29. Suppose the holonomic function $f(x)=\sum_{n \geq 0} a_{n} x^{n}$ satisfies the linear differential equation

$$
x f(x)+(x+1) f^{\prime}(x)-f^{\prime \prime}(x)=0 .
$$

Derive a linear recurrence with polynomial coefficients for the coefficient sequence $\left(a_{n}\right)_{n \geq 0}$. Check whether your result agrees with the bounds on the order and degree given in Theorem 57.
30. The Catalan numbers C_{n} satisfy the linear recurrence

$$
-(4 n+2) C_{n}+(n+2) C_{n+1}=0
$$

Derive a linear differential equation with polynomial coefficients for the generating function $f(x)=\sum_{n \geq 0} C_{n} x^{n}$.
31. Let $f(x)=\sin (x), g(x)=e^{-x^{2}+x+1}$ be the holonomic functions satisfying the differential equations

$$
f(x)+f^{\prime \prime}(x)=0, \quad(1-2 x) g(x)-g^{\prime}(x)=0
$$

Find a linear differential equation with polynomial coefficients for the function $h(x)=$ $f(x)+g(x)$.
Hint: The same idea as in Example 44 can be used. Instead of considering shifts, you can consider derivatives and instead of solving a linear system over \mathbb{Q}, a linear system over $\mathbb{Q}(x)$ has to be solved.
32. Find a linear differential equation with polynomial coefficients for the holonomic functions $f^{\prime}(x)$ and $\int_{x} f(x)$ where f is the function from Exercise 29, i.e., it satisfies

$$
x f(x)+(x+1) f^{\prime}(x)-f^{\prime \prime}(x)=0 .
$$

