EXERCISES-07

(1) Let $n \in \mathbb{N}$ and d be a fixed positive integer. Define $p_{\leq d}(n):=\#$ of partitions of n where parts appear at most d times, and
$p_{d+1}(n):=\#$ of partitions of n with no part is divisible by k.
Show that $p_{\leq d}(n)=p_{d+1}(n)$.
(2) Show that the number of partitions of n in which each part appears 2,3 , or 5 times equals the number of partitions of n into parts congruent to $2,3,6,9$, or 10 modulo 12 .
(3) Let $p(n):=0$ for $n \in \mathbb{Z}_{<0}$. Using Euler's pentagonal number theorem, prove that for $n \in \mathbb{N}$,

$$
p(n)=\sum_{r \geq 1}(-1)^{r+1}(p(n-\omega(r))+p(n-\omega(-r)))
$$

where $\omega(r)=\frac{r(3 r-1)}{2}$. Compute $p(10)$ using the above recursive formula.

