- 5. Determine the generating function $F(x) = \sum_{n \ge 0} c_n x^n$ for
 - (a) $c_n = n^2$.
 - (b) $c_n = \frac{1}{n+1}$.
- 6. Show that $(\mathbb{K}^{\mathbb{N}}, +, \cdot)$ is a commutative ring with one.
- 7. Show that $(\mathbb{K}[x], +, \cdot)$ is an integral domain.
- 8. Show that the map $D_x : \mathbb{K}[\![x]\!] \to \mathbb{K}[\![x]\!]$ defined as

$$D_x \sum_{n=0}^{\infty} a_n x^n := \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n,$$

turns $\mathbb{K}[\![x]\!]$ into a differential ring.