13. Two sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0}$ which are non-zero from some index n_{0} on are called asymptotically equivalent if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$. We write $a_{n} \sim b_{n}(n \rightarrow \infty)$.
(1) Show that \sim is an equivalence relation.
(2) Show that for every rational function $r(x) \in \mathbb{K}(x)$ there is a $c \in \mathbb{K}$ and $k \in \mathbb{Z}$ such that $r(n) \sim c n^{k}$.
(3) Show that the harmonic numbers H_{n} cannot be expressed as a rational function, i.e., there is no rational function $r(x) \in \mathbb{K}(x)$ such that $r(n)=H_{n}$ for all $n \in \mathbb{N}$.
14. Determine a closed form of the exponential generating function $F(x)=\sum_{n \geq 0} \frac{c_{n}}{n!} x^{n}$ for
(a) $c_{n}=n^{2}$,
(b) $c_{n}=\frac{1}{n+1}$.

Recall the definition of Stirling numbers of the second kind $S_{2}(n, k)$ as the number of ways to partition an n-element set into a disjoint union of k nonempty subsets. They satisfy the recurrence relation

$$
S_{2}(n, k)=S_{2}(n-1, k-1)+k S_{2}(n-1, k), \quad n, k \geq 1,
$$

with initial values $S_{2}(0,0)=1$ and $S_{2}(n, 0)=0$ for $n \geq 1$, and $S_{2}(n, k)=0$ for $k>n \geq 1$.
15. Show that for $k \in \mathbb{N}$

$$
\sum_{n=0}^{\infty} S_{2}(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(\mathrm{e}^{x}-1\right)^{k},
$$

and that

$$
\sum_{n, k=0}^{\infty} S_{2}(n, k) \frac{x^{n}}{n!} y^{k}=\exp \left(y\left(\mathrm{e}^{x}-1\right)\right)
$$

16. Let the signless Stirling numbers of the first kind $C(n, k)$ denote the number of permutations of $\{1,2, \ldots, n\}$ with exactly k cycles. Derive a recurrence relation for $C(n, k)$. Starting from this recurrence, derive a recurrence relation for the Stirling numbers of the first kind $S_{1}(n, k):=(-1)^{n-k} C(n, k)$.
