- 41. Use Zeilberger's algorithm as presented in the lecture to determine a recurrence satisfied by $\sum_{k=0}^{n} {n \choose k} k$. You may use the information that the recurrence is of order one with linear coefficients.
- 42. Which algorithms presented in the lecture can be used to solve the following sums? What does "solve" mean for each sequence?
 - (a) $\sum_{k=-7}^{n} (P_{2k+1} + F_{2k})^2$ where F_n denotes the Fibonacci numbers and P_n the Perrin numbers,

(b)
$$\sum_{k=0}^{n+7} \frac{\binom{2k}{k}^2}{(k+1)4^k}$$
,
(c) $\sum_{k=0}^{\infty} (-1)^k \binom{n+1}{k} \binom{2n-2k+1}{n}$,
(d) $\sum_{k=0}^{2n+1} (-2k^2 + 17k + 3)$,
(e) $\sum_{k=0}^{n} \frac{1}{n^2+k^2+1}$,
(f) $\sum_{k=0}^{n} \frac{1}{k^2+\sqrt{5k-1}}$,
(g) $\sum_{k=0}^{2n} (-1)^k \binom{2n}{k}^3$.

43. Given the following holonomic sequence

$$(4n+1)g_{n+2} + 2(4n-1)g_{n+1} - 3(4n+5)g_n = 0, \quad g_0 = 1, \ g_1 = 0.$$

Use Petkovšek's algorithm to compute a closed form of g_n .

44. Petkovšek's algorithm finds the solutions 3^n and n! to the recurrence

$$(n-2)a_{n+2} - (n^2 + 3n - 7)a_{n+1} + 3(n^2 - 1)a_n = 0.$$

Compute the two factorizations of the operator corresponding to this recurrence.