41. Use Zeilberger's algorithm as presented in the lecture to determine a recurrence satisfied by $\sum_{k=0}^{n}\binom{n}{k} k$. You may use the information that the recurrence is of order one with linear coefficients.
42. Which algorithms presented in the lecture can be used to solve the following sums? What does "solve" mean for each sequence?
(a) $\sum_{k=-7}^{n}\left(P_{2 k+1}+F_{2 k}\right)^{2}$ where F_{n} denotes the Fibonacci numbers and P_{n} the Perrin numbers,
(b) $\sum_{k=0}^{n+7} \frac{\binom{2 k}{k}^{2}}{(k+1) 4^{k}}$,
(c) $\sum_{k=0}^{\infty}(-1)^{k}\binom{n+1}{k}\binom{2 n-2 k+1}{n}$,
(d) $\sum_{k=0}^{2 n+1}\left(-2 k^{2}+17 k+3\right)$,
(e) $\sum_{k=0}^{n} \frac{1}{n^{2}+k^{2}+1}$,
(f) $\sum_{k=0}^{n} \frac{1}{k^{2}+\sqrt{5} k-1}$,
(g) $\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k}^{3}$.
43. Given the following holonomic sequence

$$
(4 n+1) g_{n+2}+2(4 n-1) g_{n+1}-3(4 n+5) g_{n}=0, \quad g_{0}=1, g_{1}=0
$$

Use Petkovšek's algorithm to compute a closed form of g_{n}.
44. Petkovšek's algorithm finds the solutions 3^{n} and n ! to the recurrence

$$
(n-2) a_{n+2}-\left(n^{2}+3 n-7\right) a_{n+1}+3\left(n^{2}-1\right) a_{n}=0
$$

Compute the two factorizations of the operator corresponding to this recurrence.

