21. (Theorem 42) Show that a sequence $\left(a_{n}\right)_{n \geq 0}$ in \mathbb{K} satisfies a C-finite recurrence

$$
a_{n+r}+c_{r-1} a_{n+r-1}+\cdots+c_{1} a_{n+1}+c_{0} a_{n}=0, \quad n \geq 0
$$

with $c_{i} \in \mathbb{K}, c_{0} \neq 0$, if and only if

$$
\sum_{n \geq 0} a_{n} x^{n}=\frac{p(x)}{1+c_{r-1} x+\cdots+c_{0} x^{r}}
$$

for some polynomial $p(x)$ with degree at most $r-1$.
22. Let $a_{n}=F_{n} L_{n}$, where $\left(F_{n}\right)_{n \geq 0}$ denotes the sequence of Fibonacci numbers and $\left(L_{n}\right)_{n \geq 0}$ the sequence of Lucas numbers. Derive a C-finite recurrence that is satisfied by $\left(a_{n}\right)_{n \geq 0}$.
23. Let $\left(F_{n}\right)_{n \geq 0}$ denote the sequence of Fibonacci numbers. Prove

$$
\sum_{i=1}^{n} F_{i}^{2}=F_{n} F_{n+1}
$$

24. Suppose we have a C-finite sequence $\left(a_{n}\right)_{n \geq 0} \in \mathbb{R}^{\mathbb{N}}$ of order r with companion matrix $C \in \mathbb{R}^{r \times r}$. Then, there is an invertible matrix $S \in \mathbb{C}^{r \times r}$ and a Jordan normal form

$$
J=\left[\begin{array}{lll}
J_{1} & & \\
& \ddots & \\
& & J_{m}
\end{array}\right] \in \mathbb{C}^{r \times r}
$$

where each Jordan block is a square matrix of the form

$$
J_{i}=\left[\begin{array}{cccc}
\lambda_{i} & 1 & & \\
& \lambda_{i} & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{i}
\end{array}\right]
$$

such that $C=S J S^{-1}$. The λ_{i} are the eigenvalues of C, the number of Jordan blocks for an eigenvalue λ_{i} is its geometric multiplicity (i.e., the dimension of the corresponding eigenspace) and the sum of sizes of the Jordan blocks for an eigenvalue λ_{i} is its algebraic multiplicity.
(a) Show that the geometric multiplicity of each eigenvalue is 1 .
(b) Find a formula for J^{n}.
(c) Show that every C-finite sequence has a closed form in the sense of Theorem 40.

Bonus: Show that the sequence of Harmonic numbers $\left(H_{n}\right)_{n \geq 0}$ is not C-finite.

