EXERCISES-09

- (1) Show that S_n is a group if the group operation is the function composition.
- (2) Let S_4 acts on $\binom{[4]}{2}$ by $\phi(f, \{x, y\}) := \{f(x), f(y)\}$. Show that this indeed a group action. In particular, check that for $f \in S_4$ and $\{x, y\} \in \binom{[4]}{2}$, we have $\{f(x), f(y)\} \in \binom{[4]}{2}$.
- and $\{x,y\} \in {[4] \choose 2}$, we have $\{f(x),f(y)\} \in {[4] \choose 2}$. (3) Let $G = S_4$ and $X = \{0,1\}^{{[4] \choose 2}} = \{f \mid f : {[4] \choose 2} \to \{0,1\}\}$. Define $\phi : G \times X \to X$ by $\phi(\sigma,f) := g$ with $g(\sigma\{x,y\}) := f(\{x,y\})$, or equivalently, $g(\{x,y\}) := f(\{\sigma^{-1}(x),\sigma^{-1}(y)\})$. Here $\sigma\{x,y\} = \{\sigma(x),\sigma(y)\}$. Show that ϕ is a group action.
- (4) Let X be defined as above and f_1 be an element of X given by

$$f_1 := \begin{pmatrix} \{1,2\} & \{1,3\} & \{1,4\} & \{2,3\} & \{2,4\} & \{3,4\} \\ 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

Compute the orbit of f_1 ; i.e., compute

$$S_4 f_1 = \{ \phi(\sigma, f_1) \mid \sigma \in S_4 \}.$$