17. Let x be an indeterminate and $n \in \mathbb{N}$. Show that
(a) $x^{n}=\sum_{k=0}^{n} S_{2}(n, k) x^{\underline{k}}$,
(b) $x^{\underline{n}}=\sum_{k=0}^{n} S_{1}(n, k) x^{k}$.
18. Let the sequence $\left(f_{n}\right)_{n \geq 0}$ be recursively defined by

$$
f_{n+3}-2 f_{n+2}-5 f_{n+1}+6 f_{n}=0, \quad f_{0}=0, f_{1}=8, f_{2}=2 .
$$

What is the companion matrix of this recurrence? Determine the solution of the recurrence analogously to the Fibonacci example presented in the lecture.
19. Let a_{n} denote the number of distinct paths of length $n+1$ from vertex A to vertex B in the graph displayed below.
(a) Determine a recurrence for a_{n}.
(b) Determine a closed form expression of a_{n}.
(c) Determine the generating function of a_{n}.

20. Prove Theorem 40 for recurrences of order two, i.e., for $c_{0} \neq 0, c_{1} \in \mathbb{K}$ with

$$
x^{2}+c_{1} x+c_{0}=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)
$$

with $\alpha_{1} \neq \alpha_{2} \in \mathbb{K}$, show that $\left(\alpha_{1}^{n}\right)_{n \geq 0},\left(\alpha_{2}^{n}\right)_{n \geq 0}$ form a basis for the solutions of the recurrence

$$
a_{n+2}+c_{1} a_{n+1}+c_{0} a_{n}=0, \quad n \geq 0
$$

and that if $\alpha_{1}=\alpha_{2}=\alpha$ then $\left(\alpha^{n}\right)_{n \geq 0},\left(n \alpha^{n}\right)_{n \geq 0}$ form a basis for the solutions of the above recurrence.

