37. Let T_{n} be the number of tilings of a $3 \times n$ rectangle with straight trominoes (i.e., 1×3 and 3×1 pieces).
(a) Determine a recurrence relation for T_{n}.
(b) Express the partial sum $s_{n}=\sum_{k=0}^{n} T_{k}$ in terms of T_{n}.
38. Express $s_{n}=\sum_{k=0}^{n} a_{k}$ in terms of a_{n}, a_{n+1}, \ldots, where the sequence $\left(a_{n}\right)_{n \geq 0}$ is given by the recurrence

$$
a_{n+3}=5 a_{n+1}-4 a_{n}, \quad a_{0}=a_{1}=1, \quad a_{2}=2 .
$$

39. Compute a hypergeometric closed form of the sum $s_{n}=\sum_{k=0}^{n} \frac{4}{(2 k-1)(2 k+1)}$ by applying Gosper's algorithm.
40. Show that the harmonic numbers $\left(H_{n}\right)_{n \geq 0}$ are not hypergeometric using Gosper's algorithm.
Hint: You can use the fact that if Gosper's algorithm does not find a telescoper, then the sum cannot be expressed as a linear combination of a fixed number of hypergeometric sequences.
