## EXERCISES-09

(1) Show that $S_{n}$ is a group if the group operation is the function composition.
(2) Let $S_{4}$ acts on $\binom{[4]}{2}$ by $\left.\phi(f,\{x, y\}):=\{f(x), f(y))\right\}$. Show that this indeed a group action. In particular, check that for $f \in S_{4}$ and $\{x, y\} \in\binom{[4]}{2}$, we have $\left.\{f(x), f(y))\right\} \in\binom{[4]}{2}$.
(3) Let $G=S_{4}$ and $X=\{0,1\}^{\binom{[4]}{2}}=\left\{f \mid f:\binom{[4]}{2} \rightarrow\{0,1\}\right\}$. Define $\phi: G \times X \rightarrow X$ by $\phi(\sigma, f):=g$ with $g(\sigma\{x, y\}):=$ $f(\{x, y\})$, or equivalently, $g(\{x, y\}):=f\left(\left\{\sigma^{-1}(x), \sigma^{-1}(y)\right\}\right)$. Here $\sigma\{x, y\}=\{\sigma(x), \sigma(y)\}$. Show that $\phi$ is a group action.
(4) Let $X$ be defined as above and $f_{1}$ be an element of $X$ given by

$$
f_{1}:=\left(\begin{array}{cccccc}
\{1,2\} & \{1,3\} & \{1,4\} & \{2,3\} & \{2,4\} & \{3,4\} \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right) .
$$

Compute the orbit of $f_{1}$; i.e., compute

$$
S_{4} f_{1}=\left\{\phi\left(\sigma, f_{1}\right) \mid \sigma \in S_{4}\right\} .
$$

