45. Determine if the following sequences are polynomial, C-finite, hypergeometric or holonomic.
(a) The sequence $(-1)^{\lfloor\log (n+1)\rfloor}+1$.
(b) $\sum_{k=-3}^{2 n+1} F_{3 k+1}^{2}$ where F_{n} denotes the Fibonacci sequence.
(c) The coefficient sequence a_{n} of $\tan (x)=\sum_{n \geq 0} a_{n} x^{n}$.
(d) The coefficient sequence a_{n} of $\sqrt{x+2023}=\sum_{n \geq 0} a_{n} x^{n}$.
(e) The interlacing of the sequences $(0)_{n \geq 0}$ and $(n)_{n \geq 0}$, i.e., the sequence

$$
0,0,0,1,0,2,0,3,0,4,0,5, \ldots
$$

It is sufficient to give an argument how one could go about to argue that certain sequences are not in some certain class (without actually doing the rigorous proof).
46. There are $n \geq 2$ students who want to take the final exam of the lecture algorithmic combinatorics. There are three different versions of the exam and the students sit in a circle. Let a_{n} denote the number of ways to distribute the exams to the students in such a way that two students sitting next to each other do not have the same exam.
(a) Determine a C-finite recurrence for a_{n}.
(b) Determine a closed form expression of a_{n}.
(c) Determine the generating function of a_{n}.
47. Let the Euler operator be defined as $\theta_{x}=x D_{x}$. Show that

$$
\theta_{x}\left(\theta_{x}-1\right) \cdots\left(\theta_{x}-k+1\right) f(x)=x^{k} f^{(k)}(x)
$$

for all formal power series $f(x)=\sum_{n \geq 0} a_{n} x^{n}$.
48. Let $\left(f_{n}\right)_{n \geq 0}$ and $\left(g_{n}\right)_{n \geq 0}$ be sequences. Prove that the difference operator satisfies the product rule

$$
\Delta_{n}\left(f_{n} g_{n}\right)=\left(\Delta_{n} f_{n}\right) g_{n}+f_{n+1}\left(\Delta g_{n}\right), \quad n \geq 0
$$

Use this law to deduce the formula for summation by parts,

$$
\sum_{k=0}^{n} f_{k}\left(\Delta_{k} g_{k}\right)=f_{n+1} g_{n+1}-f_{0} g_{0}-\sum_{k=0}^{n}\left(\Delta_{k} f_{k}\right) g_{k+1}
$$

