25. Determine the hypergeometric series representations of

$$
\frac{1}{x} \log (1+x)=\sum_{n \geq 0} \frac{(-1)^{n}}{n+1} x^{n} \quad \text { and } \quad \cos (x)=\sum_{n \geq 0} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
$$

26. Characterize all sequences that are both C-finite and hypergeometric.

Gauß hypergeometric functions are hypergeometric series of the form

$$
{ }_{2} F_{1}\left(\begin{array}{c}
a, b \tag{1}\\
c
\end{array} ; x\right)=\sum_{n \geq 0} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{x^{n}}{n!} .
$$

27. Let $f(x)$ be the hypergeometric series from equation (1). Show that $f(x)$ satisfies the differential equation

$$
x(1-x) f^{\prime \prime}(x)+(c-(a+b+1) x) f^{\prime}(x)-a b f(x)=0 .
$$

28. Determine the asymptotics of

$$
a_{n}=\binom{2 n+1}{n}^{2} 3^{n}(n+1)
$$

i.e., find a simpler sequence b_{n} with $a_{n} \sim b_{n}(n \rightarrow \infty)$. Check on the computer how fast the quotient $\frac{a_{n}}{b_{n}}$ actually converges to 1 .

