1. Exercises

- (1) Prove that if G is a group, X is a set, $\varphi: G \times X \to X$ a group action then $y \in Orbit(\varphi, x) \Leftrightarrow Orbit(\varphi, x) = Orbit(\varphi, y)$
- (2) For G, X, φ as in the previous exercise prove that G_x is a subgroup of G.
- (3) For G a group, H a subgroup of G prove that $g_1H = g_2H$ or $g_1H \cap g_2H = \emptyset$. (4) For G, H as above with G finite. Prove that $|g_1H| = |g_2H|$ for all $g_1, g_2 \in G$.