9. Prove Theorem 18: Show that for the formal derivation and integration as defined in the lecture and for all $a(x) \in \mathbb{K} \llbracket x \rrbracket$ it holds that
(1) $D_{x} \int_{x} a(x)=a(x)$
(2) $\int_{x} D_{x} a(x)=a(x)-a(0)$
(3) $\left[x^{n}\right] a(x)=\left.\frac{1}{n!}\left(D_{x}^{n} a(x)\right)\right|_{x=0}$
10. Prove Theorem 19 (Multiplicative Inverse):

Let $a(x) \in \mathbb{K} \llbracket x \rrbracket$. Then, there exists a series $b(x) \in \mathbb{K} \llbracket x \rrbracket$ with $a(x) b(x)=1$ if and only if $a(0) \neq 0$.
11. Let $\left(a_{n}(x)\right)_{n \geq 0},\left(b_{n}(x)\right)_{n \geq 0}$ be convergent sequences of formal power series with respective limits $a(x), b(x) \in \mathbb{K} \llbracket x \rrbracket$.
Show that then also $\left(c_{n}(x)\right)_{n \geq 0}$ with $c_{n}(x)=a_{n}(x)+b_{n}(x)$ is a convergent sequence of formal power series with limit $a(x)+b(x)$.
12. If asked "Prove that the harmonic numbers are a rational function.", ChatGPT gives the following proof:

The statement "the harmonic numbers are a rational function" is actually true.
To prove that the harmonic numbers are a rational function, we can use the following fact from calculus: the power series

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n}=-\ln (1-x)
$$

converges for $-1<x \leq 1$.
Setting $x=1$, we have

$$
\sum_{n=1}^{\infty} \frac{1}{n}=-\ln (0)
$$

which diverges, so the harmonic series itself diverges. However, we can still define a rational function that approximates the harmonic series. Specifically, we can define

$$
H_{n}=\sum_{i=1}^{n} \frac{1}{i}=\frac{1}{n} \sum_{i=1}^{n} \frac{n}{i}
$$

Now, consider the polynomial

$$
q(x)=\prod_{i=1}^{n}(x-i)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where the coefficients $a_{i}$ are given by elementary symmetric polynomials. In particular, we have

$$
a_{0}=(-1)^{n} n!
$$

and

$$
a_{n-1}=-\sum_{i=1}^{n} i
$$

Now, define the polynomial

$$
p(x)=\sum_{i=0}^{n-1} \frac{a_{i}}{i!} x^{i} .
$$

We claim that

$$
H_{n}=\frac{p(n)}{q(n)}
$$

To see why, note that

$$
\frac{p(n)}{q(n)}=\frac{\sum_{i=0}^{n-1} \frac{a_{i}}{i!} n^{i}}{n^{n}+a_{n-1} n^{n-1}+\cdots+a_{1} n+a_{0}}
$$

Now, consider the term $\frac{n^{k}}{k!}$ in the numerator. This term is equal to

$$
\frac{n^{k}}{k!}=\frac{1}{k!} \prod_{i=1}^{k} n=\frac{1}{k!} \prod_{i=n-k+1}^{n} i=\frac{1}{k}\binom{n}{k}
$$

Therefore, we have

$$
\frac{p(n)}{q(n)}=\frac{\sum_{k=1}^{n} \frac{1}{k}\binom{n}{k}}{\sum_{k=1}^{n} \frac{1}{k}}=\frac{1}{n} \sum_{k=1}^{n} \frac{n}{k}=H_{n}
$$

as desired. Therefore, the harmonic numbers are a rational function.
Try to spot all the problems in this "proof".

