
is a polynomial function of degree 0 and with coefficients [c].

• The linear function (lineare Funktion) f(x) := ax + b (for any a ∈ R
and b ∈ R) is a polynomial function of degree 1 with coefficients [a, b].

• The square function (Quadratfunktion) f(x) := x2 is a polynomial func-
tion of degree 2 with coefficients [1, 0, 0].

• f(x) := x5− 3x2 + 1 is a polynomial function with degree 5 and coeffi-
cients [5, 0, 0,−3, 0, 1].

• The function f(x) := (2x+1)∗(x2−3) is a polynomial function because
it can be represented (by simplification of the defining term) as

f(x) := 2x3 + x2 − 6x− 3.

It thus is of degree 3 and has coefficients 〈2, 1,−6,−3〉.

212 Chapter 6. More on Functions

Every polynomial function has a function graph with a single “smooth” path
such as the graph for the function in the last last example:

.

By allowing also division as a function composition operation, we get the
following class of real functions:

Definition 92 (Rational Function) For every pair of polynomial functions
p and q, we call the function r : R → R, r(x) := p(x)/q(x) with R :=
R− {x ∈ R : q(x) = 0} a rational function (rationale Funktion):

r is a rational function :⇔ ∃p, q :
p is polynomial function ∧
q is polynomial function ∧
∀x ∈ R : r(x) = p(x)

q(x)
.

Example

• The reciprocal function (Reziprokfunktion) f(x) := 1
x

is a rational func-
tion with domain R− {0}.

• f(x) := 3x2−2x+1
x2+1

is a rational function with domain R.

• f(x) := 3x2−2x+1
x2−1

is a rational function with domain R− {−1, 1}.

Rational functions may have function graphs with multiple paths separated
by those horizontal coordinates where the denominator becomes zero; e.g.
for the rational function in the last example we have:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.5 Special Functions 213

.

The dashed lines denote the discontinuities at −1 and 1 where the rational
function is not defined.

Exponentiation and Natural Logarithm The sequence [ei]i (where e
denotes Euler’s number) can be smoothly extended to a function over R.

Definition 93 (Exponential Function and Logarithm Function)

exp : R→ R>0

exp(x) :=
∑∞

i=0
xi

i!
;

ln : R>0 → R

ln(x) := exp−1(x).

One can show that, for every x ∈ R, [
∑

0≤i≤n
xi

i!
]n converges and that exp(x)

is thus well defined. Furthermore, the function is bijective and thus, for every
x > 0, ln(x) is well-defined. The graphs of both functions are depicted as
follows:

214 Chapter 6. More on Functions

where we see for instance exp(0) = 1 and ln(1) = 0. More general, we have
the following properties.

Proposition 99 (Exponential and Logarithm Properties) For every
x ∈ R and y ∈ R, we have:

exp(x+ y) = exp(x) ∗ exp(y),
exp(x− y) = exp(x)/exp(y),

exp(−x) = 1/exp(x),
exp(x ∗ y) = exp(x)y,

exp(0) = 1,
exp(1) = e,

ln(x ∗ y) = ln(x) + ln(y),
ln(x/y) = ln(x)− ln(y),
ln(1/x) = −ln(x),

ln(xy) = y ∗ ln(x),
ln(e) = 1,
ln(1) = 0.

Proof Take arbitrary x ∈ R and y ∈ R. We show

exp(x+ y) = exp(x) ∗ exp(y).

We have

exp(x+ y) =

(
∑∞

i=0
xi

i!
) + (

∑∞
i=0

yi

i!
) =∑∞

k=0

∑
0≤i≤k

xi

i!
yk−i

(k−i)! =∑∞
k=0

1
k!

∑
0≤i≤k

k!
i!(k−i)!x

iyk−i =∑∞
k=0

1
k!

∑
0≤i≤k

(
k
i

)
xiyk−i = (∗)∑∞

k=0
(x+y)k

k!
=

exp(x) + exp(y).

(*) The fact
∑

0≤i≤k

(
k
i

)
xiyk−i = (x + y)k has to be shown in a separate

proof (by induction over k).

Most properties about exponentiation are easy consequences of the first fact
in above proposition, e.g. we have, for every x ∈ R,

exp(0) = exp(x+ 0) = exp(x) ∗ exp(0)

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.5 Special Functions 215

and consequently exp(0) = 1. Properties of the logarithm are direct conse-
quences of its definition as the inverse of exponentiation.

Proof Take arbitrary x ∈ R and y ∈ R. We show

ln(x ∗ y) = ln(x) + ln(y).

We have

ln(x) + ln(y) =
ln(exp(ln(x) + ln(y))) =

ln(exp(ln(x)) ∗ exp(ln(y))) =
ln(x ∗ y).

On the basis of “exp” and “ln” a more general kind of exponentiation and
logarithm can be defined.

Definition 94 (General Exponentiation and Logarithm Function)

exp : (R>0 × R)→ R>0

expa(x) := exp(x ∗ ln(a)),
log : (R>0 × R>0)→ R

loga(x) := ln(x)/ln(a).

Both functions are the inverse of each other, e.g. we have for every a ∈ R>0

and x ∈ R>0

expa(loga(x)) = expa(ln(x)/ln(a)) = (ln(x)/ln(a) ∗ ln(a) = x.

The graphs of generalized exponentiation and logarithm look like their basic
counterparts but are scaled by a constant factor ln(a).

Trigonometric Functions The trigonometric functions are defined as lim-
its of some power series.

216 Chapter 6. More on Functions

Definition 95 (Trigonometric Functions) The functions sine (Sinus),
cosine (Cosinus), tangent (Tangens), and cotangent (Cotangens) are defined
as follows:

sin : R→ [−1, 1]

sin(x) :=
∑∞

i=0 (−1)k x2k+1

(2k+1)!
;

cos : R→ [−1, 1]

cos(x) :=
∑∞

i=0 (−1)k x2k

(2k)!
;

tan : R
partial−→ R

tan(x) := sin(x)
cos(x)

;

cot : R
partial−→ R

cot(x) := cos(x)
sin(x)

.

The function graphs of sine and cosine are depicted as follows:

We see that the sine is zero for every multiple of π and alternates between
its maximum +1 and minimum −1 at the points in the middles between; the
function has period 2π. The cosine is just a copy of the sine shifted by π

2
to

the left.

Proposition 102 (Sine and Cosine Values) For all i ∈ Z, we have:

sin(2πi) = 0,
sin(2πi+ π/2) = 1,

sin(2πi+ π) = 0,
sin(2πi+ 3π/2) = −1,

cos(2πi) = 1,
cos(2πi+ π/2) = 0,

cos(2πi+ π) = −1,
cos(2πi+ 3π/2) = 0.

Many properties of sine and cosine can be derived from the following funda-
mental proposition (which we state without proof).

Proposition 103 (Sine and Cosine) For every x ∈ R and y ∈ R, we have

sin(x+ y) = sin(x) ∗ cos(y) + cos(x) ∗ sin(y),
cos(x+ y) = cos(x) ∗ cos(y)− sin(x) ∗ sin(y).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.5 Special Functions 217

We then have the following results.

Proposition 104 (Sine and Cosine) For every x ∈ R and y ∈ R, we have:

sin(x+ 2π) = sin(x),
sin(x+ π

2
) = cos(x),

sin(π
2
− x) = cos(x),

sin(−x) = −sin(x),
sin(2x) = 2sin(x)cos(x),

cos(x+ 2π) = cos(x),
cos(x+ π

2
) = −sin(x),

cos(π
2
− x) = −sin(x),

cos(−x) = cos(x),
cos(2x) = cos2(x)− sin2(x).

cos2(x) + sin2(x) = 1,

2 sin(x) ∗ sin(y) = cos(x− y)− cos(x+ y),
2 cos(x) ∗ cos(y) = cos(x− y) + cos(x+ y),
2 sin(x) ∗ cos(y) = sin(x− y) + sin(x+ y).

Proof Take arbitrary x ∈ R. We show

sin(x+ 2π) = sin(x).

We have

sin(x+ 2π) = sin(x) ∗ cos(2π) + cos(x) ∗ sin(2π)
= sin(x) ∗ 1 + cos(x) ∗ 0 = sin(x).

The function graphs of tangent and cotangent look as follows:

.

218 Chapter 6. More on Functions

The tangent function has period π, its value is 0 at every multiple of π and
undefined at every odd multiple of π

2
; furthermore the function is unbounded

in both directions. The cotangent is the tangent horizontally flipped and
shifted left by π

2
. Both functions meet at odd multiples of π

4
at values +/−1.

Proposition 106 (Tangent and Cotangent Values) For all i ∈ Z, we
have:

tan(πi) = 0,
tan(πi+ π

4
) = 1,

tan(πi− π
4
) = −1,

cot(πi+ π
2
) = 0,

cot(πi+ π
4
) = 1,

cot(πi− π
4
) = −1.

Many properties of tangent and cotangent can be derived from the following
proposition (which we state without proof).

Proposition 107 (Tangent and Cotangent) For every x ∈ R and y ∈ R,
we have

tan(x+ y) =
tan(x) + tan(y)

1− tan(x) ∗ tan(y)
, cot(x+ y) =

cot(x) ∗ cot(y)− 1

cot(x) + cot(y)
.

We than also have the following results.

Proposition 108 (Tangent and Cotangent Properties) For every x ∈ R
and y ∈ R, we have:

tan(−x) = −tan(x),
tan(x) = −cot(x+ π

2
),

cot(−x) = −cot(x),
tan(x) = −tan(x− π

2
).

Proof Take arbitrary x ∈ R. We show

tan(−x) = −tan(x).

We have tan(−x) = sin(−x)
cos(−x)

= −sin(x)
cos(x)

= − sin(x)
cos(x)

= −tan(x).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.6 Asymptotic Bounds 219

6.6 Asymptotic Bounds

When discussing the execution time of an algorithm, we are often sloppy by
stating that an algorithm takes, for problem size n, not more than n2 steps
while it may actually run in 7n2 + 3n+ 19 machine instructions. However, in
some sense the sequence [n2]n already bounds the growth rate of [7n2 + 3n+
19]n; the factor 7. the addendum 19, and even the term 3n do not contribute
to this rate any more. This concept of “asymptotic function bounds” is
generally formalized as follows.

Definition 96 (Big O Quantor) For every variable n and terms S and T ,
the phrase

S = On(T)

is a proposition with bound variable n which is read as “S is big O of T” or
“T asymptotically dominates (dominiert asymptotisch) S”.

Its meaning is equivalent to the proposition

∃c ∈ R,m ∈ N : ∀n ≥ m : |S| ≤ c ∗ |T |.

Usually the subscript n is dropped and the bound variable has to be deduced
from the context.

The proposition S = On(T) states that, from a certain point m on and scaled
by some factor c, the absolute value of T is at least as large as the absolute
value of S. The function [T]n thus grows at least as fast as [S]n.

220 Chapter 6. More on Functions

For instance, instead of saying that the execution time T of some algorithm
A in dependence on input size n is TA(n) = 7n2 + 3n+ 19, we may say

TA(n) = O(n2),

i.e., that the execution time is asymptotically dominated by the square func-
tion and ignore all constant factors and minor terms.

Sometimes, we also see propositions like

S0 = S1 + O(T)

which is to be understood as S0 − S1 = O(T). For instance, by saying

f(n) = 5n3 + 2n2 + O(n)

we state that f(n) differs from 5n3 +2n2 not more than by some linear factor.

Example

• We have 10n+ 100 = O(n):

Let c := 110 and m := 1 and take arbitrary n ≥ m. We have to show

|10n+ 100| ≤ c ∗ |n|.

We know

|10 ∗ n+ 100| = 10 ∗ n+ 100 ≤ 110n = 110|n| = c|n|.

• We have not n2 = O(n):

We suppose n2 = O(n) and show a contradiction. By the assumption,
we have some c ∈ R and m ∈ N with

∀n ≥ m : |n2| ≤ c|n|.

If c < 0, let k := max(1,m); then we have k ≥ m but

|k2| > 0 > c|k|

and thus a contradiction.

If c ≥ 0, let k := max(m, dc+ 2e). Then we have k ≥ m but

|k2| = k2 ≥ dc+ 2e2 ≥ (c+ 2)2 = c2 + 4c+ 4
> c2 + 3c = c(c+ 3) ≥ cdc+ 2e ≥ ck = c|k|

and thus a contradiction.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.6 Asymptotic Bounds 221

• We have n2 = O(2n):

We assume not n2 = O(2n) and show a contradiction. By assumption,
we have ¬∃c ∈ R,m ∈ N : ∀n ≥ m : |n2| ≤ c|2n|, i.e.,

∀c ∈ R,m ∈ N : ¬∀n ≥ m : |n2| ≤ c|2n|.

We prove

∀n ≥ 0 : n2 ≤ 2 ∗ 2n

by induction on n and thus have a contradiction.

If n = 0, we have n2 = 0 < 2 = 2 ∗ 20 = 2 ∗ 2n.

We assume n ≥ 1⇒ n2 ≤ 2 ∗ 2n and show

n+ 1 ≥ 1⇒ (n+ 1)2 ≤ 2 ∗ 2n+1.

Assume n+ 1 ≥ 1. We show

(n+ 1)2 ≤ 2 ∗ 2n+1.

If n < 1, then n = 0 and

(n+ 1)2 = (0 + 1)2 = 1 < 4 = 2 ∗ 20+1 = 2 ∗ 2n+1.

If n ≥ 1, then, by the induction hypothesis, n2 ≤ 2 ∗ 2n. We then have

(n+ 1)2 = n2 + 2n+ 1 ≤ n2 + 2n + 2n (∗)
≤ 2 ∗ 2n + 2n + 2n = 2n+1 + 2n+1 = 2(2n+1).

(*) The fact 2n ≤ 2n has to be shown in a separate proof.

It is easy to derive a number of laws for the manipulation of O terms.

222 Chapter 6. More on Functions

Proposition 110 (O Manipulation) For every variable n, terms S and T ,
c ∈ R, and d ∈ R with d ≥ c, we can replace the following terms on the left
hand side by the corresponding terms on the right hand side:

S → On(S),
c+ On(S) → On(S),
c ∗On(S) → On(S),

On(S) + On(S) → On(S),
On(On(S)) → On(S),

On(S) + On(T) → On(|S|+ |T |),
On(S) ∗On(T) → On(S ∗ T),
On(S) ∗On(T) → S ∗On(T),

On(Sc) → On(Sd).

Thus we can replace a statement

f(n) = 2n2 − 7n+ 5

via the transformations

2n2 − 7n+ 5→ 2 ∗O(n2)− 7 ∗O(n) + 5 ∗O(1)→
O(n2) +O(n) +O(1)→ O(n2) + O(n2) + O(n2)→ O(n2)

by the statement

f(n) = O(n2).

This example illustrates that the asymptotic behavior of a polynomial se-
quence is asymptotically dominated by the polynomial term with the highest
degree.

Proposition 111 (Asymptotic of Polynomial Sequences) Every poly-
nomial sequence of degree n is dominated by [xn]x:

∀n ∈ N, a : Nn → R :∑
0≤i≤n ax

i = On(xn).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

6.6 Asymptotic Bounds 223

For comparing the asymptotic behavior of classes of real functions, the fol-
lowing notation comes handy.

Definition 97 (Strictly Dominated) For every variable n and terms S
and T , the phrase

S ≺n T

is a proposition with bound variable n which is read as “S is strictly domi-
nated by T” and that is equivalent to

S = On(T) ∧ T 6= On(S).

We then have the following chain of function classes:

Proposition 112 (Asymptotic Classes) For every k ∈ N, c ∈ R, and
a ∈ R>0, we have:

1 ≺n loga(n) ≺n n ≺n nloga(n) ≺n nk ≺n cn ≺n n!

The corresponding function graphs are visualized below.

To get some “feeling” for the growth rate of these functions, assume that we
have a machine that performs 106 operations per second. We are given six
algorithms whose number of execution steps in dependence of the problem
size n is determined by one of the six functions denoted above. Then the
maximum size of a problem that can be solved in a fixed amount of time is

224 Chapter 6. More on Functions

Execution Steps 1 second 1 minute 1 hour

log2(n) 2106
26∗107

236∗108

n 106 6 ∗ 107 3.6 ∗ 109

nlog2(n) 62746 2.8 ∗ 106 1.3 ∗ 108

n2 1000 7746 60000
2n 23 26 32
n! 9 11 12

A sorting algorithm that takes, for some logarithmic base, O(nlog(n)) steps
(such as Quicksort) is therefore much better than an n2 algorithm (such as
Insertion Sort); the difference in computation time may be not significant
for small inputs but the larger the inputs become, the more the asymptotic
complexity distinguishes the algorithms.

Also we can see that, for algorithms with exponential (or higher) complexity,
the only problems of extremely small size can be solved. Furthermore, it does
not help much to allow say 1000 times more execution time (or use a 1000
times faster machine or apply a parallel computer with 1000 processors);
the manageable problem size does not increase significantly. Problems for
which only exponential time algorithms exist are therefore called intractable
(ungefügig). For instance, to find out whether a propositional formula with
n variables is a tautology is such an intractable problem.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

Chapter 7

More on Relations

In Chapter 3, we have introduced relations as subsets of Cartesian products.
In this chapter, we focus on binary relations and demonstrate some important
applications of this notion. First, we introduce equivalence relations as a tool
to partition sets into classes and show how in this way modular arithmetic
and various number domains can be defined. Then we deal with relations
that help us to impose order structures on sets; finally we show how graphs
can be formalized as binary relations.

7.1 Equivalence Relations and Partitions

7.1.1 Basic Notions

Equivalence relations are binary relations that have many (but not all) of
the properties of the equality relation. First we name these properties.

Definition 98 (Relation Properties) R is reflexive (reflexiv), symmetric
(symmetrisch), respectively transitive (transitiv) on a set S, if it satisfies the
following properties:

R is reflexive on S :⇔
∀x ∈ S : 〈x, x〉 ∈ R;

R is symmetric on S :⇔
∀x, y : 〈x, y〉 ∈ R⇒ 〈y, x〉 ∈ R;

R is transitive on S :⇔
∀x, y, z : (〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ R)⇒ 〈x, z〉 ∈ R.

225

226 Chapter 7. More on Relations

Definition 99 (Equivalence Relation) Let R be a binary relation on
S. R is an equivalence relation (Äquivalenzrelation) on S, if it is reflexive,
symmetric, and transitive on S:

R is equivalence relation on S :⇔
R ⊆ S × S ∧
R is reflexive on S ∧
R is symmetric on S ∧
R is transitive on S.

Example

• = (equality) is an equivalence relation on every set.

• Let p(x, y) :⇔ x+ y is even. Then p is an equivalence relation on N.

• Let q(x, y) :⇔ x mod 5 = y mod 5. Then q is an equivalence relation
on N.

• Let r(x, y) :⇔ x0 + y0 = x1 + y1. Then r is an equivalence relation on
R× R.

• Let s(x, y) :⇔ x is parallel to (or coincides with) y. Then s is an equiv-
alence relation on the set of all lines in the plane.

• Let t(x, y) :⇔ x has the same age as y. Then t is an equivalence rela-
tion on the set of all people.

The visualization of an equivalence relation by a directed graph has the
following properties:

• every node has an arrow to itself (reflexivity),

• if there is an arrow from node a to node b, then there is also an arrow
from b to a (symmetry),

• if there is an arrow from node a to node b and an arrow from b to some
node c, then there is also an arrow from a to c (transitivity).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.1 Equivalence Relations and Partitions 227

Example The following graph denotes an equivalence relation:

The equivalence relation imposed on the set of six nodes determines three
partitions in each of which every node is connected to every other node.
Actually, there is a close relationship between equivalence relations and set
partitions that will be elaborated later.

We demonstrate how to prove that a relation is an equivalence relation.

Proof Let p(x, y) :⇔ x + y is even. We prove that p is an equivalence
relation on N.

1. p is clearly a binary relation on N.

2. We prove p is reflexive on N. Take arbitrary x ∈ N. We have to show
x+ x is even, i.e, 2x is even, which clearly holds.

3. We prove p is symmetric on N. Take arbitrary x ∈ N and y ∈ N. We
assume x+ y is even. Then y + x is even, because x+ y = y + x.

4. We prove p is transitive on N. Take arbitrary x ∈ N, y ∈ N, and z ∈ N.
We assume

(1) x+ y is even ∧ y + z is even.

We have to show

(2) x+ z is even

228 Chapter 7. More on Relations

From (1), we have some a ∈ N and b ∈ N such that

(3) 2a = x+ y ∧ 2b = y + z.

Thus we know

x+ z = (x+ y) + (y + z)− 2y = 2a+ 2b− 2y = 2(a+ b− y)

such that (2) holds.

Logic Evaluator Above definitions can be implemented as shown below,
see Appendix C.10 (file equiv.txt).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.1 Equivalence Relations and Partitions 229

We may construct the group of all objects that are related to some object.

Definition 100 (Class) The class (Klasse) of x with respect to R is the set
of all elements that are related to x by R:

[x]R := {y ∈ range(R) : 〈x, y〉 ∈ R}.

We may just write [x], if R is clear from the context. If R is an equiva-
lence relation, we call [x]R the equivalence class (Äquivalenzklasse) of x with
respect to R.

In the visualization of an (equivalence) relation by a directed graph, the
(equivalence) class of a node is the set of all nodes to which the node is
connected:

By the reflexivity of an equivalence relation, we have the following result.

Proposition 114 (Non-Empty Equivalence Classes) If R is an equiva-
lence relation on S, then [x]R contains x, for every x ∈ S:

∀S,R : R is equivalence class on R ⇒ x ∈ [x]R.

Example

230 Chapter 7. More on Relations

• Let p ⊆ N× N such that p(x, y)⇔ x+ y is even. Then we have

[0]p = {0, 2, 4, 6, 8, 10, . . .},
[1]p = {1, 3, 5, 7, 9, 11, . . .},
[2]p = {0, 2, 4, 6, 8, 10, . . .},
[3]p = {1, 3, 5, 7, 9, 11, . . .},
[4]p = {0, 2, 4, 6, 8, 10, . . .},
. . .

We see that [0]p ∪ [1]p = N and [0]p ∩ [1]p = ∅.

• Let q ⊆ N×N such that q(x, y)⇔ x mod 5 = y mod 5. Then we have

[0]q = {0, 5, 10, 15, 20, 25, . . .},
[1]q = {1, 6, 11, 16, 21, 26, . . .},
[2]q = {2, 7, 12, 17, 22, 27, . . .},
[3]q = {3, 8, 13, 18, 23, 28, . . .},
[4]q = {4, 9, 14, 19, 24, 29, . . .},
[5]q = {0, 5, 10, 15, 20, 25, . . .},
. . .

We see that [0]q ∪ [1]q ∪ [2]q ∪ [3]q ∪ [4]q = N and that any two of these
sets are disjoint.

• Let r ⊆ R× R such that r(x, y)⇔ x0 + x1 = y0 + y1. Then we have

[a]r = {b ∈ R× R : a0 + a1 = b0 + b1}

i.e.,

[a]r = {b ∈ R× R : b1 = −b0 + (a0 + a1)}

If we consider R × R as the set of all points in the plane, then [a]r
denotes the line with slope −1 that goes through a:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.1 Equivalence Relations and Partitions 231

We thus have

R× R =
⋃

a∈R×R

[a]r

i.e., the plane is partitioned into the set of all these lines:

We can determine a “canonical representative” for each such line (the
point on this line whose first coordinate is zero) and thus have

R× R =
⋃
y∈R

[〈0, y〉]r

As illustrated by the example, different equivalences classes do not overlap.

Proposition 115 (Disjoint Equivalence Classes) Let R be an equiva-
lence relation on S and x and y be elements of S. The equivalence classes of
x and y with respect to R are either identical or disjoint:

∀S,R : R is equivalence relation on S ⇒
∀x ∈ S, y ∈ S :

[x]R = [y]R ∨ [x]R ∩ [y]R = ∅.

Proof Take arbitrary S, an equivalence relation R on S, x ∈ S and y ∈ S.
We assume

(1) [x]R 6= [y]R,
(2) [x]R ∩ [y]R 6= ∅

232 Chapter 7. More on Relations

and show a contradiction. From (2), we have some z such that

(3) z ∈ [x]R ∧ z ∈ [y]R.

We thus know

(4) 〈x, z〉 ∈ R,
(5) 〈y, z〉 ∈ R.

We will now show

(6) [y]R ⊆ [x]R,
(7) [x]R ⊆ [y]R

which contradicts (1).

We show (6): From (5) and the symmetry of R, we know

(8) 〈z, y〉 ∈ R.

From (4), (8), and the transitivity of R, we know

(9) 〈x, y〉 ∈ R.

From (9) we know by the transitivity of R that

(10) ∀z : 〈y, z〉 ∈ R⇒ 〈x, z〉 ∈ R

and therefore by definition of [y]R

(11) ∀z ∈ [y]R : 〈x, z〉 ∈ R

and thus by definition of [x]R

(12) ∀z ∈ [y]R : z ∈ [x]R

which gives us (6).

With the same line of reasoning, we can show (7) and are done.

As a consequence of Propositions 114 and 115, we can decompose every set
S by an equivalence relation into a set of non-empty disjoint subsets.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.1 Equivalence Relations and Partitions 233

Definition 101 (Quotient Set) The quotient set (Quotientenmenge) of S
with respect to R is the set of all classes induced on S by R:

S/R := {[x]R : x ∈ S}.

Logic Evaluator The quotient set construction can be implemented as
shown below, see Appendix C.10 (file equiv.txt).

234 Chapter 7. More on Relations

We use in this example a relation on S := Nn × Nn whose elements are in-
terpreted as points in a plane. Since the computation of C := S/R takes too
long, we resort to an equivalent but faster construction C ′ where a represen-
tative of each equivalence class is manually selected, and the relation R as
a set has been replaced by predicate r. Each color in the resulting picture
denotes an equivalence class on S.

We expect this decomposition to satisfy the following properties.

Definition 102 (Partition) D is a partition (Partitionierung) or decompo-
sition (Zerlegung) of S, if its elements, the blocks (Blöcke), are non-empty
and disjoint and their union equals S:

D is partition of S :⇔
(∀x ∈ D : x 6= ∅) ∧
(∀x ∈ D, y ∈ D : x = y ∨ x ∩ y = ∅) ∧⋃
D = S.

Example

• We define

A := {x ∈ N : x is even},
B := {x ∈ N : x > 2 ∧ x is prime},
B := {x ∈ N : x is odd ∧ x is not prime}.

Then the set {A,B,C} is a partition of N.

• We define

circle(r) := {p ∈ R× R : p0
2 + p1

2 = r2}.

Then the set

{circle(r) : r ∈ R≥0}

is a partition of R× R as denoted by the following picture:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.1 Equivalence Relations and Partitions 235

The following result shows that an equivalence relation indeed defines a par-
tition.

Proposition 117 (Equivalence Relation Defines Partition) Let R be
an equivalence relation on S. The quotient set of S with respect to R is a
partition of S:

∀S,R : R is equivalence relation on S ⇒
S/R is partition of S.

Proof Take arbitrary S and equivalence relation R on S. We show S/R is
a partition of S:

1. Take arbitrary x ∈ S/R. By definition of S/R, we have some a ∈ S
such that x = [a]R. By Proposition 114, a ∈ [a]R, therefore x 6= ∅.

2. Take arbitrary x ∈ S/R and y ∈ S/R. By definition of S/R, we
have some a ∈ S and b ∈ S such that x = [a]R and y = [b]R. By
Proposition 115, [a]R = [b]R ∨ [a]R ∩ [b]R = ∅.

3. By definition of S/R,
⋃
S/R ⊆ S. We show S ⊆

⋃
S/R. Take arbi-

trary x ∈ S. Then from Proposition 114 we have x ∈ [x]R and from
the definition of S/R we have [x]R ∈ S/R, thus x ∈

⋃
S/R.

We can also proceed in the other direction and construct a relation from a
partition.

236 Chapter 7. More on Relations

Definition 103 (Induced Relation) The relation induced by a partition
D is the set of all pairs of elements of the same block of D:

x ∼D y :⇔ ∃d ∈ D : x ∈ d ∧ y ∈ d.

The constructed relation is an equivalence relation.

Proposition 119 (Partition Defines Equivalence Relation) Let D be
a partition of S. The relation induced by D is an equivalence relation on S:

∀S,D : D is partition of S ⇒
∼D is equivalence relation on S.

Proof Take arbitrary S and partition D on S. We show that ∼D is an
equivalence relation on S.

Binary Relation By definition, ∼D is a binary relation. If x ∼D y, then
we have some d ∈ D such that x ∈ d and y ∈ d. Since

⋃
D = S, we

have x ∈ S and y ∈ S and ∼D is a relation on S.

Reflexivity Take arbitrary x ∈ S. Since
⋃
D = S, we have some d ∈ D

such that x ∈ d and thus x ∼D x.

Symmetry Take arbitrary x ∈ S and y ∈ S and assume x ∼D y. Then we
have some d ∈ D such that x ∈ d ∧ y ∈ d which gives us y ∼d x.

Transitivity Take arbitrary x ∈ S, y ∈ S, and z ∈ S and assume x ∼D y
and y ∼D z. Then we have some d ∈ D such that x ∈ d ∧ y ∈ d
and some e ∈ D such that y ∈ d ∧ z ∈ d. Since y ∈ d and y ∈ e,
Proposition 115 gives us d = e and thus x ∼D z.

As shown above, equivalence relations and partitions are just different notions
for the same concept; we can always construct from one description the other
one. Actually, each construction is the inverse of the other one as stated by
the following result (which can be easily proved).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.1 Equivalence Relations and Partitions 237

Proposition 121 (Equivalence Relations and Partitions) Let R be an
equivalence relation on S. Then R is the relation induced by the quotient
set of S with respect to R:

∀S,R : R is equivalence relation on S ⇒
R = ∼S/R .

Let D be a partition of S. Then D is the quotient set of the relation induced
by D:

∀S,D : D is partition of S ⇒
D = S/ ∼D .

Logic Evaluator We can implement the new notions as shown below, see
Appendix C.10 (file equiv.txt).

The partitioning of sets into equivalence classes is an important methodology
with many applications some of which are demonstrated in the following
subsections.

238 Chapter 7. More on Relations

7.1.2 Modular Arithmetic

The domain of integer numbers introduced in Chapter 4 has infinite size, i.e.,
there is no upper bound for an integer. However, computer processors can
only operate with numbers of a maximum size determined by the length of a
computer word on the corresponding architecture, e.g., a 64 bit architecture
only supports 264 different numbers.

Apparently the question arises how to define the result of an operation whose
value is outside the range that can be represented by such a word, e.g., the
result of 240 ∗ 230. While we may consider such an operation “illegal” (and
raise a hardware interrupt), there is a more elegant solution provided by
modular arithmetic: we define the result of every operation as the result of
the unbounded integer operation modulo the number m of elements that can
be represented by a computer word.

We start with a preliminary definition of modular arithmetic, which will later
be replaced by a more suitable one.

Definition 104 (Modular Arithmetic, Direct Approach) Let m ∈ Z>0

and Zm := {x ∈ Z : 0 ≤ x < m}.

+m : Z× Z→ Zm

x+m y := (x+ y) mod m

−m : Z× Z→ Zm

x−m y := (x− y) mod m

−m : Z× Z→ Zm

−mx := (−x) mod m

∗m : Z× Z→ Zm

x ∗m y := (x ∗ y) mod m

Example These tables describe arithmetic modulo 3 for a subset of Z:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.1 Equivalence Relations and Partitions 239

+3 −4 −3 −2 −1 0 1 2 3 4
−4 1 2 0 1 2 0 1 2 0
−3 2 0 1 2 0 1 2 0 1
−2 0 1 2 0 1 2 0 1 2
−1 1 2 0 1 2 0 1 2 0

0 2 0 1 2 0 1 2 0 1
1 0 1 2 0 1 2 0 1 2
2 1 2 0 1 2 0 1 2 0
3 2 0 1 2 0 1 2 0 1
4 0 1 2 0 1 2 0 1 2

∗3 −4 −3 −2 −1 0 1 2 3 4
−4 1 0 2 1 0 2 1 0 2
−3 0 0 0 0 0 0 0 0 0
−2 2 0 1 2 0 1 2 0 1
−1 1 0 2 1 0 2 1 0 2

0 0 0 0 0 0 0 0 0 0
1 2 0 1 2 0 1 2 0 1
2 1 0 2 1 0 2 1 0 2
3 0 0 0 0 0 0 0 0 0
4 2 0 1 2 0 1 2 0 1

In above definition, the arguments may be arbitrary integers while the result
is one of m values. However, a little investigation of the function tables
reveals that the same pattern of result values is repeated every m lines and
every m columns. Consequently, it does not matter whether we compute
with an argument a or with a+ 3 or with a− 3 or with a+ 3i for any i ∈ Z.
We may therefore define the set of all values

[a]m := {a+ im : i ∈ Z}

that cannot be distinguished from a by modular arithmetic modulo m. How-
ever, this definition is just a special case of the construction of equivalence
classes, as we are going to elaborate now. This construction will provide us
with a suitable domain for modular arithmetic.

First we define the relation that links two integers that “are the same” with
respect to arithmetic modulo m.

240 Chapter 7. More on Relations

Definition 105 (Modular Congruence) Two integers x and y are con-
gruent (kongruent) modulo m if they have the same remainder when divided
by m:

x ≡m y :⇔ (x mod m) = (y mod m).

Clearly ≡m is an equivalence relation, for every m ∈ Z>0. The equivalence
classes induced by this relation collect all the integers that cannot be distin-
guished by arithmetic modulo m.

Definition 106 (Residue Class) The residue class (Restklasse) of amodulo
m is the set of all integer numbers that are congruent to a modulo m.

[a]m := [a]≡m .

It is easy to see that [a]m = {a+ im : i ∈ Z} as was our original intuition.
However, the new construction has the advantage that we may construct
the quotient set of Z with respect to ≡m, which gives a suitable domain for
modular arithmetic.

Definition 107 (Modular Integer Numbers) The set of integers modulo
m is the quotient set of Z with respect to congruence modulo m:

Zm := Z/ ≡m .

Zm has m elements each of which is represented by a natural number less
than m, i.e.,

Zm = {[0]m, [1]m, [2]m, . . . , [m− 1]m}.

Before we are going to define the arithmetic operations on this domain, we
emphasize an important property of our construction.

Proposition 122 (Congruence Properties) Let a and a′ be two integers
that are in the same residue class and b and b′ be two integers that are also

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.1 Equivalence Relations and Partitions 241

in the same residue class. Then the result of any integer operation involving
a and b is in the same residue class as if the operation were performed with
a’ and b’ instead:

∀m ∈ Z>0, a ∈ Z, a′ ∈ Z, b ∈ Z, b′ ∈ Z :
[a]m = [a′]m ∧ [b]m = [b′]m ⇒

[a+ b]m = [a′ + b′]m ∧
[a− b]m = [a′ − b′]m ∧
[−a]m = [−a′]m ∧
[a ∗ b]m = [a′ ∗ b′]m.

Proof Take arbitrary m ∈ Z>0, a ∈ Z, a′ ∈ Z, b ∈ Z, b′ ∈ Z such that
[a]m = [a′]m and [b]m = [b′]m. We show

[a+ b]m = [a′ + b′]m.

We know that there exist quotients x, y, z, w and remainders r, s such that

a = xm+ r, a′ = ym+ r,
b = zm+ s, b′ = wm+ s,

which implies

[a+ b]m =
[(xm+ r) + (ym+ s)]m =

[(x+ y)m+ (r + s)]m = (∗)
[(r + s)]m =

[(z + w)m+ (r + s)]m = (∗)
[(zm+ r) + (wm+ s)]m =

[a′ + b′]m.

(*) It remains to be shown that

∀m ∈ N>0, x ∈ Z, y ∈ Z : [xm+ y]m = [y]m.

Example We have [7]5 = [2]5 and [9]5 = [4]5. Consequently,

[7 + 9]5 = [2 + 4]5 = [6]5 = [1]5.

242 Chapter 7. More on Relations

The importance of the congruence properties is that we may choose any
representative of a value of Zm in order to compute with that value, e.g.,
when dealing with

[3]5 = {. . . ,−7,−2, 3, 8, 13, . . .}

we need not take the “canonical” representative 3 but may also choose−2 or 8
as the representative for computation. Consequently, the following definition
determines the function results uniquely.

Definition 108 (Modular Arithmetic, Residue Classes) Let m ∈ Z>0

and define the selector function

x := such a ∈ Z : x = [a]m.

We then define the operations of modular arithmetic (modulare Arithmetik):

+m : Zm × Zm → Zm

x+m y := [x+Z y]m
(or : [a]m +m [b]m := [a+Z b]m)

−m : Zm × Zm → Zm

x−m y := [x−Z y]m
(or : [a]m −m [b]m := [a−Z b]m)

−m : Zm → Zm

−m x := [−Z x]m
(or : −m [a]m := [−Z a]m)

∗m : Zm × Zm → Zm

x ∗m y := [x ∗Z y]m
(or : [a]m ∗m [b]m := [a ∗Z b]m)

For performing arithmetic on some x ∈ Zm,

1. we apply the selector function to determine a representative x ∈ Z,

2. perform the corresponding operation in Z to yield the result r ∈ Z,

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.1 Equivalence Relations and Partitions 243

3. and then determine the residue class [r]m ∈ Zm.

Example We consider arithmetic in Z5 = {[0]5, [1]5, [2]5, [3]5, [4]5}.

[17]5 +5 [24]5 = [2]5 +5 [4]5 = [6]5 = [1]5
[7]5 −5 [10]5 = [2]5 −5 [0]5 = [3]5

[−7]5 = [3]5
[6]5 ∗5 [9]5 = [1]5 ∗5 [4]5 = [4]5

[−3]5 ∗5 [6]5 = [2]5 ∗5 [1]5 = [2]5

Logic Evaluator We can implement modular arithmetic by equivalence
classes as shown below, see Appendix C.11 (file modular.txt): the result of
a modular operation is an equivalence class of integers 〈x, y〉 whose difference
x− y denotes the corresponding value.

244 Chapter 7. More on Relations

7.1.3 Another Construction of Number Domains

Integer Numbers We have introduced in Section 4.2 an integer as a pair
〈x, y〉 of natural numbers x and y such that their difference denotes the
desired value. In order to determine this pair uniquely, either x or y has been
chosen zero; we are now going to lift this artificial restriction by defining an
integer as the class of all pairs with the same difference.

Definition 109 (Integer Numbers)

x ∼Z y :⇔ (x0 +N y1 = y0 +N x1)

Z := (N× N)/ ∼Z

0 := [〈0N, 0N〉]; 1 := [〈1N, 0N〉]; 2 := [〈2N, 0N〉]

x := such a ∈ N× N : x = [a]

x+ y := [〈x0 +N y0, x1 +N y1〉]
−x := [〈x1, x0〉]

x− y := [〈x0 +N y1, y0 +N x1〉]
x ∗ y := [〈(x0 ∗N y0) +N (x1 ∗N y1), (x0 ∗N y1) +N (x1 ∗N y0)〉]
x ≤ y :⇔ x0 + y1 ≤N y0 + x1

In above definition, [x] denotes [x]∼Z . It is easy to see that ∼Z is an equiva-
lence relation, therefore Z is a partition of N×N. The corresponding equiva-
lence classes satisfy congruence properties similar to those of Proposition 122
such that the results of all operations are uniquely defined.

Example

5 = [〈7, 2〉] = {〈5, 0〉, 〈6, 1〉, 〈7, 2〉, 〈8, 3〉, . . .}
−6 = [〈3, 9〉] = {〈0, 6〉, 〈1, 7〉, 〈2, 8〉, 〈3, 9〉, . . .}

5 + (−6) = [〈7, 2〉] + [〈3, 9〉] = [〈10, 11〉] = [〈0, 1〉] = −1
5 ∗ (−6) = [〈7, 2〉] ∗ [〈3, 9〉] = [〈39, 69〉] = [〈0, 30〉] = −30
5 ≤ −6 ⇔ [〈7, 2〉] ≤ [〈3, 9〉]⇔ 16 ≤ 5⇔ F.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.1 Equivalence Relations and Partitions 245

The new construction is isomorphic to the old one such that the properties
of all operations are preserved.

Proposition 124 (Isomorphism of Integer Constructions) Let Z’ de-
note the old construction of the integers and Z denote the new one. The
function

i : Z′ → Z

i(x) := [x]

is an isomorphism with respect to 0,+,−, ∗, <, i.e., i is bijective and for all
x ∈ Z′ and y ∈ Z′, we have:

i(0Z′) = 0Z,
i(x+Z′ y) = x+Z y,
i(−Z′ x) = −Z x,
i(x−Z′ y) = x−Z y,
i(x ∗Z′ y) = x ∗Z y,
x ≤Z′ y ⇔ i(x) ≤Z i(y).

It is easy to see that the inverse isomorphism is denoted by

j : Z→ Z
′

j(x) := I(x)

where “I” denotes the constructor function on Z′.

Proof Take arbitrary x ∈ Z′ and y ∈ Z′. We prove

i(x+Z′ y) = x+Z y.

We know

i(x+Z′ y) = i(I(x0 +N y0, x1 +N y1)).

Case x0 +N y0 ≥ x1 +N y1: We have

i(I(x0 +N y0, x1 +N y1)) =
i(〈(x0 +N y0)− (x1 +N y1)〉) =

[〈(x0 +N y0)− (x1 +N y1)〉] = (definition ∼Z)
[〈x0 +N y0, x1 +N y1〉] =

x+Z y.

246 Chapter 7. More on Relations

Case x0 +N y0 < x1 +N y1: Proceeds analogously.

An implementation of this construction in the Logic Evaluator is shown be-
low, see Appendix C.12 (file integer2.txt).

Rational Numbers In Section 4.3, we have defined a rational as a pair
〈x, y〉 of integer numbers x and y such that their quotient denotes the desired
value. In order to determine this pair uniquely, x and y have been chosen
relatively prime with y being positive. We will now lift this restriction by
defining a rational as the class of all pairs with the same quotient.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.1 Equivalence Relations and Partitions 247

Definition 110 (Rational Numbers)

x ∼Q y :⇔ (x0 ∗Z y1 = y0 ∗Z x1)

Q := (Z× Z 6=0)/ ∼Q

0 := [〈0Z, 1Z〉]; 1 := [〈1Z, 1Z〉]; 2 := [〈2Z, 1Z〉];

x := such a ∈ Z× Z : x = [a]

x+ y := [〈(x0 ∗Z y1) +Z (y0 ∗Z x1), x1 ∗Z y1〉]
−x := [〈−Z x0, x1〉]

x− y := [〈(x0 ∗Z y1)−Z (y0 ∗Z x1), x1 ∗Z y1〉]
x ∗ y := [〈x0 ∗Z y0, x1 ∗Z y1〉]
x−1 := [〈x1, x0〉]
x/y := [〈x0 ∗Z y1, y0 ∗Z x1〉]

x ≤ y :⇔ x0 ∗Z y1 ≤Z y0 ∗Z x1

It is easy to see that ∼Q is an equivalence relation on Z×Z 6=0 where Z 6=0 :=
{x ∈ Z : x 6= 0}; we have a corresponding partition that also satisfies the
necessary congruence properties such that the results of all operations are
uniquely defined.

Example

4
6

= [〈4, 6〉] = {〈2, 3〉, 〈−2,−3〉, 〈4, 6〉, 〈−4,−6〉, 〈6, 9〉, . . .}
−2

5
= −[〈2, 5〉] = [〈−2, 5〉]
= {〈2,−5〉, 〈−2, 5〉, 〈4,−10〉, 〈−4, 10〉, 〈6,−15〉, . . .}

4
6

+ (−2
5
) = [〈4, 6〉] + [〈−2, 5〉] = [〈8, 30〉] = [〈4, 15〉] = 4

15
4
6
∗ (−2

5
) = [〈4, 6〉] ∗ [〈−2, 5〉] = [〈−8, 30〉] = [〈−4, 15〉] = − 4

15

Again the new construction is isomorphic to the old one such that the prop-
erties of all operations are preserved.

248 Chapter 7. More on Relations

Proposition 126 (Isomorphism of Rational Constructions) Let Q’
denote the old construction of the integers and Q denote the new one. The
function

i : Q′ → Q

i(x) := [x]

is an isomorphism with respect to 0,+,−, ∗,′ , <, i.e., i is bijective and for all
x ∈ Q′ and y ∈ Q′, we have:

i(0Q′) = 0Q,
i(x+Q′ y) = x+Q y,
i(−Q′ x) = −Q x,
i(x−Q′ y) = x−Q y,
i(x ∗Q′ y) = x ∗Q y,

i(x−1) = x−1,
i(x/Q′y) = x/Qy,
x ≤Q′ y ⇔ i(x) ≤Q i(y).

It is easy to see that the inverse isomorphism is denoted by

j : Q→ Q
′

j(x) := x0

x1

where ∗∗ denotes the constructor function on Q′.

An implementation of this construction in the Logic Evaluator is shown on
the next page, see Appendix C.13 (file rational2.txt).

Real Numbers While in Section 4.4 the real numbers have been only ax-
iomatically characterized, also a direct construction is possible. The square
of no rational number yields 2, but can define an infinite sequence of ratio-
nals that approaches such a number arbitrarily closely. The basic idea is to
partition the set of all “well-behaved” infinite sequences of rationals by an
equivalence relation that is true for any two sequences that approach each
other arbitrarily closely. Each such equivalence class denotes a real number
with arithmetic being defined point-wise on the sequence.

For this construction, we first define the class of “well-behaved” sequences.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.1 Equivalence Relations and Partitions 249

Definition 111 (Cauchy-Sequence) An infinite sequence over the reals
is a Cauchy-sequence (Cauchy-Folge), if its members approach each other
arbitrarily closely:

f is Cauchy-sequence :⇔
f : N→ Q ∧
∀ε ∈ Q>0 : ∃N ∈ N : ∀m ≥ N,n ≥ N : |fm − fn| < ε.

In other words, for every ε, from a certain position N on, all members of a
Cauchy-sequence stay in a “tunnel” of width ε:

250 Chapter 7. More on Relations

The position of this tunnel determines a real number; two sequences define
the same number if the difference of their corresponding members becomes
arbitrarily small. We define this equivalence relation and the arithmetic
operations as shown below.

Definition 112 (Real Numbers)

f ∼R g :⇔ ∀ε ∈ Q>0 : ∃N ∈ N : ∀n ≥ N : |fn − gn| < ε.

C := {f : N→ Q : f is Cauchy-sequence}
R := C/ ∼R

0 := [such f ∈ C : ∀n ∈ N : fn = 0Q]
1 := [such f ∈ C : ∀n ∈ N : fn = 1Q]
2 := [such f ∈ C : ∀n ∈ N : fn = 2Q]

x := such f ∈ C : x = [f]

x+ y := [[xn +Q yn]n]
−x := [[−Q xn]n]

x− y := [[xn −Q yn]n]
x ∗ y := [[xn ∗Q yn]n]
x−1 := [[x−1

n]n]
x/y := [[xn/Qyn]n]

x is positive :⇔ ∃ε ∈ Q>0, N ∈ N : ∀n ≥ N : x > ε
x ≤ y :⇔ ∃z ∈ R : z is positive ∧ x+ z = y

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.2 Order Relations 251

We use the notation [T]n for the sequence f defined as f(n) := T (not to
confuse with the notation [x] for the equivalence class of x). One can show
that ∼R is an equivalence relation that satisfies the necessary congruence
properties to determine unique result values for the functions defined above.
Furthermore, one can show that the domain R defined in such a way satisfies
the axioms stated in Section 4.4, i.e., we have indeed the real numbers.

Complex Numbers Also C can be defined along the lines demonstrated
above. The intuition is to partition the set of all univariate polynomials
(considered as equations with righthand side zero) by the equivalence relation
that is true for two polynomials if their difference is divisible by x2 + 1 (the
polynomial that defines the imaginary unit). We omit the details.

7.2 Order Relations

Partial Orders A binary relation is a partial order if it has some (not
necessarily all) properties of the relation ≤ on R. In addition to some of the
properties introduced in the previous section, we need the following notion.

Definition 113 (Antisymmetric) A binary relation is antisymmetric (an-
tisymmetrisch), if different elements are not mutually related:

R is antisymmetric on S :⇔
∀x ∈ S, y ∈ S : (〈x, y〉 ∈ R ∧ 〈y, x〉 ∈ R)⇒ x = y.

In the graph representation of an antisymmetric relation, the only loops are
from a node to itself, i.e., the following relation is not antisymmetric:

252 Chapter 7. More on Relations

Definition 114 (Partial Order) A binary relation on S is a partial or-
der (partielle Ordnung, Halbordnung), if it is reflexive, antisymmetric, and
transitive:

R is partial order on S :⇔
R ⊆ S × S ∧
R is reflexive on S ∧
R is antisymmetric on S ∧
R is transitive on S.

Example

• ≤ is a partial order on N.

• ⊆ is a partial order on P(S), for every set S.

• | (divides) is a partial order on N.

Quasi Orders Frequently, a partial order is denoted as infix � (or simply
as ≤); a corresponding relation ≺ is then defined as

x ≺ y :⇔ x � y ∧ x 6= y.

While ≺ is also antisymmetric and transitive, it is not reflexive, and thus not
a partial order. Actually, it even satisfies the following property.

Definition 115 (Irreflexive) A binary relation is irreflexive (irreflexiv), if
no element is related to itself:

R is irreflexive on S :⇔
∀x ∈ S : 〈x, x〉 6∈ R.

The graph representation of an irreflexive relation does not contain direct
loops from a node to itself, i.e., the following relation is not irreflexive:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.2 Order Relations 253

Definition 116 (Quasi Order) A binary relation on S is a quasi order
(Quasi-Ordnung), if it is irreflexive, antisymmetric, and transitive:

R is quasi order on S :⇔
R ⊆ S × S ∧
R is irreflexive on S ∧
R is antisymmetric on S ∧
R is transitive on S.

The graph representation of an quasi order does not contain any (direct or
indirect) loops, i.e., the following is not a quasi-order:

Proposition 127 (Quasi Orders Are Antisymmetric) Every quasi order
is antisymmetric:

∀S,≺ : ≺ is quasi order on S ⇒
≺ is antisymmetric on S.

254 Chapter 7. More on Relations

Proof Take arbitrary S and quasi order ≺ on S. Assume there exist x ∈ S
and y ∈ S with x 6= y such that x ≺ y and y ≺ x. By transitivity, we then
have x ≺ x which contradicts the irreflexivity of ≺.

Consequently, the only difference between partial orders and quasi orders is
reflexivity versus irreflexivity. Furthermore, the following holds.

Proposition 129 (Quasi Order from Partial Order) If � is a partial
order, then ≺ is a quasi-order:

∀S,� : � is partial order on S ⇒
≺ is quasi order on S.

Therefore adding equality to a quasi order makes it a partial order and re-
moving equality from a partial order makes it a quasi order.

Example

• < is a quasi-order on R.

• ⊂ (proper subset) is a quasi-order on P(S), for every set S.

In a partial order or quasi order, not all elements are necessarily comparable,
e.g., in P({0, 1, 2}) neither {0, 1} ⊆ {1, 2} nor {1, 2} ⊆ {0, 1}.

Definition 117 (Incomparable) Two elements x and y are incomparable
with respect to a relation � if neither x � y nor y � x:

x and y are incomparable w.r.t. � :⇔
x 6� y ∧ y 6� x.

Total Orders Some partial orders do not have incomparable elements.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.2 Order Relations 255

Definition 118 (Total Order) A partial order is a total order (totale Ord-
nung) or linear order (lineare Ordnung) or chain (Kette) if no elements are
incomparable with respect to this order:

R is total order on S :⇔
R is partial order on S ∧
¬∃x ∈ S, y ∈ S : x and y are incomparable w.r.t. R.

Example

• ≤ is a total order on R.

• The lexicographic order (lexikographische Ordnung)

x � y :⇔ x0 < y0 ∨ (x0 = y0 ∧ x1 ≤ y1)

is a total order on N× N. In this order, we have

〈0, 0〉 ≺ 〈0, 1〉 ≺ 〈0, 2〉 ≺ . . . ≺ 〈1, 0〉 ≺ 〈1, 1〉 ≺ 〈1, 2〉 ≺ . . .

i.e., tuples are ordered first by their first component and then by their
second component.

• Let � be a total order on an alphabet A, let Wn := Nn → A be the set
of all words with n letters, and let

w := such u ∈Wn−1 : ∀i ∈ Nn−1 : ui = wi+1

be the function that removes the first letter from word w. The lexico-
graphic order �n⊆Wn ×Wn defined as

w �n u :⇔ n = 0 ∨ w0 ≺ u0 ∨ (w0 = u0 ∧ w ≤n−1 u)

is a total order. If A is the set of Roman letters, we have

“back” ≺4 “bare” ≺4 “base” ≺4 “bear” ≺4 “bend” ≺4 “care”

256 Chapter 7. More on Relations

Hasse Diagrams Like any binary relation, a partial order can be repre-
sented by a directed graph, e.g.

A more economical visualization that utilizes the properties of partial order
is provided by a Hasse diagram (Hasse Diagramm). Such a diagram is an
undirected graph were all edges are considered as arrows from bottom to top,
i.e., smaller elements are placed lower:

The graph for the corresponding partial order is constructed by directing the
edges from bottom to top, by adding loops to all nodes (because of reflexivity)
and by adding direct arrows between all nodes that are indirectly connected
by two or more arrows (because of transitivity). E.g., the relationship a � d
is not denoted by an extra edge but can be deduced from the relationship
a � b and b � d in the diagram.

Example

• This Hasse diagram illustrates the total order ≤ on N5.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.2 Order Relations 257

• This Hasse diagram illustrates the partial order ⊆ on P({1, 2, 3}):

• This Hasse diagram illustrates the partial order ⊆ on

{{0}, {1}, {2}, {0, 1}, {1, 2}, {0, 1, 2}}:

• Let Fn := {m ∈ N : m|n} (the factors of n). The following Hasse
diagram illustrates the partial order | on F12:

258 Chapter 7. More on Relations

Logic Evaluator Above definitions can be implemented as shown below
(see Appendix C.14 (file order.txt)):

More Notions Various notions that we have introduced for the total or-
dering ≤ on R can be generalized to partial orders.

Definition 119 (Least and Greatest Element) If x is an element of S
such that x is less than or equal to any element of S, then x is called the
least element (kleinstes Element) of S:

x is least element of S w.r.t. � :⇔
x ∈ S ∧ ∀y ∈ S : x � y.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.2 Order Relations 259

Correspondingly, if x is an element of S such that x is greater than or equal
to any element of S with respect to a partial ordering, then x is called the
greatest element (größtes Element) of S:

x is greatest element of S w.r.t. � :⇔
x ∈ S ∧ ∀y ∈ S : y � x.

We can show that a least respectively greatest element is unique, if such an
element exists.

Example

• ∅ is the least element of P({1, 2, 3}) with respect to ⊆, {1, 2, 3} is the
greatest element:

• The following Hasse diagram denotes a partial order with greatest ele-
ment a but without a least element:

260 Chapter 7. More on Relations

Definition 120 (Minimal and Maximal Element) If x is an element of
S such that no element of S is smaller than S, then x is called a minimal
element (minimales Element) of S.

x is minimal element of S w.r.t. � :⇔
x ∈ S ∧ ∀y ∈ S : y � x⇒ y = x.

Correspondingly, if x is an element of S such that no element of S is greater
than S, then x is called a maximal element (maximales Element) of S.

x is maximal element of S w.r.t. � :⇔
x ∈ S ∧ ∀y ∈ S : x � y ⇒ x = y.

Minimal and maximal elements are not necessarily unique: distinct incom-
parable minimal respectively maximal elements may exist.

Example The following Hasse diagram denotes a partial order with two
minimal elements a and b:

Definition 121 (Upper and Lower Bound) A value x is a lower bound
(untere Schranke) of S, if it is less than or equal any element of S:

x is lower bound of S w.r.t. � :⇔
∀y ∈ S : x � y.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.2 Order Relations 261

Correspondingly, a value x is an upper bound (obere Schranke) of S, if it is
greater than or equal any element of S:

x is upper bound of S w.r.t. � :⇔
∀y ∈ S : y � x.

Please note that an lower (respectively upper bound) of a set S need not be
an element of S:

Definition 122 (Infimum and Supremum) A value x is a infimum (In-
fimum) of S, if it is the greatest lower bound of S:

x is infimum of S w.r.t. � :⇔
x is lower bound of S w.r.t. � ∧
∀y : y is lower bound of S w.r.t. � ⇒ y � x.

Correspondingly, a value x is a supremum (Supremum) of S, if it is the least
upper bound of S:

x is supremum of S w.r.t. � :⇔
x is upper bound of S w.r.t. � ∧
∀y : y is upper bound of S w.r.t. � ⇒ x � y.

Even the supremum respectively infimum of a set need not be an element of
this set. However, we have the following relationships between the concepts
defined above.

262 Chapter 7. More on Relations

Proposition 130 (Order Laws) Let � be a partial order on S. Then for
every x, the following holds:

x is least (greatest) element of S w.r.t. � ⇒
x is minimal (maximal) element of S w.r.t. �,

x is least (greatest) element of S w.r.t. � ⇒
x is infimum (supremum) of S w.r.t. �,

x is lower (upper) bound of S w.r.t. � ∧ x ∈ S ⇒
x is least (greatest) element of S w.r.t. � .

Logic Evaluator Some of above definitions can be implemented as shown
below, see Appendix C.14 (file order.txt).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.3 Graphs 263

7.3 Graphs

Basic Notions Throughout this document, we have used graphs as visual
illustrations of binary relations. However, we can also consider graphs them-
selves as mathematical objects that are represented by binary relations. The
theory of graphs has many applications in various scientific areas; they can
be used to model railroad plans as well as electrical circuits, molecules as
well as brain structures.

Definition 123 (Directed Graph) A directed graph (gerichteter Graph) is
a pair 〈V,E〉 of a set V of vertices (Knoten) or nodes and a set of E of edges
(Kanten) or arcs where E is a binary relation on S:

G is directed graph :⇔
∃V,E :
G = 〈V,E〉 ∧
E ⊆ V × V.

An element 〈x, y〉 ∈ E expresses the fact that node x is connected to node y
where x is called the initial node of the corresponding edge and y is called
its terminal node. Both nodes are then adjazent.

Please note that in above definition of a graph there may be at most one
edge between any pair of nodes. A graph with potentially more than one
edge between two nodes is called a multigraph (Multigraph) which may be
used to describes e.g. multiple roads between two cities. Furthermore, the
edges in a graph may be labelled with real values; such a graph is called
a weighted graph (gewichteter Graph) and may describe lengths of roads or
capacities of water pipes. However, we will not consider the formalization of
such graphs in this document.

Example

• The graph 〈N5, E〉 with

E = {〈0, 1〉, 〈0, 2〉, 〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈3, 3〉, 〈4, 0〉, 〈4, 1〉}

can be depicted as

264 Chapter 7. More on Relations

or as

i.e., the visual representation of a graph is not unique; vice versa, dif-
ferent visual objects may describe the same graph.

A representation of this graph by a boolean matrix (every edge is de-
noted by a matrix entry true) is the following:

0 1 2 3 4
0 false true true false false
1 false true true false false
2 false true false false false
3 false false false true false
4 true true false false false

• The graph 〈{a, b, c}, E〉 with

E = {〈a, a〉, 〈a, b〉}

can be depicted as

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.3 Graphs 265

and is represented by the following matrix:

a b c
a true true false
b false false false
c false false false

The matrix representation of a graph used in above example can be formal-
ized as follows.

Definition 124 (Adjacency Matrix) Let G = 〈V,E〉 be a directed graph
with |V | = n. The adjacency matrix (Adjazenzmatrix, Nachbarschaftsmatrix)
of G is the boolean n ∗ n matrix M where M(x, y) = true if and only if
〈x, y〉 ∈ E:

adjacency(G) :=
let V = G0, E = G1 :

such M ∈ V × V → {true, false} :
(∀x ∈ V, y ∈ V : M(x, y) = true⇔ 〈x, y〉 ∈ E).

The adjacency matrix is the typical implementation of a graph in a computer;
most graph algorithms operate with this representation.

Example Let R and S be binary relations on Nn for some n ∈ N. The
composition of R and S is

R ◦ S = {〈a, c〉 : a ∈ Nn ∧ c ∈ Nn ∧ (∃b : 〈a, b〉 ∈ R ∧ 〈b, c〉 ∈ S)}.

For the corresponding adjacency matrix, we thus have

∀i ∈ Nn, j ∈ Nn :
adjacency(〈Nn, R ◦ S〉)i,j = true⇔
∃k ∈ Nn : Ai,k = true ∧Bk,j = true
where A = adjacency(〈Nn, R〉), B = adjacency(〈Nn, S〉).

Written as a Java method, the composition of two adjacency matrices A and
B giving a result matrix C resembles matrix multiplication:

266 Chapter 7. More on Relations

void compose(int n, boolean[][] A, boolean[][] B, boolean[][] C)
{

for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
{

C[i][j] = false;
for (int k=0; k<n; k++)

C[i][j] = C[i][j] || (A[i][k] && B[k][j]);
}

return C;
}

In some graphs, the direction of the edges does not matter.

Definition 125 (Undirected Graph) An undirected graph (ungerichteter
Graph) is a directed graph whose edge relation is symmetric:

G is undirected graph :⇔
∃V,E :
G = 〈V,E〉,
E ⊆ V × V,
E is symmetric on V.

According to this definition, an undirected graph is a special directed graph;
therefore all the following definitions and results for directed graphs apply
to undirected graphs as well. Because of symmetry, the only information
carried by an undirected graph is whether two nodes x and y are connected
or not; in the visual representation it suffices to draw a single undirected
edge between two connected nodes.

Example

• The graph 〈N5, E〉 with

E = {〈0, 1〉, 〈1, 0〉, 〈0, 2〉, 〈2, 0〉, 〈1, 1〉, 〈1, 2〉,
〈2, 1〉, 〈3, 3〉, 〈0, 4〉, 〈4, 0〉, 〈1, 4〉, 〈4, 1〉}

can be depicted as follows:

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.3 Graphs 267

We just need to fill the elements of the upper right triangle of the matrix
representation; the other elements are determined by symmetricity:

0 1 2 3 4
0 false true true false true
1 true true false true
2 false false false
3 true false
4 false

• The graph 〈{a, b, c}, E〉 with

E = {〈a, a〉, 〈a, b〉, 〈b, a〉}

can be depicted as

and has the following matrix representation:

a b c
a true true false
b false false
c false

An important notion is the number of edges that enter or leave a node.

Definition 126 (Degree) In a directed graph, the indegree (eingehender
Grad) of x is the number of edges whose terminal node is x:

indegG(x) := |{y ∈ V : 〈y, x〉 ∈ E}|
where V = G0, E = G1.

268 Chapter 7. More on Relations

The outdegree (ausgehender Grad) of x is the number of edges whose initial
node is x:

outdegG(x) := |{y ∈ V : 〈x, y〉 ∈ E}|
where V = G0, E = G1.

The total degree (Grad) of x is the sum of its indegree and its outdegree:

degG(x) := indegG(x) + outdegG(x).

Example

• In the graph

the indegree of node 1 is 4 and its outdegree is 2.

• In the graph

the indegree and the outdegree of node c are both 0.

Applied to undirected graphs, above definition makes the indegree of a node
equal its outdegree and the total degree be even; since in undirected graphs
the only interesting information is the total degree, this number is then usu-
ally divided by two in correspondence with the visual representation.

Even if two graphs are different, they may have the same structure.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.3 Graphs 269

Definition 127 (Graph Isomorphism) Two graphs are isomorphic (iso-
morph) if there exists a bijection between the nodes of the two graphs which
preserves the edge structure:

G and G′ are isomorphic :⇔
G is directed graph ∧G′ is directed graph ∧
∃f : f : V

iso(E,E′)−→ V ′

where V = G0, E = G1, V
′ = G′0, E

′ = G′1.

Example

• The graphs

are isomorphic with isomorphism

f = {〈0, b〉, 〈1, c〉, 〈2, d〉, 〈3, a〉}.

• The graphs

are isomorphic with isomorphism

f = {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 0〉}.

270 Chapter 7. More on Relations

• The graphs

are not isomorphic.

The edges of a node yield paths that can be used to wander among nodes.

Definition 128 (Path) A path (Pfad) in a graph is a sequence of nodes
connected by edges:

p is path in G :⇔
(∃n ∈ N>0 : p : Nn → V ∧
∀i ∈ Nn−1 : 〈pi, pi+1〉 ∈ E)

where V = G0, E = G1.

The length (Länge) of a path is the number of edges it contains:

length(p) := such n ∈ N : p : Nn+1 → V.

A path from x to y has initial node x and terminal node y :⇔

p is path from x to y :⇔
p0 = x ∧ pn = y

where n = length(p).

A path is simple (einfach) if it does not contain any edge twice:

p is simple :⇔
∀i ∈ Nn, j ∈ Nn : 〈pi, pi+1〉 = 〈pj, pj+1〉 ⇒ i = j

where n = length(p).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.3 Graphs 271

A path is elementary (elementar) if it does not contain any node twice:

p is elementary :⇔
∀i ∈ Nn, j ∈ Nn : pi = pj ⇒ i = j

where n = length(p).

A path is a cycle (Kreis) or circuit if it terminates in its initial node:

p is cycle :⇔ ∃x : p is path from x to x.

Reachability We will now investigate how to determine whether two nodes
are directly or indirectly connected in a graph.

Definition 129 (Reachable) A node y is reachable (erreichbar) from a
node x in a graph G if there is a path in G from x to y:

y is reachable from x in G :⇔
∃p : p is path in G ∧ p is path from x to y.

The predicate “is reachable” is, for fixed graph G=〈V,E〉, a binary relation
on V , as well as the edge relation E is. Actually we can derive from E the
reachability relation by a general construction that we are going to elaborate.

Definition 130 (Reflexive and Transitive Closure) Let R be a binary
relation on S. The reflexive closure (reflexiver Abschluß) of R on S is the
smallest relation that contains R and is reflexive on S:

reflexiveS(R) :=
such R′ ⊆ S × S :
R ⊆ R′ ∧R′ is reflexive on S ∧
∀R′′ : (R ⊆ R′′ ∧R′′ is reflexive on S)⇒ R′ ⊆ R′′.

The transitive closure (transitiver Abschluß) of R on S is the smallest relation
that contains R and is transitive on S:

transitiveS(R) :=
such R′ ⊆ S × S :
R ⊆ R′ ∧R′ is transitive on S ∧
∀R′′ : (R ⊆ R′′ ∧R′′ is transitive on S)⇒ R′ ⊆ R′′.

272 Chapter 7. More on Relations

We then can derive the following result.

Proposition 131 (Reachability is Closure of Edge Relation) We define
the reachability relation

RG := {〈x, y〉 ∈ G0 ×G0 : y is reachable from x in G}.

Then, for any directed graph 〈V,E〉, R〈V,E〉 is the reflexive and transitive
closure of E on V :

∀V,E : 〈V,E〉 is directed graph ⇒
R〈V,E〉 = reflexiveV (transitiveV (E)).

Example Take the graph 〈N5, E〉 with

E = {〈0, 1〉, 〈1, 2〉, 〈1, 3〉, 〈2, 3〉, 〈3, 4〉}

which can be depicted as:

Since 〈0, 1〉 ∈ E and 〈1, 3〉 ∈ E, 〈0, 3〉 is in the transitive closure of E. Since
also 〈3, 4〉 is in E, also 〈0, 4〉 is in the transitive closure of E, i.e., node 4 is
reachable from 0. In total, we have:

transitiveN5(E) =
{〈0, 1〉, 〈0, 2〉, 〈0, 3〉, 〈0, 4〉, 〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 3〉, 〈2, 4〉}.

In addition, every node is reachable from itself:

reflexiveN5(E) = {〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈4, 4〉}.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.3 Graphs 273

Above definitions of closures are too inefficient for a practical algorithm that
decides the reachability of a node; a direct construction of the reflexive closure
is provided by the following result which is easy to establish.

Proposition 132 (Reflexive Closure) The reflexive closure of R on S is
the union of R and the identity relation on S:

∀S,R : R ⊆ S × S ⇒
reflexiveS(R) = R ∪ (S × S).

An efficient computation of the transitive closure is based on the following
operation that composes a relation R an arbitrary number of times.

Definition 131 (Exponentiation of Relations)

R0
S := {〈x, x〉 : x ∈ S}

Ri+1
S := Ri

S ◦R.

R0
S is the identity relation and R1

S is R. Consequently, e.g.

R3
S = R ◦R ◦R.

The transitive closure is then characterized by the following result which we
state without proof.

Proposition 133 (Transitive Closure)

∀S,R : R ⊆ S × S ⇒
transitiveS(R) =

⋃
{Ri

S : i ∈ N>0}

In other words, the transitive closure of R is the union of all members of the
sequence

[R,R ∪ (R ◦R), R ∪ (R ◦R) ∪ (R ◦R ◦R), . . .]

274 Chapter 7. More on Relations

that starts with R and computes each subsequent member by adding to its
predecessor the transitive consequences of R. Since every member is con-
tained in its successor, the transitive closure is the “limit” of this sequence.
This approach is constructive because one can show that the sequence con-
verges, i.e., from a certain point on no more elements are added; the final
sequence member represents the transitive closure.

Proposition 134 (Transitive Closure) Let R be a binary relation on S
where S has n elements. Then

⋃
1≤i≤nR

i
S is the transitive closure of R:

∀S,R : R ⊆ S × S ⇒
transitiveS(R) =

⋃
1≤i≤nR

i
S

where n = |S|.

Since the reflexive and transitive closure of the edge relation describes the
reachability relation, we thus have a constructive method of computing the
reachability relation of a graph 〈V,E〉; we start with the identity relation
and add n times the transitive consequences of R:

reachability(V,E) :
n = |V |
R0 = {〈x, x〉 : x ∈ V }
for(i = 0; i < n; i++)
Ri+1 = Ri ∪ (Ri ◦ E)

return Rn

For an actual implementation, we usually turn to the representation of the
graph as a n∗n matrix M . Since in this representation the composition of two
relations resembles matrix multiplication the computation of reachability is
basically a sequence of matrix multiplications (see the example on page 105).

Trees Trees are a special kind of graphs that are of particular relevance
in computer science: they provide a way to represent hierarchical structures
such as a family genealogy, an organizational chart, or a file system.

Definition 132 (Tree) A tree (Baum) is a directed graph such that there
is exactly one node, the root (Wurzel), that has indegree zero, every other

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.3 Graphs 275

node has indegree one, and every node can be reached from the root.

T is tree :⇔
T is directed graph ∧
∃r ∈ V : indeg(r) = 0 ∧
∀x ∈ V − {r} :

indeg(x) = 1 ∧
x is reachable from r in T

where V = T0.

root(T) := (such r ∈ V : indeg(r) = 0) where V = T0.

Trees are depicted with the root node at the top and all arcs directed down-
wards (such that arrowheads need not be given)1.

Example

• The following diagrams depict trees with root r:

• The following directed graphs are not trees:

1In computer science, trees grow downwards! ;-)

276 Chapter 7. More on Relations

• The term −b+ 2a is represented by the following tree:

• A file system with directories

/, /bin, /etc, /usr, /usr/bin, /usr/bin/X11, /usr/etc

is represented by the following tree:

We state without proof the following important property of trees.

Proposition 135 (Trees and Cycles) A tree has only cycles of length 0:

∀T : T is tree ⇒
¬(∃p : p is path in T ∧ length(p) > 0 ∧ p is cycle).

The following notions describe relations among tree nodes.

Definition 133 (Node Relations) Let T be a tree. A node y is called a
child (Kind) of x if there is an edge from x to y in T :

y is child of x in T :⇔
〈x, y〉 ∈ E where E = T1.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.3 Graphs 277

x is then called the parent (Elternteil) of y:

parentT (y) := such x ∈ V : 〈x, y〉 ∈ E
where V = T0, E = T1.

A node x is a leaf (Blatt), if it does not have children:

x is leaf in T :⇔ x ∈ V ∧ ¬∃y : y is child of x in T
where V = T0.

A node x is an ancestor (Vorfahre) of y if there is a path from x to y in T :

x is ancestor of y in T :⇔
∃p : p is path in T ∧ p is path from x to y.

y is then called a descendant (Nachkomme) of x:

y is descendant of x in T :⇔ x is ancestor of y in T.

Please note that in a tree every node (apart from the root) has a parent and
that this parent is unique. Every node is a descendant of the root; the only
descendant of a leaf node is the node itself.

Example In the tree

node a is the parent of b and an ancestor of leaf c.

In a tree, all paths from the root are unique.

278 Chapter 7. More on Relations

Proposition 136 (Unique Root Paths) Let T be a tree with root r. Then
the path from r to every node of T is unique:

∀T : T is tree ⇒
∀x ∈ V :
∃p : p is path in T ∧ p is path from r to x ∧
∀p′ : (p′ is path in T ∧ p′ is path from r to x)⇒ p′ = p

where V = T0, r = root(T).

Because of this result, the following notions are uniquely defined.

Definition 134 (Level and Height) The level (Stufe) of a node x in a tree
is the length of the path from the root of the tree to x:

levelT (x) := length(p)
where p = such p : p is path in T ∧ p is path from root(T) to x.

The height (Höhe) of a tree is the maximum level of its nodes:

height(T) := max{levelT (x) : x ∈ V } where V = T0.

The definition implies that the root node has level 0 and the level of a node
is one plus the level of its parent.

Example In the tree

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

7.3 Graphs 279

a has level 1, b has level 2, and c has level 3. The height of the tree is 3.

We conclude this section by a result which relates the degrees of nodes to
the heights of trees.

Proposition 137 (Height of Binary Trees) Let T be a tree of height h
where every node has an outdegree of at most 2. Then the number of nodes
in the tree is less than 2h+1:

∀T : (T is tree ∧ ∀x ∈ V : outdeg(x) ≤ 2)⇒ |V | < 2h+1

where V = T0, h = height(T).

Proof Let T be a tree where every node has an outdegree of at most 2. We
proceed by complete induction on the height of T .

1. Assume the height is h = 0. Then |V | = 1 < 2 = 2h+1.

2. Assume the height is h > 0. Consequently the root of T has a child
that is the root of a tree of height h − 1 and possibly a second child
that is the root of a tree of height less than or equal h − 1. By the
induction hypothesis, we thus have

|V | ≤ 1 + (2h − 1) + (2h − 1) = 2h+1 − 1 < 2h+1.

It is easy to generalize above result to trees whose outdegrees are bounded
by an arbutrary limit k (how?).

Appendix A

Defining New Notions

When formulating propositions for a particular domain, it becomes soon
cumbersome to commit oneself to the predicates and functions provided by
the domain. For instance, while set theory (see Chapter 3) offers a single
binary predicate ‘∈’ that in principle suffices to express all facts about sets,
formulas become very large and difficult to understand if they are expressed
only with the help of this predicate.

Therefore we need mechanisms that allow us to introduce new predicate and
function constants that capture under a single name properties respectively
objects whose description with the help of the basic notions is rather large.
By this abstraction (Abstraktion), we can refer to a notion just by its name
without having to repeat its description in different contexts over and over
again. If descriptions are similar but not identical, we may extract by pa-
rameterization (Parameterisierung) a common core or a more general notion
that is suitable for abstraction.

The new constants may be again used for the introduction of other constants,
thus we can build in an iterative bottom up (von unten nach oben) process
new layers of abstractions on top of previously constructed ones.

Actually when formalizing aspects of the real world or specifying problems,
this process typically proceeds top down (von oben nach unten): we introduce
a name for the notion of interest and then construct a description that reduces
this notion to simpler notions. We may use these simpler notions just as
“black boxes” or again describe them in terms of simpler notions until we
reach a level where the notions are sufficiently well understood. This is
in particular the case, if these notions are the elementary predicates and
functions of a formally characterized domain (such as set theory).

280

A.1 Preliminaries 281

This method of constructing descriptions by stepwise refinement (schrittweise
Verfeinerung) is of particular importance in computer science that has to deal
with complex and often only vaguely understood aspects of the real world.

A.1 Preliminaries

In mathematics, a formal description is called a definition; a definition con-
structs a new theory from a given one.

Definition 135 (Theory) A theory (Theorie) consists of a set of constants
and a set of formulas that only use constants from the given set. We call
these formulas the axioms (Axiome) of the theory.

The axioms of a theory express those propositions that are stipulated to be
true; from these propositions other true propositions can be derived.

Example

• The theory of Peano Arithmetic consists of constants

0 (zero), ′ (successor)

and the axioms that are stated in Section 4.1.

• The theory of sets (see Chapter 3) has a single binary predicate constant

∈ (is element of)

and the Axioms of Zermelo and Fraenkel.

• The theory of real numbers has constants

0, 1,+, ∗,≤

and the axioms that are stated in Section 4.4.

• The theory of lists has the constants

nil, cons, isnil, head, tail

and axioms like (∀e, l : head(cons(e, l)) = e).

282 Appendix A. Defining New Notions

Definition 136 (Definition) A definition (Definition) is a statement that
introduces into a theory a new constant and new axioms such that from the
extended set of axioms no formula can be derived that could not be derived
from the original axioms (provided that this formula only uses constants from
the original theory).

A definition just introduces syntactic abbreviations for entities that are al-
ready implicitly given (but not explicitly named) by a theory; they do not
add any conceptual power to a theory (nor do they remove some).

Example The axioms of the set theory demand the existence of a set that
does not contain any elements. We introduce the constant ∅ to denote this
set. We may conclude (∀x : x 6∈ ∅).

In the following, we will discuss various techniques to write definitions.

A.2 Explicit Predicate Definitions

Definition 137 (Explicit Predicate Definition) Let p be a predicate
constant of arity n that is not yet in use, x0, . . . , xn−1 be n distinct variables,
and F be a formula in which p does not occur and with no other free variables
than x0, . . . , xn−1. Then the phrase

p(x0, . . . , xn−1) :⇔ F

is an explicit predicate definition (explizite Prädikatsdefinition) which intro-
duces an n-ary predicate constant p together with an axiom

∀x0, . . . , xn−1 : p(x0, . . . , xn−1)⇔ F .

We call p(x0, . . . , xn−1) the definiendum (“the one to be defined”) and F the
definiens (“the defining one”).

A predicate p is uniquely characterized by an explicit definition, i.e., there is
exactly one p that satisfies the new axiom (because for every x0, . . . , xn−1, F
has a single truth value).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

A.2 Explicit Predicate Definitions 283

The restriction that p does not occur in F is necessary, e.g. to avoid bogus
“definitions” such as

p(x) :⇔ ¬p(x)

which lead to a contradiction. The restriction that all free variables of the
definiens must occur in the definiendum is to avoid “definitions” as

p(x) :⇔ x ≤ y.

where p(1) may hold or not, depending on the current assignment of y.

A predicate definition in natural language is usually expressed as

x is (called) a P , if . . . ,

introducing the unary predicate P (x), or

x and y are P , if . . .

introducing the binary predicate P (x, y), or

x is a P of y, if . . .

which also introduces P (x, y).

The new constant being defined is often typeset in italics or underlined.

Example

• The statement

p is prime, if its only divisors are 1 and p.

introduces the unary predicate

p is prime :⇔ (∀p : p is a divisor of x⇒ (p = 1 ∨ p = x)).

• The statement

x is a divisor of y, if x ∗ z = y, for some z.

introduces the binary predicate

284 Appendix A. Defining New Notions

x is a divisor of y :⇔ ∃z : x ∗ z = y.

• The statement

x is a divisor of a ∗ y, if x ∗ z = a ∗ y, for some z.

is not a definition, because on the left hand side of the formula

x is a divisor of a ∗ y ⇔ ∃z : x ∗ z = a ∗ y.

a general term a ∗ y appears where only a variable is allowed.

Logic Evaluator A predicate is explicitly defined by a statement

pred p(x0, ..., xn−1) <=> F;

which is to be read as p(x0, . . . , xn−1) :⇔ F .

Constrained Predicate Definitions Sometimes a predicate definition
conjoins some “side-conditions” by saying

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

A.2 Explicit Predicate Definitions 285

Let x be such that P . Then x is a Q if F .

or, shorter,

A P is a Q if F .

This is to be interpreted as the definition of a predicate by a conjunction:

Q(x) :⇔ P (x) ∧ F

which we usually express in the form defined below (provided that we operate
in the domain of sets).

Definition 138 (Constrained Predicate Definition) Let p be a predicate
constant of arity n that is not yet in use and S be a term in which p does
not occur, x0, . . . , xn−1 be n distinct variables, and F be a formula in which
p does not occur and with no other free variables than x0, . . . , xn−1. Then

p ⊆ S
p(x0, . . . , xn−1) :⇔ F

is a constrained predicate definition which introduces an n-ary predicate p
such that

∀x0, . . . , xn−1 : p(x0, . . . , xn−1)⇔ (〈x0, . . . , xn−1〉 ∈ S ∧ F).

Since a constraint just adds a condition, the corresponding predicate is still
uniquely defined.

Example

• The definition

| ⊆ N× N
x|y :⇔ ∃p ∈ N : x ∗ p = y

is to be understood as

x|y :⇔ x ∈ N ∧ y ∈ N ∧ ∃p ∈ N : x ∗ p.

286 Appendix A. Defining New Notions

• The definition

Let f be a binary relation. f is a partial function if every
element of its domain is in relation to at most one element
of its range.

as well as the definition

A partial function is a binary relation where every element
of the domain is in relation to at most one element of the
range.

are to be read as the definition of a unary predicate

f is a partial function :⇔
f is a binary relation ∧
∀x, y0, y1 : (〈x, y0〉 ∈ f ∧ 〈x, y1〉 ∈ f)⇒ y0 = y1.

A.3 Explicit Function Definitions

Definition 139 (Explicit Function Definition) Let f be a function con-
stant of arity n that is not yet in use, x0, . . . , xn−1 be n distinct variables,
and T be a term in which f does not occur and with no other free variables
than x0, . . . , xn−1. Then the phrase

f(x0, . . . , xn−1) := T

is an explicit function definition (explizite Funktionsdefinition) which intro-
duces an n-ary function constant f together with an axiom

∀x0, . . . , xn−1 : f(x0, . . . , xn−1) = T .

We call f(x0, . . . , xn−1) the definiendum (“the one to be defined”) and T the
definiens (“the defining one”).

A function f introduced by an explicit definition is uniquely characterized,
i.e., there is exactly one f that satisfies the stated law (because for every
x0, . . . , xn−1, T has a single value).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

A.3 Explicit Function Definitions 287

The restriction that f must not occur in T avoids contradictions like in

f(x) := 1 + f(x).

All free variables of the definiendum must occur in the definens in order to
avoid a dependence on the current variable assignment, such as in

f(x) := x+ y

where f(1) may be 2, 3, or any other number (depending on the current
assignment of y).

Logic Evaluator A function is explicitly defined by a statement

fun f(x0, ..., xn−1) = T;

which is to be read as f(x0, . . . , xn−1) := T .

Conditional Definitions The value of a function is sometimes defined in
different ways for different kinds of arguments, which can be expressed as

f(x0, . . . , xn−1) := T0, if F
T1, else (otherwise)

288 Appendix A. Defining New Notions

with terms T0 and T1 and formula F in all of which f does not occur and with
no other free variables than x0, . . . , xn−1. This is another form of writing

f(x0, . . . , xn−1) := if F then T0 else T1

where the phrase (if F then T0 else T1) is introduced below.

Definition 140 (Conditional Term) For every formula F and terms T0

and T1, the phrase

(if F then T0 else T1)

is a term whose value is the value of T0, if F holds, and the value of T1,
otherwise. We omit the parentheses, if T1 is clear.

Example The definition

|x| := −x, if x < 0
x, else

is another form of writing

|x| := if x < 0 then − x else x

which denotes the absolute value of x.

Logic Evaluator A conditional term is denoted as

if(F, T0, T1)

which is to be read as (if F then T0 else T1).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

A.3 Explicit Function Definitions 289

Constrained Function Domains In a definition f(x0, . . . , xn−1) := T ,
the value of T may not be defined for some x0, . . . , xn−1, i.e., there is no
knowledge that relates this value to any other value.

Example We define the function over the real numbers

f(x) := 1/x.

We do not know anything about f(0) because we do not know anything about
the value 1/0.

In order to make undefined function values explicitly visible, we often write
a definition in the following format (provided that we operate in the domain
of sets):

Definition 141 (Constrained Function Definition) Let f be a function
constant of arity n that is not yet in use, A and B be terms in which f does
not occur, x0, . . . , xn−1 be n distinct variables, and T be a term in which f
does not occur and with no other free variables than x0, . . . , xn−1. Then

f : A→ B
f(x0, . . . , xn−1) := T

290 Appendix A. Defining New Notions

is a constrained function definition which introduces an n-ary function con-
stant f such that

∀x0, . . . , xn−1, y : f(x0, . . . , xn−1) = y ⇔ (〈x0, . . . , xn−1〉 ∈ A ∧ y = T).

Above definition characterizes f uniquely.

Please note that, for every x0, . . . , xn−1, we have to prove

〈x0, . . . , xn−1〉 ∈ A

before we are allowed to deduce

f(x0, . . . , xn−1) = T.

Furthermore, we still have to prove

(∀x0, . . . , xn−1 : 〈x0, . . . , xn−1〉 ∈ A⇒ T ∈ B)

before we are allowed to assume

f(x0, . . . , xn−1) ∈ B.

Example We define

| | : R→ R≥0

|x| := −x, if x < 0
x, else

where R denotes the set of real numbers and R≥0 denotes the set of non-
negative real numbers. For every a ∈ R, we have

|a| = if a < 0 then − a else a.

However, the value of |i| (where i denotes the imaginary number) is undefined
because i 6∈ R.

Furthermore, we can prove

∀x : (if x < 0 then − x else x) ∈ R≥0

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

A.3 Explicit Function Definitions 291

because, for a real x < 0, −x ∈ R≥0, and for a real x 6< 0, x ∈ R≥0. Thus we
indeed have

| | : R→ R≥0.

Logic Evaluator A constraint on the function domain can be expressed in
various ways:

• For a unary predicate P , a parameter declaration

f(x: P)

lets the evaluation of a function application f(a) abort with an error
message, if P (a) does not hold. We have the predefined unary predi-
cates Nat, Set, Tuple that test whether a value is a natural number, a
set, or a tuple, respectively.

• Likewise for a term S denoting a set, a parameter declaration

f(x in S)

lets the evaluation of a function application f(a) abort if a 6∈ S.

• We may use the binary function if to define a function as

fun f(x) = if(F, T);

If the condition F does not hold on the input arguments, the evaluation
of the function is aborted with an error message.

The checking of constraints can be switched off by the command

option check = false;

which may speed up the evaluation.

292 Appendix A. Defining New Notions

A.4 Implicit Function Definitions

In some situations, it is more convenient to describe a function rather by a
condition between the argument values and the result value than by a term
that denotes the result value. Such an implicit function definition (implizite
Funktionsdefinition) is typically written in the form.

Let f(x0, . . . , xn−1) be a y such that F.

However, this is just another way of writing an explicit definition

f(x0, . . . , xn−1) := such y : F

where (such y: F) is a term in which f does not occur and with no other
free variables than x0, . . . , xn−1 (y is bound).

Definition 142 (Such Quantifier) For every variable x and formula F ,
the phrase

(such x : F)

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

A.4 Implicit Function Definitions 293

is a term with bound variable x.

The value of this term is some x such that F holds (if such an x exists). We
omit the parentheses if F is clear.

Frequently, we write

such x ∈ S : F

to denote such x: x ∈ S ∧ F .

Reasoning When reasoning about implicitly defined objects with have to
take special care because the definition may be inconsistent (i.e., no object
with the denoted property exists) or not unique (multiple objects satisfy the
property).

All that we actually have is the knowledge

(∃x : F)⇒ (∀x : x = (such x : F)⇒ F),

i.e., if an object with property F exists, then the object denoted by the “such
term” satisfies F as well.

Consequently, we have for a function definition

f(x0, . . . , xn−1) := such y : F

the knowledge

(∀x0, . . . , xn−1 : (∃y : F)⇒ (∀y : y = f(x0, . . . , xn−1)⇒ F)),

i.e., for any tuple of function arguments the result value satisfies F , provided
that such a value indeed exists.

Therefore, for given x0, . . . , xn−1, we first have to prove

∃y : F.

before we may assume that, for every y = f(x0, . . . , xn−1), F holds.

Example We define

x/y := such q : q ∗ y = x.

294 Appendix A. Defining New Notions

Then 12/4 = 3 because 3 ∗ 4 = 12.

Take a := 1/0. We must not assume that a ∗ 0 = 1, because we cannot prove
∃q : q ∗ 0 = 1.

Such Terms and Predicates An alternative to defining a function

f(x) := such y : F

is always to define a predicate

p(x, y) :⇔ F.

Apparently, we then have the relationship

f(x) := such y : p(x, y).

However, it may be easier to understand (and to reason about) statements
that are formulated with the help of the predicate than with the correspond-
ing “such” term: for every formula G, the statement

G[y ← f(x)]

is equivalent to

(∀y : p(x, y)⇒ G)

which may be preferrable in some situations.

Example We define in Section 6.4 the limit of a sequence s as

lim(s) := such a : s converges to a.

We then wish to state that, for all sequences s and t,

lim(s+ t) = lim(s) + lim(t)

where, for every i ∈ N, (s+ t)i = si + ti.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

A.4 Implicit Function Definitions 295

Inserting the definition of “lim” gives us the statement

(such a : s+ t converges to a) =
(such b : s converges to b) + (such c : t converges to c)

which is rather difficult to prove.

However, above statement can be also formulated as

∀a, b, c :
(s+ t converges to a ∧ s converges to b ∧ t converges to c) ⇒
a = b+ c.

which is much more amenable to a formal proof.

As the previous example shows, it may be advisable to “switch” from the for-
mulation of a statement with “such terms” to a statement with corresponding
predicates to understand the subtleties of the statement.

Logic Evaluator We have a restricted form of the “such” quantifier that
allows to express the value of the term (such x ∈ S: F) as

such(x in S: F, x)

In general, the quantifier binds multiple variables x0, . . . , xn−1 and returns a
value of term T where F holds:

such(x0 ∈ T0, ..., xn−1 ∈ Tn−1: F, T)

The value of this term can be expressed by the standard quantifier as

(let
t = such t that

(∃x0 ∈ T0, . . . , xn−1 ∈ Tn−1 : t = 〈x0, . . . , xn−1〉 ∧ F)
x0 = t0,
. . .
xn−1 = tn−1 :

T)

where t is a variable that does not occur in T and F .

296 Appendix A. Defining New Notions

Operational Interpretation A such expression is an instance of the Java
class shown below.

public final class SuchThat implements Term
{

private String variable;
private Term domain;
private Formula formula;
private Term term;

public SuchThat(String _variable, Term _domain,
Formula _formula, Term _term)

{
variable = _variable;
domain = _domain;
formula = _formula;
term = _term;

}

public Value eval() throws EvalException
{

Iterator iterator = Model.iterator(domain);
while (iterator.hasNext())
{

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

A.4 Implicit Function Definitions 297

Value result = null;
Context.begin(variable, iterator.next());
if (formula.eval())

result = term.eval();
Context.end();
if (result != null) return result;

}
throw new EvalException("no such value");

}
}

The Java expression (new SuchThat(x, d, F, T)).eval() computes the
value of let x = (such x ∈ d : F) : T . As one can see, we iterate over d and
establish new contexts in which x is assigned each value of the domain in
turn. In each context, we evaluate F . If the formula is true, we evaluate T
and return its value.

Unique Implicit Function Definitions The “such quanifier” does not
necessarily determine a unique value, consequently an implicit function def-
inition not always determines a function uniquely.

Example We define

Let f(x) be a y such that y|x.

or, in other words,

f(x) := such y : y|x

where | denotes the predicate “divides”. Then all we know is that f(12)|12
(because ∃y : y|12), and consequently f(12) ∈ {1, 2, 3, 4, 6, 12}.

Frequently, however an implicit definition is given in the form

let f(x0, . . . , xn−1) be the y such that F

which implies that there exists at most one y that satisfies F for given
x0, . . . , xn−1.

This is equivalent to stating, in addition to

f(x0, . . . , xn−1) := such y : F,

298 Appendix A. Defining New Notions

also the condition (which has to be proved)

(∀x0, . . . , xn−1, y : F ⇒ y = f(x0, . . . , xn−1)).

Example It is wrong to write

Let f(x) be the y such that y|x.

because from 6|12 we must not conclude f(12) = 6.

However, we may define

Let x/y be the q such that q ∗ y = x.

Since 3 ∗ 4 = 12, we may conclude 12/4 = 3.

A.5 Recursive Definitions

The definitions discussed in the previous sections are constrained by the
fact that the new notion has to be defined in terms of other notions only.
However, there are also situations in which it is necessary to reduce the value
of a predicate or functions to other values of the same predicate or function.
Such a recursive definition makes sense if this reduction does not continue
forever, i.e., if eventually a situation is reached where the value can be defined
directly in terms of other (previously introduced) notions.

In order to bound the number of recursive unfoldings, we introduce the fol-
lowing concept.

Definition 143 (Well-Founded Ordering) A binary relation ≺ is well-
founded if there is no infinitely decreasing chain with respect to ≺ :

≺ is well-founded :⇔ ¬∃S, s : N→ S : ∀i ∈ N : si+1 ≺ si.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

A.5 Recursive Definitions 299

We now drop the constraint that the definiens must not refer to the definien-
dum.

Definition 144 (Recursive Function Definition) Let f be a function
constant of arity n that is not yet in use, x0, . . . , xn−1 be n distinct variables,
and T be a term with no other free variables than x0, . . . , xn−1. Then

f(x0, . . . , xn−1) := T

is a recursive function definition (rekursive Funktionsdefinition), if there ex-
ists a well-founded ordering≺ with the following property: for all x0, . . . , xn−1

and every occurrence of f(T0, . . . , Tn−1) in T that is needed to determine the
value of f(x0, . . . , xn−1), we have

〈T0, . . . , Tn−1〉 ≺ 〈x0, . . . , xn−1〉.

This definition introduces an n-ary function constant f with the axiom

∀x0, . . . , xn−1 : f(x0, . . . , xn−1) = T .

The predicate “is needed” in above definition is a bit vague; for our purposes
it suffices to state that every subterm of a term T is needed to determine the
value of T , unless T is of the form

if F then T0 else T1.

In this case, only the value of T0 is needed if F is true, and only the value of
T1 is needed, otherwise. A “definition” like

f(x) := 1 + f(x)

can therefore not make sense because every subterm of the definiens is needed
to compute the function result.

The existence of a well-founded ordering ensures that for every argument only
a finite number of recursive “unfoldings” of a function definition is required
to determine the function value. Frequently, such an ordering is constructed
by defining a corresponding termination function (Terminationsfunktion) r
such that, for every x0, . . . , xn−1,

r(x0, . . . , xn−1) ∈ N.

300 Appendix A. Defining New Notions

Then the well-founded ordering is defined as

x ≺ y :⇔ r(x) < r(y)

where < is the usual ordering of the natural numbers.

Example We define

any(S) := such x : x ∈ S
rest(S) := {x ∈ S : x 6= any(S)}
#S := the number of elements in a finite set S.

• The recursive definition

sum : FiniteSet→ N

sum(S) :=
if S = ∅

then 0
else any(S) + sum(rest(S))

computes the sum of the elements of a finite set of numbers S; a cor-
responding termination function is

r(S) := #S.

For finite S, sum(S) ∈ N. If S = ∅, no other application of ‘sum’ is
needed to determine sum(S). Otherwise, we need sum(rest(S)) with
r(rest(S)) = r(S)− 1 < r(S).

• The recursive definition

∗ : N× N→ N

x ∗ y :=
if y = 0

then 0
else x+ x ∗ (y − 1)

introduces multiplication over the natural numbers; a corresponding
termination function is

r(x, y) := y.

For x ∈ N and y ∈ N, r(x, y) ∈ N. If y = 0, no other application
of ∗ is needed to determine x ∗ y. If y 6= 0, we need x ∗ (y − 1) with
r(x, y − 1) = y − 1 < y = r(x, y).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

A.5 Recursive Definitions 301

• The function defined as

dsum : FiniteSet × FiniteSet → N

dsum(A,B) :=
if A = ∅ then

any(B) + dsum(A, rest(B))
else if B = ∅ then

any(A) + dsum(rest(A), B)
else

any(A) + any(B) + dsum(rest(A), rest(B))

computes the sum of the elements of two finite sets A and B. A corre-
sponding termination function is

r(A,B) := #A+ #B.

Logic Evaluator We may define a function recursively by a statement

fun f(x0, ..., xn−1) recursive R = T;

where R is a term that denotes the value of a termination function.

302 Appendix A. Defining New Notions

The evaluator checks that in every recursive invocation function this term is
appropriately decreased (unless the potentially dangerous statement option
check = false is executed).

Also a predicate can be defined in a recursive way.

Definition 145 (Recursive Predicate Definition) Let p be a predicate
constant of arity n that is not yet in use, x0, . . . , xn−1 be n distinct variables,
and F be a formula and with no other free variables than x0, . . . , xn−1. Then

p(x0, . . . , xn−1) :⇔ F

is a recursive predicate definition (rekursive Prädikatsdefinition) provided
that there exists a well-founded ordering ≺ with the following property: for
all x0, . . . , xn−1, and every occurrence of p(T0, . . . , Tn−1) in F that is needed
to determine the truth value of p(x0, . . . , xn−1) we have

〈T0, . . . , Tn−1〉 ≺ 〈x0, . . . , xn−1〉.

This definition introduces an n-ary predicate constant p with the axiom

∀x0, . . . , xn−1 : p(x0, . . . , xn−1)⇔ F .

As for functions, the predicate “is needed” needs some refinement. We in-
troduce a new kind of formula.

Definition 146 (Conditional Formula) For every formula F and terms
F0 and F1, the phrase

(if F then F0 else F1)

is a formula whose truth value is the value of F0, if F holds, and the value
of F1, otherwise. We omit the parentheses, if F1 is clear.

By above definition, we have the relationship

(if F then F0 else F1)⇔ ((F ⇒ F0) ∧ (¬F ⇒ F1)).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

A.5 Recursive Definitions 303

We now state that every subformula of a formula F is needed to determine
the value of F , unless F is of the form

if F then F0 else F1.

In this case, only the value of F0 is needed if F is true, and only the value of
F1 is needed, otherwise.

Example

• The definition

iseven ⊆ N
iseven(x) :⇔

if x = 0
then T
else ¬iseven(x− 1)

introduces a unary predicate on natural numbers; a corresponding ter-
mination function is

r(x) := x.

• The definition

≤ ⊆ N× N
x ≤ y :⇔

if x = 0 then T
else if y = 0 then F
else x− 1 ≤ y − 1

introduces the usual ordering on natural numbers; a corresponding ter-
mination function is

r(x, y) := x.

Logic Evaluator Similar to recursive function definitions, predicates may
be recursively defined by a statement

304 Appendix A. Defining New Notions

pred p(x0, ..., xn−1) recursive R <=> F;

where R is a term that denotes the value of a termination function. For
writing recursive predicates, we also need the conditional formula

if(F, F0, F1)

whose value is (if F then F0 else F1).

Reduction of Sets Frequently functions over sets are recursively defined
as follows:

g(S) :=
if S = ∅ then b
else let e = such x : x ∈ S :
f(e, g(S − {e})).

We call this a reduction (Reduktion) of S by f with base b. If f is commu-
tative and associative, the result of a reduction is uniquely defined.

Example Let S := {1, 2, 3}. Then the reduction of S by + with base 0 is

6 = (1 + (2 + 3)) + 0 = (2 + (1 + 3)) + 0 = (2 + 1) + (3 + 0).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

A.5 Recursive Definitions 305

The reduction of S by ∗ with base 1 is

6 = (1 ∗ (2 ∗ 3)) ∗ 1 = (2 ∗ (1 ∗ 3)) ∗ 1 = ((1 ∗ 1) ∗ 2) ∗ 3.

The Logic Evaluator provides the function

reduce(f, S, b)

which returns the reduction of S by f with base b which is more efficiently
evaluated than a corresponding recursive function defined by the user (com-
pare sum and sum’ in the example below).

With the help of this operator also set union and powerset can be imple-
mented as follows:

306 Appendix A. Defining New Notions

A.6 Evaluating Definitions

With the help of the notions theory (page 281) and definition (page 282), we
can state very precisely what “evaluating a term” or “computing the value
of a term” or just “computing” means.

Definition 147 (Computing) We are given a theory with constants C and
a set of definitions that extend the theory by additional constants C’. Let
T ’ be a term constructed from the constants in C ∪ C ′.

The problem of computing (berechnen) the value of T ’ is to find a term T
that is constructed from the constants in C such that from the axioms of the
extended theory

T = T ′

can be derived.

“Computing” the value of a term is therefore a reduction of the notions of the
extended theory to the notions of the core theory. If the definitions are given
in particular “constructive” forms, the evaluation may proceed automatically
by the application of certain substitution rules.

Example

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

A.6 Evaluating Definitions 307

• Take the theory of natural numbers with function constants 0 and ′.
We define a new function constant

x+ y := if y = 0 then x else (x+ y−)′

The value of the term ((0′′′ + (0′ + 0′)) + 0′′) is 0′′′′′′′.

• Take the theory of lists with function constants “nil” and “cons”. We
define new function constants

first(x) := such a : ∃b : x = cons(a, b);
rest(x) := such b : ∃a : x = cons(a, b);
append(x, y) := if x = nil then y

else cons(first(x), append(rest(x), y)).

The value of “append(rest(cons(1, cons(2, nil))), cons(3, cons(4, nil)))”
is “cons(2, cons(3, cons(4, nil)))”.

Appendix B

Proving Propositions

A proposition is a formula that is claimed to be true. However, a claim
is only as good as the substantiating argument is. Since different people
may disagree on the quality of an argument, we need some objective criteria
whether an argument is correct or not. Surprisingly, there exist a number of
structural rules such that any proposition is true that has a correspondingly
formed argument. We call such an argument a proof (Beweis).

It is always possible to decide whether a given argument represents a proof
or not; once a proof is given, there is therefore no more dispute about the
validity of a proposition. Proving is thus at the heart of any critical discourse
and the knowledge about the correct application of proof rules is a must for
a scientist or engineer: if we derive new knowledge, we must be able to proof
it; if we are given some knowledge, we must able to check it (i.e., its proof).

To invent a proof is a creative activity. The proof rules give some guiding
principles that help in the first steps; however, from a certain point on,
some insight is required to discover the “killer argument” that “slays” the
proposition. To check a proof is simply craft; everybody who understands
“proof terminology” is able to read a proof and judge its correctness.

This chapter is dedicated to the demonstration of formal proof rules and
the various forms of their appearance. The application of these rules is
demonstrated by the various proofs given throughout this document.

B.1 Proof Levels

A proof can be given on different levels of detail; on the lowest level, the
individual reasoning steps are so small that their correct application can be

308

B.2 Preliminaries 309

even automatically verified by a computer. However, such proofs become
very large and are rarely written by humans.

On a higher level, the reasoning steps are larger and less self-evident; still
the structure of a (less detailed) high-level proof matches the structure of the
(more detailed) low-level proof as it is determined by the proof rules. If some
opponent questions our high-level proof, we can correspondingly refine it by
decomposing a large reasoning step into some smaller steps. This process can
be repeated until we reach the lowest level (which is automatically checkable)
or our opponent is satisfied. Even if we are not writing all details in a high-
level proof, the skeleton provided by the proof rules help us to maintain its
power of persuasion and justify our confidence in its correctness. This is the
kind of proofs that humans typically write in scientific works.

To choose the right size of reasoning steps is a tradeoff between demonstrating
the “key ideas” of a proof (by skipping details that the reader is supposed
to be able to fill in herself) and giving convincing arguments (by providing
sufficient details that enable the reader to understand the line of reasoning).
However, while we may easily bore our audience with too many details, we
may even more easily lose its understanding by giving too few. Also for the
sake of correctness, it is better to elaborate more details than we may be
originally inclined: many textbook proofs are wrong1, because the author
tried to save some work: she used reasoning steps that were so large that she
could ultimately not grasp them herself, or she took wrong shortcuts in the
application of proof rules.

If a proof is not understood, the proof uses too large reasoning steps, has bad
style, or is simply wrong (the boundaries are fluid). This is in general not the
fault of the audience; the presenter has the duty to adapt her presentation
to the available knowledge, to make a clear argument and to refine it down
to a satisfying level of detail. Science is not theology: no one is obliged to
believe our claim unless we give a compelling argument.

B.2 Preliminaries

The proof of a proposition is always relative to given knowledge. Initially,
this is knowledge that characterizes the considered domain (axioms), that is
derived from a “harmless” extension (definitions), that is true in any domain
(tautologies) or that has been derived by another proof (propositions). In
the course of a proof, new knowledge is gradually added (assumptions).

1The corresponding propositions may be nevertheless true.

310 Appendix B. Proving Propositions

A proof situation consists of the available knowledge K (a set of formulas)
and the goal G to be proved (a formula). We represent such a situation
graphically as

K
G

and read this as “we (have to) prove G with knowledge K”. In a natural
language proof, the knowledge that is available in a particular proof situation
has to be deduced from the context: it consists of the knowledge at the begin-
ning of the proof extended by all the temporary definitions and assumptions
that were made in the branch of the proof that led to the current situation.

A proof rule reduces a proof situation to one or more other situations. We
denote this reduction by ; and read

K0

G0
;

K1

G1

as “in order to prove G0 with knowledge K0 it suffices to prove G1 with
knowledge K1”.

A proof is the reduction of the start situation to other situations that are
again reduced to other situations until we have only situations in which
nothing is left to be proved:

K
G

;

K ′

G′
;

K ′0
G′0

;

K ′1
G′1

;

K ′′

G′′
;

K ′′0
G′′0

;

K ′′1
G′′1

;

K0

K1

K2

K3

. . .

Kn

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

B.3 General Strategies 311

The only way to reach a leaf in this proof tree (i.e., to complete a particular
proof branch) is by the following rule.

Proposition 139 (Proof Completion) For proving with knowledge K ∪
{G} the goal G, nothing has to be done any more.

K ∪ {G}
G

;
K ∪ {G}

In other words, if the goal is in our “knowledge base”, we are done.

B.3 General Strategies

Direct Proof Given some knowledge K, the usual situation is that we want
to find out whether a formula G is true or not, i.e., we don’t know the truth
of G in advance. Therefore we have two possibilities of a direct proof :

1. We try
K
G

. If we are successful, then G holds.

2. We try
K
¬G . If we are successful, then ¬G holds.

If the first proof does not work out, it may give sufficient insight in order to
establish the second proof. If we can show ¬G, we may have gained additional
insight that enables us to transform G into some G′ whose validity we can
actually prove.

Indirect Proof If we are not successful with direct attempts, we may try
an indirect proof where the goal is to derive a contradiction.

Proposition 140 (Proof by Contradiction) For proving with knowledge
K the goal G, it suffices to prove F(alse) with additional knowledge ¬G.

K
G

;
K ∪ {¬G}

F(alse)

In natural language, a proof of G by contradiction is usually indicated as

312 Appendix B. Proving Propositions

We assume ¬G and show a contradiction.

A contradiction is usually derived by establishing a proof situation

K ∪ {G,¬G}
F(alse)

because we then immediately have

K ∪ {G,¬G}
F(alse)

;
K ∪ {F(alse)}

F(alse)
;

K ∪ {F(alse)}
.

Examples of such proofs are given in the proof of the Peano laws from the
set-theoretic construction of the natural numbers (page 100) or the proof
that the square root of 2 is not a rational number (page 118).

Again, since we don’t know the truth of G for sure, we generally we have two
possibilities:

1. We try
K ∪ {¬G}

F(alse)
. If we are successful, then G holds.

2. We try
K ∪ {G}
F(alse)

. If we are successful, then ¬G holds.

If all attempts have failed, we have hopefully gained more insight to start a
new round of attempts with refined ideas.

Proof Directions When pursuing a proof, we may proceed in two ways:

1. Top-Down by decomposing the goal into simpler formulas with cor-
responding subproofs.

K
G

;
K0

G0
. . .

Kn−1

Gn−1

2. Bottom-Up by deriving new knowledge from the given knowledge such
that the goal ultimately becomes part of the knowledge.

K
G

;
K ∪ {F}

G

In the course of a proof we mix top-down steps with bottom-up steps; usually
we begin with the top-down strategy.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

B.4 Decomposing the Goal 313

B.4 Decomposing the Goal

In a proof situation
K
G

where the goal G is not an atomic formula, the

usual strategy is to decompose the proof into subproofs in a way that is
determined by the outermost quantifier respectively connective of G.

Proposition 141 (Decomposition of Universal Quantifications) For
proving with knowledge K the goal ∀x : G, it suffices to prove G[x ← a]
where a is an object constant that does not appear in K and not in G.

K
∀x : G

;
K

G[x← a]
(a not in K ∪ {G})

In the proof of a universal formula we thus replace the variable by a constant
about which no assumptions have been made yet. This may be indicated in
a natural language proof in a very verbose form as

We have to prove (∀x : G). We take an arbitrary (but fixed)
constant a and show G[x← a].

Usually, we choose instead of a some name that indicates the name of the
corresponding variable, e.g., x. Even more frequently, we simply chose x as
the name of the constant provided that x does not appear freely in K or G.
We then simply write

We have to prove (∀x : G). We take arbitrary x and show G.

or even shorter

We have to prove (∀x : G). Take arbitrary x. Then . . . (proof
of G).

However, we have to understand that x now represents an arbitrary (but
fixed) constant. Allmost all proofs in this document use this style, see for
instance the proof of Proposition 32 on page 90 or the proof of Proposition 44
on page 112.

314 Appendix B. Proving Propositions

Frequently also the indirect method is applied in such a situation. Instead
of proving (∀x : G) we assume (¬∀x : G), i.e., (∃x : ¬G) and proceed to
derive a contradiction with the help of a constant a such that G holds (see
Proposition 151 on page 321):

K
∀x : G

;
K ∪ {∃x : ¬G}

F(alse)
;

K ∪ {¬G[x← a]}
F(alse)

This is typically indicated as

We have to prove (∀x : G). Assume ¬G for some x. Then . . .
(derivation of a contradiction with additional knowledge ¬G).

In this formulation, x now represents a constant for the rest of the proof.

Proposition 142 (Decomposition of Existential Quantifications) For
proving with knowledge K the goal ∃x : G, it suffices to prove G[x← T] for
some term T .

K
∃x : G

;
K

G[x← T]

An existential proof requires creativity. We have to find a witness (Zeugen),
i.e., a value for x that makes G true. This value can be only constructed from
those function and object constants about which we have some knowledge in
K such that we can proceed to prove G.

In natural language, such a proof is usually indicated as

We have to prove (∃x : G). We prove G[x← T].

or, if x occurs multiple times in G, shorter as

We have to prove (∃x : G). Take a := T . We prove G[x← a].

where a is an object constant that does not appear in K and for which we
assume the additional knowledge a = T . Even shorter, we may write

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

B.4 Decomposing the Goal 315

We have to prove (∃x : G). Take x := T . We then have . . . (proof
of G with additional knowledge x = T).

This is possible if x does not occur freely in K.

For examples, see the proof of Proposition 49 on page 118 or the proof of the
existence of a factorization into prime numbers on page 134.

The indirect method may be applied by assuming (¬∃x : G), i.e., (∀x : ¬G)
and deriving a contradiction, see Proposition 150 on page 320:

K
∃x : G

;
K ∪ {∀x : ¬G}

F(alse)
.

This is usually indicated as follows:

We have to prove (∃x : G). Assume (∀x : ¬G). Then . . . (deriva-
tion of a contradiction with additional knowledge (∀x : ¬G)).

Proposition 143 (Decomposition of Equivalences) For proving with
knowledge K the goal G0 ⇔ G1, it suffices to prove both G0 ⇒ G1 and
G1 ⇒ G0:

K
G0 ⇔ G1

;
K

G0 ⇒ G1

K
G1 ⇒ G0

An equivalence is shown by proving the implication “from left to right” and
“from right to left”, sometimes denoted as

We have to prove G0 ⇔ G1:

• ⇒: . . . (proof of G0 ⇒ G1).

• ⇐: . . . (proof of G1 ⇒ G0).

316 Appendix B. Proving Propositions

If we have to show G0 ⇔ G1 ⇔ G2, i.e., (G0 ⇔ G1) ∧ (G1 ⇔ G0), it suffices
to “traverse the circle”, i.e., to show (G0 ⇒ G1) ∧ (G1 ⇒ G2) ∧ (G2 ⇒ G0)
(and analogously for an arbitrary number of equivalences).

Examples are shown in the proofs of Proposition 22 on page 64 and of Propo-
sition 30 on page 84.

Proposition 144 (Decomposition of Implications) For proving with
knowledge K the goal G0 ⇒ G1, it suffices to prove G1 with additional
knowledge G0:

K
G0 ⇒ G1

;
K ∪ {G0}

G1

Almost every proof contains applications of above rule indicated as

We have to show G0 ⇒ G1. Assume G0. Then . . . (proof of G1

with additional knowledge G0).

Because of (G0 ⇒ G1) iff (¬G1 ⇒ ¬G0), an alternative is to apply the rule

K
G0 ⇒ G1

;
K ∪ {¬G1}
¬G0

indicated as

We have to show G0 ⇒ G1. Assume ¬G1. Then . . . (proof of ¬G0

with additional knowledge ¬G1).

Because of ¬(G0 ⇒ G1) iff (G0 ∧ ¬G1), the indirect method yields

K
G0 ⇒ G1

;
K ∪ {G0 ∧ ¬G1}

F(alse)

which is typically indicated as

We have to show G0 ⇒ G1. Assume G0∧¬G1. Then we have . . .
(derivation of a contradiction).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

B.4 Decomposing the Goal 317

Examples are given in the proofs of Proposition 22 on page 64 and of the
Second Peano Law on page 100.

Proposition 145 (Decomposition of Conjunctions) For proving with
knowledge K the goal G0 ∧G1, it suffices to prove both G0 and G1:

K
G0 ∧G1

;
K
G0

K
G1

A conjunction is shown by showing both conjuncts in turn:

We have to show G0 ∧G1.

1. . . . (proof of G0).

2. . . . (proof of G1).

Because of ¬(G0 ∧G1) iff ¬G0 ∨ ¬G1, the indirect method leads to

K
G0 ∧G1

;
K ∪ {¬G0 ∨ ¬G1}

F(alse)
;

K ∪ ¬G0

F(alse)
K ∪ ¬G1

F(alse)

applying the technique of “case distinction” explained on page 319:

We have to prove G0 ∧G1.

1. Assume ¬G0. Then . . . (derivation of contradiction with ad-
ditional assumption ¬G0).

2. Assume ¬G1. Then . . . (derivation of contradiction with ad-
ditional assumption ¬G1).

Examples of proofs of conjunctions are given for Proposition 32 on page 90
for the existence of a factorization into prime numbers on page 134.

Proposition 146 (Decomposition of Disjunctions) For proving with
knowledge K the goal G0∨G1, it suffices to prove G1 with additional knowl-
edge ¬G0.

K
G0 ∨G1

;
K ∪ ¬G0

G1

318 Appendix B. Proving Propositions

This rule is a consequence of “(G0 ∨ G1) iff (¬G0 ⇒ G1)” such that the
same techniques can be applied as for the decomposition of implications (see
Proposition 144):

We have to show G0 ∨G1. Assume ¬G0. Then . . . (proof of G1).

Of course, the roles of G0 and G1 can be inverted.

Frequently, in a particular proof situation, the additional assumption is not
required and one simply says

We have to show G0 ∨G1. We have . . . (proof of G0 or of G1).

Proposition 147 (Explicitly Defined Predicates) For proving an atomic
formula p(a0, . . . , an−1) where p is predicate explicitly defined as

p(x0, . . . , xn−1) :⇔ G,

and a0, . . . , an−1 are terms, it suffices to prove G[x0 ← a0, . . . , xn−1 ← an−1]:

K ∪ {∀x0, . . . , xn−1 : p(x0, . . . , xn−1)⇔ G}
p(a0, . . . , an−1)

;

K ∪ {∀x0, . . . , xn−1 : p(x0, . . . , xn−1)⇔ G}
G[x0 ← a0, . . . , xn−1 ← an−1]

We may thus just insert the definition of a predicate into a goal formula:

We have to prove p(a0, . . . , an−1). By definition of p, it suffices to
prove G[x0 ← a0, . . . , xn−1 ← an−1].

The proofs of Proposition 22 on page 64 and of Proposition 32 on page 90
show applications of above rule.

Proposition 148 (Explicitly Defined Functions) For proving the goal
F [x← G(a0, . . . , an−1)] where f is a function explicitly defined as

G(x0, . . . , xn−1) := T,

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

B.5 Deriving New Knowledge 319

it suffices to prove G[x ← T [x0 ← a0, . . . , xn−1 ← an−1]] (for some terms
T, a0, . . . , an−1):

K ∪ {∀x0, . . . , xn−1 : G(x0, . . . , xn−1) = T}
G[x← G(a0, . . . , an−1)]

;

K ∪ {∀x0, . . . , xn−1 : G(x0, . . . , xn−1) = T}
G[x← T [x0 ← a0, . . . , xn−1 ← an−1]]

Above rule simply tells us that, if a goal contains an elementary term with
an explicitly defined function, we are allowed to “insert the definition” of the
function:

We have to prove F [x← G(a0, . . . , an−1)]. By definition of G, it
suffices to prove G[x← T [x0 ← a0, . . . , xn−1 ← an−1]].

Examples are given by the proofs of Proposition 32 on page 90 and of Propo-
sition 47 on page 117.

B.5 Deriving New Knowledge

At some point (at least if the goal is an atomic formula with a predicate of the
underlying theory), we have to start to operate with the available knowledge
in order to derive a situation in which the goal is part of the knowledge.

Proposition 149 (Proof by Case Distinction) For proving with knowl-
edge K the goal G, it suffices to prove G with additional knowledge F and
to prove G with additional knowledge ¬F (for some formula F).

K
G

;
K ∪ {F}

G
K ∪ {¬F}

G

A proof by case distinction decomposes the “universe of situations” into those
where a particular assumption F holds and those where it does not hold:

We have to prove G.

320 Appendix B. Proving Propositions

1. Assume F . Then . . . (proof of G with additional knowledge
F).

2. Assume ¬F . Then . . . (proof of G with additional knowledge
¬F).

Frequently a case distinction is introduced in situations where we have a
formula (F0 ∨ . . . ∨ . . . Fn−1) in our knowledge:

K ∪ {F0 ∨ . . . ∨ Fn−1}
G

;
K ∪ {F0}

G
. . .

K ∪ {Fn−1}
G

which is indicated as

We have to prove G. Since we know (F0 ∨ . . . ∨ Fn−1), it suffices
to consider the following cases:

• Case F0: . . . (proof of G with additional knowledge F0).

• . . .

• Case Fn−1: . . . (proof of G with additional knowledge Fn−1).

An example of a proof with case distinction is the verification of Euclid’s
Algorithm on page 154.

Proposition 150 (Universal Quantification in Knowledge) For prov-
ing with knowledge K ∪ {∀x : F} the goal G, it suffices to prove G with
additional knowledge F [x← T] for any term T :

K ∪ {∀x : F}
G

;
K ∪ {∀x : F, F [x← T]}

G

A universal formula (∀x : F) in the knowledge base is a “machine” that takes
any T and prodcues additional knowledge F [x ← T]. Whenever we are in
need of an arbitrary instance of F in our knowledge base, we can start this
machine:

We have to prove G. Since we know (∀x : F), we have F [x← T]
and thus . . . (proof of G with additional knowledge F [x← T]).

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

B.5 Deriving New Knowledge 321

Applications of this rule are shown in the proof of Proposition 22 on page 64.

Proposition 151 (Existential Quantification in Knowledge) For prov-
ing with knowledge K ∪ {∃x : F} the goal G, it suffices to prove G with
additional knowledge F [x ← a] for some object constant a that does not
appear in K, G, or F :

K ∪ {∃x : F}
G

;
K ∪ {∃x : F, F [x← a]}

G
(a not in K ∪ {G,F})

An existential formula (∃x : F) in the knowledge base is an “engine” which
returns a constant a about the only thing we know is F [x ← a]. Whenever
we are in need of such a constant, we can invoke the machine:

We have to prove G. Since we know (∃x : F), we have have some
a with F [x← a]. Thus . . . (proof of G with additional knowledge
F [x← a] for some new constant a).

The application of this rule is demonstrated in the proof of Proposition 32 on
page 90 and the proof that the square root of 2 is not rational on page 4.4.

Proposition 152 (Additional Knowledge) For proving with knowledge
K the goal G, it suffices to prove G with additional knowledge F , if F holds
in every domain in which (some of) the formulas in K holds.

K
G

;
K ∪ F
G

(F holds in every domain in which K holds).

This last rule is a “placeholder” for a number of ways to infer

K
F

(respectively
S
F

for some S ⊆ K):

322 Appendix B. Proving Propositions

1. This has been shown in a previous proof or is shown as a subproof.

2. This holds because F is a propositional consequence of K, i.e., the con-
clusion holds independently of the truth values of the atomic formulas
and quantified formulas contained in K and F .

3. This is an instance of some quantifier consequence wich give true con-
clusions in every domain.

4. This is derived by applying substitution rules from known equalities
and equivalences.

In the first way, we can decompose a proof in a modular way into a number
of smaller proofs or reuse the knowledge represented by previously proved
propositions. The other ways are explained in the following subsections.

B.5.1 Propositional Consequences

The conclusion

¬¬∀x : ∃y : p(x, y)
∀x : ∃y : p(x, y)

holds independently of the interpretation of p and consequently indepen-
dently of the truth value of (∀x : ∃y : p(x, y)). This is because this conclusion
is an instance of the pattern

¬¬G
G

which is true independently of the truth value of G. We call such a conclusion
a propositional consequence (aussagenlogische Folge).

Proposition 153 (Propositional Consequences) The following conclu-
sions are propositional consequences for every formula A and B:

Negation

¬¬A
A

A
¬¬A

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

B.5 Deriving New Knowledge 323

And Introduction and Or Elimination

A ∧B
A

A
A ∨B

De Morgan

¬(A ∧B)
¬A ∨ ¬B

¬(A ∨B)
¬A ∧ ¬B

¬A ∨ ¬B
¬(A ∧B)

¬A ∧ ¬B
¬(A ∨B)

Modus Ponens

A,A⇒ B
B

Contraposition

A⇒ B
¬B ⇒ ¬A

¬A⇒ ¬B
B ⇒ A

A⇔ B
¬A⇔ ¬B

¬A⇔ ¬B
A⇔ B

There are (infinitely) many other propositional consequences. A general

strategy to show that
A
B

is a propositional consequence is to show that

A⇒ B is a propositional tautology.

Proposition 154 (Tautology) A propositional formula with variables is
a propositional tautology (aussagenlogische Tautologie) if it is true for every
assignment of truth values to the variables.

We can show that a propositional formula with variables is a tautology by
constructing a truth table (see page 15) or by applying the indirect method.

Example We show that

((A ∨B) ∧ (A⇒ C) ∧ (B ⇒ C))⇒ C.

is a tautology by assuming that its truth value is false and then deriving a
contradiction:

false

true

(
true

(A ∨B) ∧

true

(
false

A ⇒
false

C) ∧

true

(
false

B ⇒
false

C))⇒
false

C

324 Appendix B. Proving Propositions

Because the implication is false, C is false and the conjuncts are true. Thus
A and B must be false (since C is false, the implications cannot be true
otherwise). Therefore A ∨B is false, which contradicts above derivation.

B.5.2 Quantifier Consequences

There are various patterns of conclusions that occur in proofs so frequently
that they are considered as “basic knowledge”.

Proposition 155 (Quantifier Consequences) For every formula A and
B, the following conclusions hold:

Universal Quantification and Conjunction

(∀x : A ∧B)
(∀x : A) ∧ (∀x : B)

(∀x : A) ∧ (∀x : B)
(∀x : A ∧B)

Existential Quantification and Disjunction

(∃x : A ∨B)
(∃x : A) ∨ (∃x : B)

(∃x : A) ∨ (∃x : B)
(∃x : A ∨B)

Universal and Disjunction, Existential and Conjunction

(∀x : A) ∨ (∀x : B)
(∀x : A ∨B)

(∃x : A) ∧ (∃x : B)
(∃x : A ∧B)

Universal and Existential Quantification

∃x : ∀y : A
∀y : ∃x : A

De Morgan Laws

¬∀x : A
∃x : ¬A

∃x : ¬A
¬∀x : A

¬∃x : A
∀x : ¬A

∀x : ¬A
¬∃x : A

Such Quantifier

∃x : A
A[x← such x : A]

(∀y0, y1 : (A[x← y0] ∧ A[x← y1])⇒ y0 = y1)
(∀x : A⇒ x = such x : A)

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

B.5 Deriving New Knowledge 325

The last two facts about the such quantifier tell us that

1. there must exist some x such that A holds before we are allowed to
conclude that (such x : A) satisfies A;

2. to prove that some y with A[x← y] equals (such x : A), we also have
to show that only one such y exists.

These conclusions can be proved by the proving techniques explained before;
an example is given below.

Proof We show for arbitrary formula A

(¬∀x : A)⇒ (∃x : ¬A)

by showing (contraposition)

(¬∃x : ¬A)⇒ (¬¬∀x : A)

i.e. (propositional consequence and substitution, see next subsection)

(¬∃x : ¬A)⇒ (∀x : A).

We assume

(∗) ¬∃x : ¬A

and show ∀x : A. Take arbitrary and assume ¬A. Then we have (∃x : ¬A)
which contradicts (*).

B.5.3 Substitutions

The equality axioms introduced on page 38 and the properties of logical
equivalence allow us to draw the following conclusions.

Proposition 157 (Substitutions) For all terms S and T , formulas A and
B, variables x and formula patterns C with variable F , the following holds:

326 Appendix B. Proving Propositions

Equality Subsitutions

S = T ∧ A[x← S]
A[x← T]

Equivalence Substitutions

A⇔ B ∧ C[F ← A]
C[F ← B]

The substitution laws allow us to replace in a goal “terms by equal terms”
and “formulas by equivalent formulas”. These laws are applied when we say

We have to prove F [x ←T]. Because T=U , it suffices to prove
F [x ←U].

and thus reduce a problem to an equivalent subproblem.

B.6 Example

We conclude this chapter by demonstrating in detail the proof of a proposi-
tion that is used in the verification of Euclid’s algorithm on page 154. First
we repeat the definitions

x|y :⇔ ∃z ∈ N : x ∗ z = y;
gcd(x, y) := such z ∈ N : z|x ∧ z|y ∧ (∀g : (g|x ∧ g|y)⇒ g ≤ z).

Our goal is to prove

∀m ∈ N, n ≤ m : gcd(m,n) = gcd(m− n, n),

i.e., the greatest common divisor of m and n is also the greatest common
divisor of m− n and n.

An argument as it can be found in a typical text book is the following.

Proof Let g be the gcd of m−n and n. Since g divides m−n and g divides
n, g also divides (m− n) + n = m.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

B.6 Example 327

Take h such that h divides m and h divides n. Then h also divides m − n.
Since g is the gcd of m and m− n, h is less than or equal g.

This “proof skeleton” captures on a very high-level the key idea that repre-
sents the basis of a “real” proof. However, this idea is only understandable
with the knowledge of the rules introduced in the previous sections. Then it
becomes also clear that the skeleton actually reflects the structure of a more
detailed proof such as the one given below (with additional explanations that
are not part of the proof added in italics).

Proof Take arbitrary m ∈ N and n ≤ m.

We have to prove a universally quantified implication. We introduce arbitrary
constants m and n and add the implication hypothesis (m ∈ N ∧ n ≤ m) to
our knowledge. We now have to show the goal gcd(m,n) = gcd(m− n).

If m = 0 ∧ n = 0, we are done.

We proceed by case distinction. In the first case m = 0 ∧ n = 0, we know
gcd(m,n) = gcd(0, 0) = gcd(0− 0, 0) = gcd(m−n). By transitivity of =, we
have the goal.

Otherwise, m 6= 0 ∨ n 6= 0. We can show that in this case there exists a
unique z ∈ N with

z|m ∧ z|n ∧ (∀g : (g|m ∧ g|n)⇒ g ≤ z).

The rest of the proof deals with the second case m 6= 0 ∨ n 6= 0. We claim
that in this case above formula holds (which requires a separate proof) and
use this as knowledge from now on.

For every z′ ∈ N, in order to prove

z′ = gcd(m,n),

it therefore suffices to prove

z′|m ∧ z′|n ∧ (∀g : (g|m ∧ g|n)⇒ g ≤ z′).

We justify a reasoning step that will be used below: we have to prove that a
particular object equals gcd(m,n). By the rule of substitution, we may insert
the definition of gcd and thus have to prove that the object equals the value of

328 Appendix B. Proving Propositions

a “such term”. We thus remind the reader of the proof rule for this kind of
terms on page 325 and instantiate the rule with the concrete formula. The
application of this rule requires that only one object satisfies the formula in
the “such term”, which is exactly what we have added as knowledge above.

Let g := gcd(m− n, n). By n ≤ m, we know

(1) g|(m− n) ∧ g|n ∧ (∀h : (h|(m− n) ∧ h|n)⇒ h ≤ g).

We define an abbreviation g for gcd(m − n, n). Since n ≤ m, we have
m − n ∈ N. Since m 6= 0 ∨ n 6= 0, also m − n 6= 0 ∨ n 6= 0 (which has
to be shown in a small subproof). By the knowledge added above, we thus
have an object that satisfies the formula in the definition of gcd(m − n, n).
Therefore we may apply the corresponding rule for “such terms” and assume
that g satisfies this formula as well.

We have to show g = gcd(m,n), i.e., by the explanation above

(2) g|m ∧ g|n ∧ (∀h : (h|m ∧ h|n)⇒ h ≤ g).

We apply the reasoning step explained above. Now we have to prove the
conjunction by showing each conjunct in turn.

1. We show (3) g|m. Because of (1), we have some a and b with ga = m−n
and gb = n. Then we know

g(a+ b) = ga+ gb = (m− n) + n = m;

which implies (3).

We insert the definition of | into knowledge (1), which gives us an
existential formula (∃a : ga = m) and (∃b : gb = n). The application
of these existential formulas gives us new constants a and b with the
corresponding properties. Then we apply equational reasoning which
gives us our goal by the transitivity of =.

2. We know (4) g|n from (1).

The goal is part of our knowledge.

3. We show (5) ∀h : (h|m ∧ h|n)⇒ h ≤ g. Take arbitrary h and assume

(6) h|m ∧ h|n.

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

B.6 Example 329

We show (7) h ≤ g.

We have to show a universally quantified implication. We introduce an
arbitrary constant h and assume the implication hypothesis. We now
have to show the new goal (7).

By (6) we have some a′ and b′ with ha′ = m and hb′ = n.

We insert the definition of | into knowledge (6) which gives two exis-
tential formulas that we can apply to introduce the constants a′ and b′

with the knowledge denoted above.

Then we know

h(a′ − b′) = ha′ − hb′ = m− n

and thus (8) h|(m− n).

We apply equational reasoning to yield a formula in our knowledge that
is equivalent to the definition of | for arguments h and m− n.

With (6) and (8), (1) implies (7).

We apply the rule of “universal quantification in knowledge” to instan-
tiate the universally quantified implication in (1) by term h. Then we
apply the rule of “modus ponens” to this implication and to the con-
junction of (6) and (8), which gives us the goal.

While above proof is very detailed, it still relies on the claim that the greatest
common divisor is uniquely defined (which has to be shown in an extra proof).
The verbosity of the proof stems from the fact that it considers details like
“Is m− n actually defined?” or “Is the gcd unique?” that were neglected in
the high-level proof skeleton.

Whether one is willing to bother with details is a matter of whether one is
actually interested in the truth of a formula as it stands or whether one just
wants to know whether the “intention is correct” (whatever this means). For
a computer scientist, exactness is important (a “roughly” correct program
may be the cause of an airplane crash); she should not be anxious but eager
to find an error in a proposition and thus also check all the details that are
often neglected in typical mathematical texts.

Appendix C

Logic Evaluator Definitions

C.1 Sets

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// some set-theoretic notions
//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --

// singleton set
fun {}(x) =

join(x, {});

// A is a subset of B iff every element of A is also in B
pred isSubset(A: Set, B: Set) <=>

forall(x in A: in(x, B));

// two sets are equal if each is a subset of the other
pred equals(A: Set, B: Set) <=>

and(isSubset(A, B), isSubset(B, A));

// the intersection of two sets
fun **(A: Set, B: Set) =

set(x in A: in(x, B), x);

// the difference of two sets
fun --(A: Set, B: Set) =

set(x in A: not(in(x, B)), x);

// the union of two sets

330

C.1 Sets 331

fun ++(A: Set, B: Set) =
reduce(join, A, B);

// the union of all sets n A
fun ++(A: Set) =

reduce(++, A, {});

// the product of two sets A and B
fun x(A: Set, B: Set) =

set(a in A, b in B: true, tuple(a, b));

// cardinality of S is determined by iteration over the elements
fun count(e, i: Nat) = +(i, 1);
fun #(S: Set) = reduce(count, S, 0);

// the union of S and of e joined to all elements of S
fun combine(e, S: Set) =

++(S, set(x in S: true, join(e, x)));

// the set of all subsets of S
fun Powerset(S: Set) =

reduce(combine, S, {}({}));

// alternative recursive definition
fun PowersetR(S: Set) recursive #(S) =

if (=(S, {}), join({}, {}),
let(e = such(x in S: true, x):

combine(e, Powerset(--(S, {}(e))))));

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// --

332 Appendix C. Logic Evaluator Definitions

C.2 Relations and Functions

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// binary relations
//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --

read set;

// R is a relation
pred Relation(R) <=>

forall(x in R: and(Tuple(x), =(length(x), 2)));

// R is a relation between A and B
pred isRelation(R, A, B) <=>

and(Relation(R), forall(x in R: and(in(.0(x), A), in(.1(x), B))));

// domain of R
fun domain(R: Relation) =

set(x in R: true, .0(x));

// range of R
fun range(R: Relation) =

set(x in R: true, .1(x));

// inverse of R
fun ^-1(R: Relation) =

set(x in R: true, tuple(.1(x), .0(x)));

// composition of R and S
fun o(R: Relation, S: Relation) =

let(A = domain(R), B = **(range(R), domain(S)), C = range(S):
set(a in A, c in C:

exists(b in B: and(in(tuple(a, b), R), in(tuple(b, c), S))),
tuple(a, c)));

// f is a function
pred Function(f) <=>

and(Relation(f),
forall(t0 in f, t1 in f:

let(x0 = .0(t0), y0 = .1(t0), x1 = .0(t1), y1 = .1(t1):
implies(=(x0, x1), =(y0, y1)))));

// f is a partial function from A to B
pred isPartialFunction(f, A, B) <=>

and(isRelation(f, A, B), Function(f));

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

C.2 Relations and Functions 333

// f is a total function from A to B
pred isFunction(f, A, B) <=>

and(isPartialFunction(f, A, B),
forall(x in A: exists(y in B: in(tuple(x, y), f))));

// application of f to x
fun apply(f: Function, x) =

such(y in range(f): in(tuple(x, y), f), y);

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// --

334 Appendix C. Logic Evaluator Definitions

C.3 Natural Numbers

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// the natural numbers
//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --

// we use the builtin type
pred N(x) <=> Nat(x);

// the constructors
fun N0 = 0;
fun ’(x: N) = +(x, 1);

// predecessor
fun ^-(x: N) = such(n in nat(0, x): =(x, ’(n)), n);

// constants
fun N1 = ’(N0);
fun N2 = ’(N1);

// addition, multiplication, comparison
fun +N(x: N, y: N) recursive y =

if(=(y, N0), x, ’(+N(x, ^-(y))));
fun *N(x: N, y: N) recursive y =

if(=(y, N0), N0, +N(x, *N(x, ^-(y))));
pred <=N(x: N, y: N) recursive y <=>

if(=(x, N0), true, if(=(y, N0), false, <=N(^-(x), ^-(y))));

// difference
fun -N(x: N, y: N) = such(z in nat(0, x): =(x, +N(z, y)), z);

// quotient and remainder
fun divN(x: N, y: N) =

such(q in nat(0, x), r in nat(0, ^-(y)):
=(x, +N(*N(q, y), r)), q);

fun modN(x: N, y: N) =
such(q in nat(0, x), r in nat(0, ^-(y)):

=(x, +N(*N(q, y), r)), r);

// exponentiation
fun ^N(x: N, n: N) recursive n =

if(=(n, N0), N1, *N(x, ^N(x, ^-(n))));

// more notions
pred divides(x, y) <=> exists(z in nat(N0, y): =(*N(x, z), y));

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

C.3 Natural Numbers 335

fun gcd(x, y) =
let(m = if(=(x, N0), y, x):

such(z in nat(N0, m):
and(divides(z, x), divides(z, y),

forall(w in nat(+N(z, N1), m):
or(not(divides(w, x)), not(divides(w, y))))),

z));
fun lcm(x, y) = such(z in nat(N1, *N(x, y)):

and(divides(x, z), divides(y, z),
forall(w in nat(x, -(z, N1)):

or(not(divides(x, w)), not(divides(y, w))))),
z);

pred relprime(x, y) <=> =(gcd(x, y), N1);
pred isprime(x) <=>

and(not(<=N(x, N1)),
forall(y in nat(N0, x):

implies(divides(y, x), or(=(y, N1), =(y, x)))));

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// --

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// the natural numbers using builtin arithmetic
//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --

read natural;

// redefine addition, multiplication, comparison to builtin
fun +N(x, y) = +(x, y);
fun *N(x, y) = *(x, y);
pred <=N(x, y) <=> <=(x, y);

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// --

336 Appendix C. Logic Evaluator Definitions

C.4 Integer Numbers

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// the integer numbers
//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --

read set;
read natural0;

// integers are pairs of naturals
pred Z(x) <=>

and(Tuple(x), =(2, length(x)), N(.0(x)), N(.1(x)));

// constructor function
fun I(x: N, y: N) =

if(<=N(y, x), tuple(-N(x, y), N0), tuple(N0, -N(y, x)));

// constants
fun Z0 = I(N0, N0);
fun Z1 = I(N1, N0);
fun Z2 = I(N2, N0);

// basic arithmetic
fun +Z(x: Z, y: Z) = I(+N(.0(x), .0(y)), +N(.1(x), .1(y)));
fun *Z(x: Z, y: Z) =

I(+N(*N(.0(x), .0(y)), *N(.1(x), .1(y))),
+N(*N(.0(x), .1(y)), *N(.1(x), .0(y))));

fun -Z(x: Z) = tuple(.1(x), .0(x));
fun -Z(x: Z, y: Z) = +Z(x, -Z(y));

// total order
pred <=Z(x: Z, y: Z) <=> =(.1(-Z(y, x)), N0);

// absolute value and sign
fun ||(x: Z) = if(<=Z(Z0, x), x, -Z(x));
fun sign(x: Z) = if(=(x, Z0), Z0, if(<=Z(Z0, x), Z1, -Z(Z1)));

// the set of integers in interval [-x, x]
fun Z[](x: Z) =

let(y = .0(x):
++(set(z in nat(N0, y): true, tuple(z, N0)),

set(z in nat(N0, y): true, tuple(N0, z))));

// quotient and remainder
fun divZ(x: Z, y: Z) =

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

C.4 Integer Numbers 337

such(q in Z[](||(x)), r in Z[](-Z(||(y), Z1)):
and(=(x, +Z(*Z(q, y), r)),

or(=(sign(r), Z0), =(sign(r), sign(y)))), q);
fun modZ(x: Z, y: Z) =

such(q in Z[](||(x)), r in Z[](-Z(||(y), Z1)):
and(=(x, +Z(*Z(q, y), r)),

or(=(sign(r), Z0), =(sign(r), sign(y)))), r);

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// --

338 Appendix C. Logic Evaluator Definitions

C.5 Rational Numbers

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// the rational numbers
//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --
read integer;

// conversion predicates
fun Z(x: N) = tuple(x, N0);
fun N(x: Z) = .0(||(x));

// rationals are pairs of integers
pred Q(x) <=>

and(Tuple(x), =(2, length(x)),
Z(.0(x)), Z(.1(x)), not(<=Z(.1(x), Z0)),
relprime(N(.0(x)), N(.1(x))));

// rational constructor and selectors
fun @(x: Z, y: Z) =

let(g = Z(gcd(N(x), N(y))):
tuple(*Z(sign(*Z(x, y)), divZ(||(x), g)), divZ(||(y), g)));

fun numerator(r: Z) = .0(r);
fun denominator(r: Z) = .1(r);

// constants
fun Q0 = @(Z0, Z1);
fun Q1 = @(Z1, Z1);
fun Q2 = @(Z2, Z1);

// basic arithmetic
fun +Q(x: Q, y: Q) =

@(+Z(*Z(.0(x), .1(y)), *Z(.1(x), .0(y))), *Z(.1(x), .1(y)));
fun *Q(x: Q, y: Q) =

@(*Z(.0(x), .0(y)), *Z(.1(x), .1(y)));
fun -Q(x: Q) = @(-Z(.0(x)), .1(x));
fun -Q(x: Q, y: Q) = +Q(x, -Q(y));
fun ^-1Q(x: Q) = @(.1(x), .0(x));
fun /Q(x: Q, y: Q) = *Q(x, ^-1Q(y));

// total order
pred <=Q(x: Q, y: Q) <=> <=Z(*Z(.0(x), .1(y)), *Z(.0(y), .1(x)));

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// --

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

C.6 Real Numbers 339

C.6 Real Numbers

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// the real numbers (faked by rationals)
//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --

read rational;

pred R(x) <=> Q(x);
fun R(x: N) = @(Z(x), Z1);

fun R0 = Q0;
fun R1 = Q1;
fun R2 = Q2;

fun +R(x: R, y: R) = +Q(x, y);
fun *R(x: R, y: R) = *Q(x, y);
fun -R(x: R) = -Q(x);
fun -R(x: R, y: R) = -Q(x, y);
fun ^-1R(x: R) = ^-1Q(x);
fun /R(x: R, y: R) = /Q(x, y);

pred <=R(x: R, y: R) <=> <=Q(x, y);

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// --

340 Appendix C. Logic Evaluator Definitions

C.7 Complex Numbers

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// the complex numbers
//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --
read real;

// complex numbers are pairs of reals
pred C(x) <=>

and(Tuple(x), =(2, length(x)), R(.0(x)), R(.1(x)));

// complex constructors and
fun +i(x: R, y: R) = tuple(x, y);
fun real(r: R) = .0(r);
fun imaginary(r: R) = .1(r);

// constants
fun C0 = +i(R0, R0);
fun C1 = +i(R1, R0);
fun C2 = +i(R2, R0);
fun i = +i(R0, R1);

// arithmetic
fun +C(x: C, y: C) = +i(+R(.0(x), .0(y)), +R(.1(x), .1(y)));
fun -C(x: C, y: C) = +i(-R(.0(x), .0(y)), -R(.1(x), .1(y)));
fun -(x: C) = -C(C0, x);
fun *C(x: C, y: C) =

+i(-R(*R(.0(x), .0(y)), *R(.1(x), .1(y))),
+R(*R(.0(x), .1(y)), *R(.1(x), .0(y))));

fun /C(x: C, y: C) =
let(d = +R(*R(.0(y), .0(y)), *R(.1(y), .1(y))):

+i(/R(+R(*R(.0(x), .0(y)), *R(.1(x), .1(y))), d),
/R(-R(*R(.1(x), .0(y)), *R(.0(x), .1(y))), d)));

fun ^-1C(x: C) = /C(C1, x);

// complex conjugate
fun conj(x: C) = +i(.0(x), -R(.1(x)));

// square of absolute value
fun ||^2(x: C) = +R(*R(.0(x), .0(x)), *R(.1(x), .1(x)));

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// --

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

C.8 More on Functions 341

C.8 More on Functions

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// functions
//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --

read relation;

// the image of A’ at f
fun image(f: Function, A’: Set) =

if(isSubset(A’, domain(f)), set(x in A’: true, apply(f, x)));

// the inverse image of B’ at f
fun image^-1(f: Function, B’: Set) =

set(x in domain(f): in(apply(f, x), B’), x);

// f is injective from A to B
pred isInjective(f: Function, A: Set, B: Set) <=>

and(isFunction(f, A, B),
forall(x0 in A, x1 in A:

implies(=(apply(f, x0), apply(f, x1)), =(x0, x1))));

// f is surjective from A to B
pred isSurjective(f: Function, A: Set, B: Set) <=>

and(isFunction(f, A, B),
forall(y in B:

exists(x in A: =(apply(f, x), y))));

// f is bijective between A and B
pred isBijective(f: Function, A: Set, B: Set) <=>

and(isInjective(f, A, B), isSurjective(f, A, B));

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// --

342 Appendix C. Logic Evaluator Definitions

C.9 Real Functions

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// functions over the reals
//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --

read real;
read function;

// is B upper/lower bound of s in first n members of sequence s?
pred isUpperBound(B, s, n) <=>

forall(i in nat(0, n): <=R(apply(s, i), B));
pred isLowerBound(B, s, n) <=>

forall(i in nat(0, n): <=R(B, apply(s, i)));

// supremum/infimum of s considering only the first n members
fun sup(s, n) =

such(U in range(s):
and(isUpperBound(U, s, n),

forall(U’ in range(s):
implies(isUpperBound(U’, s, n), <=R(U, U’)))), U);

fun inf(s, n) =
such(L in range(s):

and(isLowerBound(L, s, n),
forall(L’ in range(s):

implies(isLowerBound(L’, s, n), <=R(L’, L)))), L);

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// --

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

C.10 Equivalence Relations 343

C.10 Equivalence Relations

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// equivalence relations
//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --
read relation;

// R is reflexive on S
pred isReflexive(R: Relation, S) <=>

forall(x in S: in(tuple(x, x), R));

// R is symmetric on S
pred isSymmetric(R: Relation, S) <=>

forall(t in R: in(tuple(.1(t), .0(t)), R));

// R is transitive on S
pred isTransitive(R: Relation, S) <=>

forall(s in R, t in R:
implies(=(.1(s), .0(t)), in(tuple(.0(s), .1(t)), R)));

// R is equivalence relation on S
pred isEquivalence(R: Relation, S) <=>

and(isRelation(R, S, S), isReflexive(R, S),
isSymmetric(R, S), isTransitive(R, S));

// class [x]_R
fun [](x, R: Relation) =

set(y in range(R): in(tuple(x, y), R), y);

// quotient set S/R
fun /(S, R: Relation) = set(x in S: true, [](x, R));

// D is partition on S
pred isPartition(D, S) <=>

and(forall(x in D: not(=(x, {}))),
forall(x in D, y in D: or(=(x, y), =(**(x, y), {}))),
=(++(D), S));

// induced relation ~D
fun ~(D) =

++(set(d in D: true, set(x in d, y in d: true, tuple(x, y))));

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// --

344 Appendix C. Logic Evaluator Definitions

C.11 Modular Arithmetic

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// modular arithmetic
//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --

read integer;
read equiv;

// positive integers
pred Z+(x) <=> and(Z(x), =(sign(x), Z1));

// just consider subset of Z
fun Z’ = Z[](I(5, 0));

// x = y mod m
fun =m(m: Z+) =

set(x in Z’, y in Z’: =(modZ(x, m), modZ(y, m)), tuple(x, y));

// Z_m
fun Z(m: Z+) = /(Z’, =m(m));

// selector function
fun _(x) = such(a in x: true, a);

// equivalence class of x modulo m
fun []m(m: Z+, x: Z) = [](x, =m(m));

// modular arithmetic
fun +m(m: Z+, x in Z(m), y in Z(m)) = []m(m, +Z(_(x), _(y)));
fun -m(m: Z+, x in Z(m), y in Z(m)) = []m(m, -Z(_(x), _(y)));
fun -m(m: Z+, x in Z(m)) = []m(m, -Z(_(x)));
fun *m(m: Z+, x in Z(m), y in Z(m)) = []m(m, *Z(_(x), _(y)));

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// --

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

C.12 Integers as Equivalence Classes 345

C.12 Integers as Equivalence Classes

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// the integer numbers as equivalence classes
//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --
read equiv; read natural0;

// just consider subset of N x N
fun Z’ = set(x in nat(0, 6), y in nat(0, 6): true, tuple(x, y));

// x0-x1 = y0-y1
fun ~Z = set(x in Z’, y in Z’:

=(+N(.0(x), .1(y)), +N(.0(y), .1(x))), tuple(x, y));

// Z as a quotient set
fun Z = /(Z’, ~Z);

// selector function
fun _(x) = such(a in x: true, a);

// equivalence class of x
fun []Z(x in Z’) = [](x, ~Z);

// constants
fun Z0 = []Z(tuple(N0, N0));
fun Z1 = []Z(tuple(N1, N0));
fun Z2 = []Z(tuple(N2, N0));

// arithmetic
fun +Z(x in Z, y in Z) =

[]Z(tuple(+N(.0(_(x)), .0(_(y))), +N(.1(_(x)), .1(_(y)))));
fun -Z(x in Z) = []Z(tuple(.1(_(x)), .0(_(x))));
fun -Z(x in Z, y in Z) =

[]Z(tuple(+N(.0(_(x)), .1(_(y))), +N(.0(_(y)), .1(_(x)))));
fun *Z(x in Z, y in Z) =

[]Z(tuple(+N(*N(.0(_(x)), .0(_(y))), *N(.1(_(x)), .1(_(y)))),
+N(*N(.0(_(x)), .1(_(y))), *N(.1(_(x)), .0(_(y))))));

// order
pred <=Z(x in Z, y in Z) <=>

<=N(+N(.0(_(x)), .1(_(y))), +N(.0(_(y)), .1(_(x))));

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// --

346 Appendix C. Logic Evaluator Definitions

C.13 Rationals as Equivalence Classes

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// the rational numbers as equivalence classes
//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --

read equiv;
read integer;

// just consider subset of Z x Z
fun Q’ =

set(x in Z[](I(3, 0)), y in Z[](I(3, 0)):
not(=(y, Z0)), tuple(x, y));

// x0/x1 = y0/y1
fun ~Q =

set(x in Q’, y in Q’:
=(*Z(.0(x), .1(y)), *Z(.0(y), .1(x))), tuple(x, y));

// Q as a quotient set
fun Q = /(Q’, ~Q);

// selector function
fun _(x) = such(a in x: true, a);

// equivalence class of x
fun []Q(x in Q’) = [](x, ~Q);

// constants
fun Q0 = []Q(tuple(Z0, Z1));
fun Q1 = []Q(tuple(Z1, Z1));
fun Q2 = []Q(tuple(Z2, Z1));

// arithmetic
fun +Q(x in Q, y in Q) =

[]Q(tuple(+Z(*Z(.0(_(x)), .1(_(y))), *Z(.0(_(y)), .1(_(x)))),
*Z(.1(_(x)), .1(_(y)))));

fun -Q(x in Q) =
[]Q(tuple(-Z(.0(_(x))), .1(_(x))));

fun -Q(x in Q, y in Q) =
[]Q(tuple(-Z(*Z(.0(_(x)), .1(_(y))), *Z(.0(_(y)), .1(_(x)))),

*Z(.1(_(x)), .1(_(y)))));
fun *Q(x in Q, y in Q) =

[]Q(tuple(*Z(.0(_(x)), .0(_(y))), *Z(.1(_(x)), .1(_(y)))));
fun ^-1Q(x in Q) =

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

C.13 Rationals as Equivalence Classes 347

[]Q(tuple(.1(_(x)), .0(_(x))));
fun /Q(x in Q, y in Q) =

[]Q(tuple(*Z(.0(_(x)), .1(_(y))), *Z(.0(_(y)), .1(_(x)))));

// order
pred <=Q(x in Q, y in Q) <=>

<=Z(*Z(.0(_(x)), .1(_(y))), *Z(.0(_(y)), .1(_(x))));

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// --

348 Appendix C. Logic Evaluator Definitions

C.14 Order Relations

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// order relations
//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --

read equiv;

// R is antisymmetric on S
pred isAntiSymmetric(R: Relation, S) <=>

forall(x in S, y in S:
implies(and(in(tuple(x, y), S), in(tuple(y, x), S)), =(x, y)));

// R is partial order on S
pred isPartialOrder(R: Relation, S) <=>

and(isRelation(R, S, S),
isReflexive(R, S),
isAntiSymmetric(R, S),
isTransitive(R, S));

// R is irreflexive on S
pred isIrreflexive(R: Relation, S) <=>

forall(x in S: not(in(tuple(x, x), R)));

// R is partial order on S
pred isQuasiOrder(R: Relation, S) <=>

and(isRelation(R, S, S),
isIrreflexive(R, S),
isAntiSymmetric(R, S),
isTransitive(R, S));

// x and y are incomparable with respect to R
pred areIncomparable(x, y, R) <=>

and(not(in(tuple(x, y), R)), not(in(tuple(y, x), R)));

// R is total order on S
pred isTotalOrder(R: Relation, S) <=>

and(isRelation(R, S, S),
not(exists(x in S, y in S: areIncomparable(x, y, R))));

// x is least/greatest element in S with respect to R
pred isLeast(x, S, R) <=>

and(in(x, S), forall(y in S: in(tuple(x, y), R)));
pred isGreatest(x, S, R) <=>

and(in(x, S), forall(y in S: in(tuple(y, x), R)));

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

C.14 Order Relations 349

// x is minimal/maximal element of S with respect to R
pred isMinimal(x, S, R) <=>

and(in(x, S), forall(y in S:
implies(in(tuple(y, x), R), =(y, x))));

pred isMaximal(x, S, R) <=>
and(in(x, S), forall(y in S:

implies(in(tuple(x, y), R), =(x, y))));

// x is lower/upper bound of S with respect to R
pred isLowerBound(x, S, R) <=>

forall(y in S: in(tuple(x, y), R));
pred isUpperBound(x, S, R) <=>

forall(y in S: in(tuple(y, x), R));

// x is infimum/supremum of S with respect to R
pred isInfimum(x, S, R) <=>

and(isLowerBound(x, S, R),
forall(y in domain(R):

implies(isLowerBound(y, S, R), in(tuple(y, x), R))));
pred isSupremum(x, S, R) <=>

and(isUpperBound(x, S, R),
forall(y in range(R):

implies(isUpperBound(y, S, R), in(tuple(x, y), R))));

// --
// $Id: evaluator.tex,v 1.7 1999/09/29 12:28:26 schreine Exp $
// --

Index

absolute value, 124, 127
abstraction, 280
ackerman’s function, 146
additional knowledge, 321
adjacency matrix, 265
adjazent, 263
ancestor, 277
antisymmetric, 251
antisymmetry, 63
arcs, 263
arguments, 29
arithmetic sequence, 203
arithmetic series, 203
arity, 29
assignment, 31
associativity of function composi-

tion, 92
asymptotic classes, 223
asymptotic of polynomial se-

quences, 222
asymptotically dominates, 219
atomic formula, 35
attributes, 29
axioms, 281

backus naur form, 161
base formula, 146
base term, 144
big o quantor, 219
bijective, 167
binary, 77
binomial coefficient, 135
binomial identities, 136
blocks, 234

bnf, 161
boolean value, 10
bottom up, 280
bound, 39
bounds and limits, 120

cardinality, 173
cartesian coordinates, 188
cartesian product, 76
cauchy-sequence, 249
ceiling, 206
chain, 255
child, 276
circuit, 271
class, 229
closed, 39, 111, 116, 125
coefficients, 139
commutative diagram, 92
commute, 92
complete induction, 151
complex conjugate, 124, 127
complex number operations, 123
complex numbers, 122
complex root, 190
complex root function, 126
complex roots, 191
complex square root, 126
composition, 82
composition of bijective functions,

169
composition of permutations, 182
composition of relations, 82
computing, 306
conditional formula, 302

350

INDEX 351

conditional term, 288
congruence properties, 240
congruent, 240
conjugate, 124
conjunction, 12
conjunctive laws, 18
connective, 11
constant, 29
constant function, 211
constant polynomials, 141
constrained function definition,

289, 290
constrained predicate definition,

285
constructive, 112
constructors, 159
continuous, 99
contradiction, 311
contraposition, 323
convergence and limit, 197
converges, 197
cosine, 216
cotangent, 216
countable, 176
countable sets, 176
cycle, 271

de morgan, 323
de morgan’s laws, 22, 48
decomposition, 234
decomposition of conjunctions, 317
decomposition of disjunctions, 317
decomposition of equivalences, 315
decomposition of existential quan-

tifications, 314
decomposition of implications, 316
decomposition of universal quan-

tifications, 313
definiendum, 282
definiens, 282
definition, 282

degree, 139, 267
denominator, 114
descendant, 277
diagonalization, 178
difference, 69, 105, 112
direct proof, 311
directed graph, 263
discrete, 99
disjoint equivalence classes, 231
disjunction, 12
disjunctive laws, 21
divergent, 197
divides, 107
domain, 29, 80
domain, range, 80

edges, 263
elementary, 271
elementary term, 32
embeds, 185
empty set, 61
enumeration, 176
equality, 38
equality and subset, 64
equality axioms, 38
equality of sets, 61
equality of tuples, 75
equivalence, 12, 28
equivalence class, 229
equivalence laws, 27
equivalence of formulas, 11
equivalence relation, 226
equivalence relation defines parti-

tion, 235
equivalence relations and parti-

tions, 237
equivalent, 11
euclid’s algorithm, 159
euler’s number, 202
evaluation laws, 141
exclusive disjunction, 22

352 INDEX

existence of real roots, 121
existential quantification in knowl-

edge, 321
explicit function definition, 286
explicit predicate definition, 282
explicitly defined functions, 318
explicitly defined predicates, 318
exponential and logarithm proper-

ties, 214
exponential function and loga-

rithm function, 213
exponentiation, 106
exponentiation of relations, 273

factorial, 135
false, 12
fibonacci numbers, 145
finite, 173
finite sequence, 94
finite sets, 179
first order objects, 31
first order predicate logic, 31
floor, 206
floor and ceiling, 206, 207
floor and ceiling removal, 208
floor and ceiling shifts, 207
formula, 10
formulas of propositional logic, 11
free, 38
free variable substitution, 43
function, 85
function application, 32, 87
function composition, 90, 92
function constant, 31
function properties, 166
functions, 29
fundamental theorem of algebra,

125

general exponentiation and loga-
rithm function, 215

geometric sequence, 203
geometric series, 203
grammars, 161
graph isomorphism, 269
greatest common divisor, 107
greatest element, 259

hasse diagram, 256
height, 278
height of binary trees, 279
higher order objects, 31
hold, 30
holds on, 78
homomorphism, 184

identity function, 167, 172
iff, 11
image, 165
imaginary constant, 124
imaginary part, 123
implementation, 155
implication, 12
implicative laws, 24
implicit function definition, 292
inclusive and exclusive disjunction,

23
incomparable, 254
indegree, 267
indirect proof, 311
induced relation, 236
induction axioms, 99
induction base, 148
induction hypothesis, 148
induction over term values, 153
induction step, 148
inductive definition, 144
inductive function definition, 144
inductive predicate definition, 146
inductive set definition, 159
infimum, 194, 261
infimum and supremum, 261

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

INDEX 353

infinite, 173
infinite sequence, 94
initial node, 263
injective, 166
input condition, 53, 154
integer conversions, 113
integer numbers, 109, 244
integer operations, 109
interpretation, 33
intersection, 69
intervals, 121
intractable, 224
inverse, 81
inverse function properties, 172
inverse image, 165
inverse of a function, 170
inverse of a relation, 81
inversion of negation, 16
irreflexive, 252
is element of, 60
isomorphic, 269
isomorphism, 185
isomorphism of integer construc-

tions, 245
isomorphism of rational construc-

tions, 248

leaf, 277
least and greatest element, 258
least common multiple, 107
least element, 258
left closed, 121
length, 94, 270
level, 278
level and height, 278
lexicographic order, 255
lexicographic ordering, 146
limit, 197
limit laws, 200
limit of geometric series, 204
limit quantor, 200

linear function, 211
linear order, 255
local definitions, 49
logical connective, 11
logical constants, 12
lower bound, 194, 260

mappings, 29
mathematical induction, 147
matrices over the reals, 137
matrix, 95
matrix operations, 137
maximal element, 260
minimal and maximal element, 260
minimal element, 260
minimum, 63
minimum and maximum functions,

129
minimum and maximum quanti-

fier, 129
modular arithmetic, 242
modular arithmetic, direct ap-

proach, 238
modular arithmetic, residue

classes, 242
modular congruence, 240
modular integer numbers, 240
modus ponens, 323
monotonically decreasing, 192
monotonically increasing, 192
monotonicity, 192
multigraph, 263

name, 31
natural number laws, 103
natural number operations, 107
natural number subsets, 101
natural numbers, 101
natural numbers from set, 100
natural numbers operations, 101,

102

354 INDEX

negation, 12
node relations, 276
nodes, 263
non-empty equivalence classes, 229
null matrix, 137
number of permutations, 183
number of set elements, 173
number quantifier, 175
numerator, 114

o manipulation, 222
object constant, 31
objects, 29
one-to-one, 166
onto, 167
order laws, 262
order predicates, 103
outdegree, 268
output condition, 53, 154

parameterization, 280
parent, 277
partial function, 85
partial order, 252
partition, 234
partition defines equivalence rela-

tion, 236
pascal’s triangle, 136
path, 270
peano arithmetic, 99
period, 209
periodic, 209
periodic functions, 209
permutation, 181
pointwise function definition, 205
polar coordinates, 188
polynomial, 139
polynomial evaluation, 141
polynomial function, 211
polynomial operations, 140
polynomials over the reals, 139

powerset, 70
predecessor, 101
predicate constant, 34
predicates, 29
prime, 107
prime number factorization, 134
product quantifier, 133, 134
projections, 74
proof, 308
proof by case distinction, 319
proof by contradiction, 311
proof completion, 311
proof rule, 310
proof tree, 311
properties, 29
proposition, 10, 308
propositional consequence, 322
propositional consequences, 322
propositional tautology, 323

quantified formulas, 39
quantifier, 38
quantifier consequences, 324
quasi order, 253
quasi order from partial order, 254
quasi orders are antisymmetric,

253
quotient, 105, 117
quotient and remainder, 105
quotient set, 233

range, 80
rational function, 212
rational number operations, 115
rational numbers, 113, 247
reachability is closure of edge rela-

tion, 272
reachable, 271
real matrices, 137
real numbers, 119, 250
real part, 123

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

INDEX 355

real remainder, 209
real root function, 121
realsection, 118
reciprocal function, 212
recursion formula, 146
recursion term, 144
recursive function definition, 299
recursive predicate definition, 302
reduction, 304
reflexive, 225
reflexive and transitive closure, 271
reflexive closure, 271, 273
reflexivity, 38, 63
regularity, 100
relation, 77
relation laws, 84
relation properties, 225
relations, 29
relatively prime, 107
remainder, 105
remainder laws, 210
replacement of local definitions, 51
residue class, 240
result, 29
right closed, 121
root, 274
russel paradox, 66

same cardinality, 178
same size, 178
semantics, 10
semantics of atomic formulas, 36
semantics of conjunction, 17
semantics of disjunction, 20
semantics of equivalence, 26
semantics of implication, 24
semantics of local definitions, 49
semantics of logical constants, 14
semantics of negation, 15
semantics of quantified formulas,

41

semantics of terms, 32
sequence, 94, 96
sequence quantor, 192
sequence updates, 96
series, 202
series limit quantor, 204
set, 60
set cardinalities, 178
set enumeration, 61
set functions, 69
set identities, 72
set quantifier, 65
set reduction, 304
set sizes, 175
set theory, 60
simple, 270
sine, 216
sine and cosine, 216, 217
sine and cosine values, 216
size, 173
size of function space, 180
size of powerset, 180
sorting, 181
specification, 154
square function, 168, 211
stepwise refinement, 281
strictly dominated, 223
strictly monotonically decreasing,

193
strictly monotonically increasing,

192
structural induction, 163
structurally equal, 185
structure, 29
subset, 63
subset properties, 63
substitutions, 325
successor, 99
such quantifier, 292, 325
sum quantifier, 130, 132
supremum, 194, 261

356 INDEX

surjective, 167
symmetric, 225
symmetry, 38
syntax, 10
syntax of terms, 32

tangent, 216
tangent and cotangent, 218
tangent and cotangent properties,

218
tangent and cotangent values, 218
tautology, 323
term, 30
term algebra, 161
terminal node, 263
termination function, 299
termination term, 145
theory, 281
top down, 280
total degree, 268
total function, 85
total order, 255
transitive, 225
transitive closure, 271, 273, 274
transitivity, 38, 63
tree, 274
trees and cycles, 276
trigonometric functions, 216
true, 12
truncated part, 208
truncation, 208
truth table, 15
truth value, 10
truth value, formula, 10
tuple, 74
tuple constructor, 74
tuple selectors, 74

undirected graph, 266
unicity of bijection, 173
unicity of limits, 199

union, 69
unique root paths, 278
uniqueness, 114
unity matrix, 137
universal quantification in knowl-

edge, 320
upper and lower bound, 260
upper and lower bounds, 194
upper bound, 120, 194, 260
upper limit, 120

valid, 30
value, 87
values, 29
variable, 31
variable domain, 65
variable, assignment, 31
venn diagram, 73
verify, 154
vertices, 263

weighted graph, 263
well-founded ordering, 298
witness, 314

zero, 99

Wolfgang Schreiner: Formal Foundations of Computer Science 1.

