EXERCISES-06

(1) Let $n \in \mathbb{N}$ and k be a fixed positive integer. Recall that $\bar{p}(n, k)=\#$ of partitions of n into at most k parts,
and
$p^{1}(n, k)=\#$ of partitions of n with each part $\leq k$.
Derive the generating function $\sum_{n \geq 0} \bar{p}(n, k) q^{n}$ and show that $\bar{p}(n, k)=p^{1}(n, k)$.
(2) Give a combinatorial proof of $\bar{p}(n, k)=p^{1}(n, k)$.

Hint: Define a map explicitly between the sets that respectively enumerate $\bar{p}(n, k)$ and $p^{1}(n, k)$ and show that the map is bijective.
(3) Let $p_{d}(n)$ (respectively $p_{o}(n)$) denote the total number of partitions into distinct parts (respectively odd parts). Give a combinatorial proof of $p_{d}(n)=p_{o}(n)$ by constructing a bijection between the sets.

