- 37. Let T_n be the number of tilings of a $3 \times n$ rectangle with straight trominoes (i.e., 1×3 and 3×1 pieces).
 - (a) Determine a recurrence relation for T_n .
 - (b) Express the partial sum $s_n = \sum_{k=0}^n T_k$ in terms of T_n .
- 38. Express $s_n = \sum_{k=0}^n a_k$ in terms of a_n, a_{n+1}, \ldots , where the sequence $(a_n)_{n\geq 0}$ is given by the recurrence

$$a_{n+3} = 5a_{n+1} - 4a_n, \qquad a_0 = a_1 = 1, \quad a_2 = 2.$$

- 39. Compute a hypergeometric closed form of the sum $s_n = \sum_{k=0}^n \frac{4}{(2k-1)(2k+1)}$ by applying Gosper's algorithm.
- 40. Show that the harmonic numbers $(H_n)_{n\geq 0}$ are not hypergeometric using Gosper's algorithm.

Hint: You can use the fact that if Gosper's algorithm does not find a telescoper, then the sum cannot be expressed as a linear combination of a fixed number of hypergeometric sequences.