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Algorithmic Combinatorics

The concrete tetrahedron:

recurrence equations generating functions

asymptotics

symbolic summation

1 Introduction

Problem: sort a given array A of numbers

1.1 Selection Sort

Given: A = [a1, a2, . . . , an] (an array of numbers of length n)

S1 determine ak = min(A)

S2 swap a1 and ak (so that the first position is correct)

S3 GOTO S1 with rest(A)

Example 1. Let A = [6, 1, 5, 8, 4, 3, 7, 2], then algorithm proceeds as follows:

[6, 1, 5, 8, 4, 3, 7, 2], [1, 2, 3, 4, [8, 5, 7, 6]]

[1, [6, 5, 8, 4, 3, 7, 2]], [1, 2, 3, 4, 5, [8, 7, 6]]

[1, 2, [5, 8, 4, 3, 7, 6]], [1, 2, 3, 4, 5, 6, [7, 8]]

[1, 2, 3, [8, 4, 5, 7, 6]], [1, 2, 3, 4, 5, 6, 7, [8]]

Question: How many comparisons were carried out?
Let

c(n) = the number of comparisons in Selection Sort for an array of n numbers.

Then, in the example above, we need 7,6,5,4,3,2,1 comparisons in each step and thus

c(8) = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28

and in general, we have c(n) =
∑n−1

k=1 k. What does this sum evaluate to?
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Method 1 Lay down pebbles in two colors as follows:

For the example, we have 7 rows and 8 columns, so 7 · 8 = 56 pebbles. Since we put
twice as many pebbles as needed, we need to divide by two and obtain c(8) = 7 · 8/2 = 28.

In general, we have n − 1 rows and n columns and by the same argument, we obtain
c(n) = n(n− 1)/2.

Method 2 Note that

(k + 1)2 − k2 = k2 + 2k + 1− k2 = 2k + 1,

and hence, by telescoping,
n−1∑
k=1

(2k + 1) = n2 − 1.

Using this, we have,
n−1∑
k=1

(2k + 1) = 2
n−1∑
k=1

k +
n−1∑
k=1

1 = n2 − 1.

Since
∑n−1

k=1 1 = n− 1, this gives

2
n−1∑
k=1

k = n2 − 1− (n− 1) = (n− 1)(n+ 1)− (n− 1) = (n− 1)n,

and with this, we have a formal proof of
∑n−1

k=1 k = n(n− 1)/2 = c(n).
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1.2 Quick Sort

This was invented by HOARE in the 1960s for writing a program translating one language
into another.

Given: A = [a1, a2, . . . , an] (an array of numbers of length n)

S1 pick a (random) number ak from the array −→ Pivot

S2 go through the array and put everything smaller than the Pivot to the left,
and everything bigger than the Pivot to the right (split A \ {ak} into two
arrays A1, A2)

S3 GOTO S1 with the two arrays A1, A2

Example 2. We consider again the same list as before

How many comparisons are needed in this example to sort the given array?
We have 7 comparisons in the first step, then 3 and 2 in the second, and 1 in the last,

that is,
c(8) = 7 + 3 + 2 + 1 = 13 < 28.

But: Quick Sort does not always need 13 comparisons to sort a list of length 8. In the
worst case, it behaves as Selection Sort.

However: On average, Quick Sort performs better than Selection Sort.

Let

a(n) = the average number of comparisons needed to quicksort an array of n numbers.

Let us consider some special cases:

• a(0) = 0 (nothing needs to be sorted)
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• a(1) = 0 (sorted already)

• a(2) = 1 (sorted by a single comparison)

• a(3) =? There are three possible choices for the Pivot: the minimal/middle/maximal
element.

Hence, we have
a(3) = 2 + 1

3
(0 + 1 + 0 + 0 + 1 + 0) = 8

3
.

Now for the general case: say the Pivot is the k-largest element, then

• n− 1 comparisons for splitting ;

• k − 1 smaller elements go the left, n− k larger elements go to the right.

Thus we have for n ≥ 1

a(n) = n− 1 +
1

n

n∑
k=1

(a(k − 1) + a(n− k)) , with a(0) = 0.

This is not yet a simple closed form, but a recursive formula that allows to compute a(n)
for all n ∈ N.

n 0 1 2 3 4 5 6 7
a(n) 0 0 1 8/3 29/6 37/5 103/10 472/35≈13
c(n) 0 0 1 3 6 10 15 21

Observation: c(n) grows much faster than a(n)
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1) Simplify With

n∑
k=1

a(n− k) = a(n− 1) + a(n− 2) + · · ·+ a(1) + a(0) =
n−1∑
k=0

a(k) =
n∑
k=1

a(k − 1),

and

a(n) = n− 1 +
1

n

n∑
k=1

(a(k − 1) + a(n− k)) = n− 1 +
1

n

n∑
k=1

a(k − 1) +
1

n

n∑
k=1

a(n− k),

follows

a(n) = n− 1 +
2

n

n−1∑
k=0

a(k), n ≥ 1, a(0) = 0. (1)

2) Eliminate the sum Shifting n in (1) by one and subtracting (1) after clearing de-
nominators gives a sum-free recurrence:

(n+ 1)a(n+ 1) = (n+ 1)n+ 2
n∑
k=0

a(k), n ≥ 0

na(n) = n(n− 1) + 2
n−1∑
k=0

a(k), n ≥ 1

(n+ 1)a(n+ 1)− na(n) = n(n+ 1)− n(n− 1)︸ ︷︷ ︸
=2n

+2a(n), n ≥ 1.

Plugging in n = 0 shows that this recurrence holds from n ≥ 0 on:

1 · a(1)− 0 · a(0) = 2 · 0 + 2 · a(0) ⇔ 0 = 0,

hence
(n+ 1)a(n+ 1)− (n+ 2)a(n) = 2n, n ≥ 0, a(0) = 0. (2)

Question: Can we find a closed form solution to this recurrence?

3) Solve the homogeneous equation Consider

(n+ 1)h(n+ 1)− (n+ 2)h(n) = 0, n ≥ 0.

We have

h(n+ 1) =
n+ 2

n+ 1
h(n)

=
n+ 2

n+ 1

n+ 1

n
h(n− 1) =

n+ 2

n
h(n− 1)

= · · · = (n+ 2)h(0).

So, h(n) = (n+ 1)h(0) for n ≥ 1.
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4) Variation of the constant Make an ansatz: a(n) = (n+ 1)g(n). Since a(0) = 0, we
have g(0) = 0.

Plug this ansatz into the inhomogeneous recurrence (2):

(k + 1)a(k + 1)− (k + 2)a(k) = 2k

(k + 1)(k + 2)g(k + 1)− (k + 2)(k + 1)g(k) = 2k

g(k + 1)− g(k) =
2k

(k + 1)(k + 2)
,

and sum over both sides for k = 0, . . . , n:

n∑
k=0

(g(k + 1)− g(k)) =
n∑
k=0

2k

(k + 1)(k + 2)
.

By telescoping and using g(0) = 0 the left hand side equals g(n+ 1).
We define the nth Harmonic number as

Hn =
n∑
k=1

1

k
, n ≥ 0.

With this summarizing we obtain:

g(n) =
n−1∑
k=0

2k

(k + 1)(k + 2)
= 2Hn +

4

n+ 1
− 4.

Using the closed form for g(n), we obtain for the average number of comparisons to quick-
sort an array of length n,

a(n) = (n+ 1)g(n) = 2(n+ 1)Hn − 4n. (3)
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5) Generating Functions An alternative representation of a sequence (cn)n≥0 is through
its generating function defined as the formal power series

F (z) =
∑
n≥0

cnz
n.

This is an object that operations from calculus like, e.g., integration or differentiation can
be applied to. We are not concerned with convergence in the analytic sense for these formal
power series. More details are given in the next section.

Example 3. Let (cn)n≥0 be the constant sequence with cn = 1 for n ≥ 0.
Then F (z) =

∑
n≥0 z

n and we also write F (z) = 1
1−z .

Example 4. The harmonic numbers (Hn)n≥0 do not have a simple closed form. What
about the generating function H(z) =

∑
n≥0Hnz

n?
First observe that

Hn+1 = Hn +
1

n+ 1
, n ≥ 0, H0 = 0.

Now we have
H(z) =

∑
n≥0

Hnz
n =

∑
n≥1

Hnz
n =

∑
n≥0

Hn+1z
n+1

=
∑
n≥0

(
Hn +

1

n+ 1

)
zn+1

= z
∑
n≥0

Hnz
n +

∑
n≥0

1

n+ 1
zn+1.

For now we argue informally (this will be put on formal grounds in the next section):∑
n≥0

zn+1

n+ 1
=
∑
n≥0

∫ z

0

snds =

∫ z

0

∑
n≥0

snds = − log(1− z).

Putting things together this yields

H(z) = z
∑
n≥0

Hnz
n +

∑
n≥0

1

n+ 1
zn+1 = zH(z)− log(1− z)

⇒ (1− z)H(z) = − log(1− z)

⇒ H(z) =
1

1− z
log

(
1

1− z

)
With this, we have derived a closed form representation of the harmonic numbers that

contains all the information about the sequence.

Let us return to Quick Sort. What is A(z) =
∑

n≥0 a(n)zn? We had

a(n) = 2(n+ 1)Hn − 4n
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and hence
A(z) = 2

∑
n≥0

(n+ 1)Hnz
n − 4

∑
n≥0

nzn.

Let’s consider the two formal power series separately:

• Similar to above we now argue informally invoking the derivative:∑
n≥0

nzn = z
∑
n≥1

nzn−1 = z
∑ d

dz
zn = z

d

dz

∑
n≥1

zn.

Since∑
n≥1

zn =
∑
n≥0

zn − 1 =
1

1− z
− 1 =

z

1− z
and

(
z

1− z

)′
=

1

(1− z)2
,

we have ∑
n≥0

nzn =
z

(1− z)2
.

• Analogously for the second formal power series,∑
n≥0

(n+1)Hnz
n =

d

dz

∑
n≥0

Hnz
n+1 =

d

dz
(zH(z)) = · · · = 1

(1− z)2
log

1

1− z
+

z

(1− z)2
.

Putting things together, this yields

A(z) = 2
∑
n≥0

(n+ 1)Hnz
n − 4

∑
n≥0

nzn

=
2

(1− z)2
log

1

1− z
− 2z

(1− z)2

=
2

(1− z)2

(
log

1

1− z
− z
)
.
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6) Apply Asymptotics Euler already showed that the following limit exists and is
finite,

lim
n→∞

(Hn − log n) =: γ.

γ is known as Euler’s constant and approximately γ ≈ 0.5772156649.

Definition 5. A sequence (an)n≥0 is asymptotically equivalent to a sequence (bn)n≥0,
written an ∼ bn(n→∞), if and only if,

lim
n→∞

an
bn

= 1.

Hence, Hn ∼ log n(n→∞) and as a consequence we have

a(n) = 2(n+ 1)Hn − 4n ∼ 2(n+ 1)Hn ∼ 2nHn

and thus a(n) ∼ 2n log n(n→∞).
Recall that for the number of comparisons in Selection Sort we had, c(n) = n(n−1)/2 ∼

n2

2
.

Example 6. For n = 100, we have c(100) = 4950, a(100) ∼ 921.034 and

a(100) =
903367262393855649866102850871018847764411

1394407504594249543290676178706246071136
≈ 647.85
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2 Formal Power Series

Throughout we fix: Let K be a field containing Q (i.e., a field of characteristic zero). The
natural numbers are N = {0, 1, 2, 3, . . . } and N∗ = N \ {0}.

2.1 Definitions and basic facts

We use the notation
KN := {f : N→ K}

for the set of all functions from N to K, i.e., the set of all infinite sequences in K.

Definition 7. (termwise operations) Let (an)n≥0, (bn)n≥0 ∈ KN, α ∈ K:

(1) (an)n≥0 + (bn)n≥0 := (an + bn)n≥0 (termwise addition)

(2) α · (an)n≥0 := (αan)n≥0 (scalar multiplication)

(3) (an)n≥0 � (bn)n≥0 := (anbn)n≥0 (termwise multiplication/ Hadamard product)

Note:

• α · (an)n≥0 = (α)n≥0 � (an)n≥0

• Definition 7(1)+(2) turns KN into a vector space

• (KN,+,�) is a ring (even a commutative ring with identity 1 = (1, 1, 1, 1, . . . )) BUT
not a field and not even an integral domain (i.e., there are zero divisors - see next
example).

Example 8. Let
(an)n≥0 = (0, 0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, . . . )

and
(bn)n≥0 = (0, 1, 0, 3, 0, 5, 0, 7, 0, 9, 0, . . . ),

then
(an)n≥0 � (bn)n≥0 = (0, 0, 0, 0, . . . ).

One can define another product on KN:

Definition 9. Let (an)n≥0, (bn)n≥0 ∈ KN:

(an)n≥0 · (bn)n≥0 := (cn)n≥0

where

cn =
n∑
k=0

akbn−k.

We also simply write (an)n≥0 · (bn)n≥0 = (an)n≥0(bn)n≥0.

Theorem 10. (KN,+, ·) is a commutative ring with identity.
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Notation. For (an)n≥0 ∈ (KN,+, ·) we write∑
n≥0

anx
n := (an)n≥0,

and for (KN,+, ·) we write (K[[x]],+, ·) (in short K[[x]]) and call it the ring of formal power
series.

We call a(x) =
∑

n≥0 anx
n the generating function of (an)n≥0, BUT we do NOT regard

it as a function mapping points x from one domain to another.
In particular: it is pointless to ask for the radius of convergence of a formal power

series, e.g.,

a(x) =
∑
n≥0

n!xn = (n!)n≥0 ∈ K[[x]].

Still: many actions can be performed as if dealing with analytic functions.

Also: we use common notation for functions such as

1

1− x
=
∑
n≥0

xn = (1, 1, 1, 1, 1, . . . ) = (1)n≥0

exp(x) =
∑
n≥0

xn

n!
= (1, 1, 1/2, 1/6, . . . ) = (1/n!)n≥0

Theorem 11. (K[[x]],+, ·) (or (KN,+, ·)) is an integral domain.

Definition 12. (coefficient functional) For a(x) =
∑

n≥0 anx
n ∈ K[[x]] and k ∈ N,

[xk]a(x) := ak,

in particular for k = 0 (the constant term of a(x)):

a(x)
∣∣
x=0

:= a(0) := [x0]a(x) := a0.

Note:

• in general it is NOT meaningful to “evaluate” a formal power series at any x 6= 0

• [xk] : K[[x]]→ K is a linear map

Example 13. (Generating function of the harmonic numbers) Recall the definition of
harmonic numbers,

Hn =
n∑
k=1

1

k
=

n−1∑
k=0

1

k + 1
, H0 = 0,

and let H(z) =
∑

n≥0Hnz
n be the generating function for this sequence. Then,

H(z) =
∑
n≥0

Hnz
n = z

∑
n≥0

Hn+1z
n = z

∑
n≥0

n∑
k=0

1

k + 1
zn.
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Since, (
n∑
k=0

1

k + 1
· 1

)
n≥0

=

(
1

n+ 1

)
n≥0
· (1)n≥0,

H(z) can be viewed as the generating function of the Cauchy product of two sequences and
analogously as the product of the respective generating functions.

The constant sequence 1 gives rise to the geometric series, i.e., G(z) =
∑

n≥0 z
n = 1

1−z
and we have (where the proof (4) is a homework problem),

F (z) =
∑
n≥0

1

n+ 1
zn =

1

z
log

1

1− z
. (4)

Summarizing,

H(z) = F (z)G(z) =
1

1− z
log

1

1− z
.

2.2 Differentiation and division

Before discussing differentiation, we need to define (formal) derivation:

Definition 14. Let (R,+, ·) be a commutative ring and let D : R→ R be such that for all
a, b ∈ R,

(1) D(a+ b) = D(a) +D(b)

(2) D(a · b) = D(a) · b+ a ·D(b) (Leibniz rule)

Then D is called a (formal) derivation on R and the pair (R,D) is called a differential
ring.

The definition for field instead of ring is analogous.
(K[[x]],+, ·) (or just K[[x]]) is turned into a differential ring (K[[x]], Dx) by

Dx

∑
n≥0

anx
n :=

∑
n≥0

(n+ 1)an+1x
n.

Note that

Dx

∑
n≥0

anx
n =

∑
n≥0

anDxx
n =

∑
n≥0

annx
n−1 =

∑
n≥1

annx
n−1
∑
n≥0

an+1(n+ 1)xn.

Example 15.

Dx

∑
n≥0

1

n!
xn =

∑
n≥0

(n+ 1)
1

(n+ 1)!
xn =

∑
n≥0

1

n!
xn.

This motivates the definition

exp(x) :=
∑
n≥0

1

n!
xn ∈ K[[x]].
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Definition 16. Let (R,D) be a differential ring. The elements c ∈ R with D(c) = 0 are
called the constants of (R,D).

What are the constants in (K[[x]], Dx)?

Definition 17. (formal integration) We define the map
∫
x

: K[[x]]→ K[[x]] by∫
x

∑
n≥0

anx
n :=

∑
n≥1

an−1
n

xn.

Note: these are NOT integrals with arbitrary endpoints (“integrals from zero to x”).
With the definitions and notations introduced so far the following results from caclulus

carry over:

Theorem 18. For all a(x) ∈ K[[x]] we have

(1) the first fundamental theorem of calculus:

Dx

∫
x

a(x) = a(x).

(2) the second fundamental theorem of calculus:∫
x

Dxa(x) = a(x)− a(0).

(3) Taylor’s formula:
[xn]a(x) = 1

n!
(Dn

xa(x))
∣∣
x=0

.

Note: First, let’s see what the action of a multiplication by x on a formal power series
is. For this, consider x as an element in K[[x]], i.e., x =

∑
n≥0 bnx

n with

bn =

{
1 n = 1,

0 else.

Then we have, using the definition of the Cauchy product,

x
∑
n≥0

anx
n =

∑
n≥0

bnx
n
∑
n≥0

anx
n =

∑
n≥0

n∑
k=0

bkan−kx
n =

∑
n≥1

an−1x
n,

i.e., in KN,
(0, 1, 0, 0, 0, . . . ) · (a0, a1, a2, a3, . . . ) = (0, a0, a1, a2, a3, . . . ).

Hence the multiplication by x corresponds to a shift by one to the right, a forward shift.
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Next consider the Hadamard product of the sequence (n)n≥0 with an arbitray element
in KN,

(0, 1, 2, 3, 4, . . . )︸ ︷︷ ︸
=
∑
n≥0

nxn

� (a0, a1, a2, a3, a4, . . . )︸ ︷︷ ︸
=
∑
n≥0

anx
n

= (0, a1, 2a2, 3a3, 4a4, . . . )︸ ︷︷ ︸
=
∑
n≥0

nanx
n

.

Recall that Dx

∑
n≥0 anx

n =
∑

n≥0(n + 1)an+1x
n. Hence, putting everything together, we

have ∑
n≥0

nxn �
∑
n≥0

anx
n = xDx

∑
n≥0

anx
n.

The map θx := xDx( : K[[x]] → K[[x]]) is also a (formal) derivation on K[[x]] called the
(Cauchy-) Euler derivation.

Next, let’s have a look at the backwards shift for a(x) =
∑

n≥0 anx
n = (a0, a1, a2, a3, . . .):

(a1, a2, a3, . . . ) =
∑
n≥0

an+1x
n =

∑
n≥1

anx
n−1 =

1

x

(∑
n≥0

anx
n − a(0)

)
.

Note:

• Without subtracting a(0) the division by x is NOT defined.

• x−1 /∈ K[[x]]

The constant term decides whether a multiplicative inverse exists.

Theorem 19. (multiplicative inverse) Let a(x) ∈ K[[x]]. Then there exists a b(x) ∈ K[[x]]
with a(x) · b(x) = 1, if and only if a(0) 6= 0.

Notation: For b(x) as defined above we write

b(x) = a(x)−1 =
1

a(x)
.

Example 20. ∑
n≥0

xn = (1− x)−1 ∈ K[[x]].

Let
a(x) = 1− x =

∑
n≥0

anx
n, with (an)n≥0 = (1,−1, 0, 0, 0, 0, . . . ),

and
b(x) =

∑
n≥0

xn, i.e., bn = 1, n ≥ 0.

Then

(1− x)
∑
n≥0

xn =
∑
n≥0

n∑
k=0

akbn−kx
n.
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Since an = 0 for n ≥ 2, we have

n = 0 : a0b0 = 1, n ≥ 1 : a0bn + a1bn−1 = 1− 1 = 0.

Note that the inverse of a simple a(x) ∈ K[[x]] might not have a simple description.

Example 21.(∑
n≥0

n!xn

)−1
= 1− x− x2 − 3x3 − 13x4 − 71x5 − 461x6 − · · · =

∑
n≥0

bnx
n.

To learn more about this sequence (or any other sequence), to see if it may have appeared
in some other context, one can use the The On-Line Encyclopedia of Integer Sequences
founded by Neil Sloane in 1964,

https://oeis.org/

What about the quotients of formal power series?
Let a(x) =

∑
n≥0 anx

n, b(x) =
∑

n≥0 bnx
n ∈ K[[x]] with b(x) 6= 0 (i.e., not all bn are

zero).
Then there exist α, β ∈ N and A(x), B(x) ∈ K[[x]] such that,

a(x) = xαA(x) and b(x) = xβB(x) with A(0) 6= 0, B(0) 6= 0.

Since K[[x]] is an integral domain we can consider the quotients

a(x)

b(x)
=
xα

xβ
A(x)

B(x)
.

The quotient field of K[[x]] can be described by

{xγc(x) | γ ∈ Z, c(x) ∈ K[[x]] with c(0) 6= 0} =

{
∞∑

n=−N

cnx
n | for some N ∈ Z

}
=: K((x)).

We call K((x)) the set of formal Laurent series.

Definition 22. For c(x) ∈ K((x)) we define the order of c(x) as

ord c(x) := smallest index n with cn 6= 0.

Note: Since K[[x]] ⊆ K((x)), the notion of order exists for K[[x]].
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2.3 Convergence in K[[x]]

Not every substitution is meaningful in K[[x]]. Consider, e.g.,∑
n≥0

(1 + x)n

n!
= e1+x = e1ex = e

∑
n≥0

xn

n!
.

This reasoning is OK in analysis for all x ∈ C,
∑

n≥0
xn

n!
is well defined in C[[x]], but the

left hand side
∑

n≥0
(1+x)n

n!
is not defined in C[[x]].

Next, consider the substitution x 7→ x2 + x in a(x) =
∑

n≥0 anx
n ∈ K[[x]]. Firstly,

(x2 + x)n = xn(1 + x)n = xn
n∑
k=0

(
n

k

)
xk.

Secondly, substitute in a(x),

∑
n≥0

an(x2 + x)n =
∑
n≥0

anx
n

n∑
j=0

(
n

j

)
xj

=
∑
n≥0

n∑
j=0

(
n

j

)
anx

n+j

=
∑
n,j≥0

(
n

j

)
anx

n+j

=
∑
n,j≥0

(
n− j
j

)
an−jx

n

=
∑
n≥0

(
n∑
j=0

(
n− j
j

)
an−j

)
xn.

From this representation it is obvious that every coefficient is just a finite sum.
In order to generalize this reasoning it is convenient to introduce the notion of a limit

of sequences in K[[x]].

Definition 23. (formal limit) Given a sequence (ak(x))k≥0 in K[[x]] and a(x) ∈ K[[x]]:

lim
k→∞

ak(x) = a(x) ⇐⇒ ∀n∃k0∀k ≥ k0 : ord
(
a(x)− ak(x)

)
> n.

So, ak(x) converges formally to a(x), if they get arbitrarly close in the sense that their
first terms agree up to a high order, i.e.,

lim
k→∞

ord
(
a(x)− ak(x)

)
=∞.
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Back to the first example in this section: the claim was

@ lim
k→∞

fk(x) ∈ K[[x]] with fk(x) =
k∑

n=0

(1 + x)n

n!
.

Suppose

lim
k→∞

fk(x) =
∑
n≥0

anx
n ∈ K[[x]],

then there is a k0 such that for all k ≥ k0, [x0]fk(x) = a0.

Now let k ≥ k0,

[x0]fk+1(x) = [x0]
k+1∑
n=0

(1 + x)n

n!
= [x0]

(
fk(x) +

(1 + x)k+1

(k + 1)!

)
= a0 +

1

(k + 1)!
6= a0.

Note: if (an(x))n≥0 and (bn(x))n≥0 are convergent series in K[[x]], then their sum (prod-
uct) converges in K[[x]] to the sum (product) of the respective limits.

Definition 24. (composition in K[[x]]) Let a(x) =
∑

n≥0 anx
n ∈ K[[x]] and b(x) ∈ K[[x]]

with b(0) = 0. Then

(a ◦ b)(x) :=
∑
n≥0

anb(x)n ∈ K[[x]].

By the discussion above, the composition is well-defined.

Definition 25. Let x be an indeterminate and n ∈ N:

(1) xn := x(x− 1)(x− 2) · · · (x− n+ 1) (falling factorial)

(2) xn := x(x+ 1)(x+ 2) · · · (x+ n− 1) (rising factorial)

(3)

(
x

n

)
:=

xn

n!
(binomial coefficient)

Note that

• x0 = x0 =
(
x
0

)
= 1

•
(
x

n

)
= 0 for n < 0

• deg xn = deg xn = deg
(
x
n

)
= n, i.e., all are polynomials of degree n and hence from

bases for K[x]

Lemma 26. (Reflection formula) Let x be an indeterminate and k ∈ N:(
x

k

)
= (−1)k

(
k − x− 1

k

)
17



Proposition 27. Let λ ∈ C and x an indeterminate:

(1 + x)λ =
∑
n≥0

(
λ

n

)
xn.

Example 28. With this proposition we have

• for the square root

√
1 + x = (1 + x)1/2 =

∑
n≥0

(
1/2

n

)
xn =

∑
n≥0

(1/2)n

n!
xn.

• using the reflection formula (Lemma 26)

(1− x)−1 =
∑
n≥0

(
−1

n

)
(−x)n =

∑
n≥0

(
−1

n

)
︸ ︷︷ ︸

= (−1)n
(
n+ 1− 1

n

)(−1)nxn =
∑
n≥0

xn.

Example 29. Let f(x) ∈ C[[x]] with f(0) = 0 and λ ∈ C. Then

(1 + f(x))λ :=
∑
n≥0

(
λ

n

)
f(x)n ∈ C[[x]].

Assume temporarily that K = C or K = R. Then we can ask the question When does
a formal power series correspond to an analytic function?

Theorem 30. (Transfer principle) Let a(z) =
∑

n≥0 anz
n and b(z) =

∑
n≥0 bnz

n be ana-
lytic in an open neighbourhood U of the origin. Then

a(z) = b(z) ∀z ∈ U =⇒ an = bn ∀n ≥ 0.

Caution: Not every formal power series corresponds to an analytic function, so the converse
of the transfer principle is not true in general.

Example 31. In C[[x]] we have

exp (log(1 + x)) = 1 + x,

where

exp(x) :=
∑
n≥0

xn

n!
, and log(1 + x) :=

∑
n≥1

(−1)n+1

n
xn,

because this identity holds for the corresponding analytic functions.
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2.4 Exponential generating function

Let (an)n≥0 ∈ KN. We denote by

a(x) :=
∑
n≥0

an
n!
xn

the exponential generating function of (an)n≥0. If we need to distinguish, then a(x) =∑
n≥0 anx

n is called ordinary generating function.
WHY: Sometimes the exponential generating function has a simple closed form, whereas
the ordinary generating function has not.

Example 32. Let an = 1
2

n
. Then

∑
n≥0

1
2

n

n!
= (1 + x)1/2,

but
∑

n≥0
1
2

n
xn does not have a simple closed form.

The normalization may give a nice closed form and still contains all the information
about the original sequence!

2.5 Bivariate formal power series

The ring of formal power series in two variables can be defined as

K[[x, y]] := K[[x]][[y]] (' K[[y]][[x]]).

In this section, we only discuss bivariate formal power series, but the generalization to the
multivariate case is immediate.

Example 33.
1− x− xy = (1− x+ 0 · x2 + 0 · x3 + · · · ) · y0

+ (0− x− 0 · x2 + 0 · x3 + · · · ) · y1

+ 0 · y2 + 0 · y3 + · · · ,

i.e., we consider this series as a series in y over K[[x]]. By extending the notation for the
coefficient functional we have

[y0](1− x− xy) = 1− x ∈ K[[x]]

and
[x0](1− x) = 1 6= 0,

hence 1− x is invertible in K[[x]] and consequently 1− x− xy is invertible in K[[x, y]].
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Still, knowing that 1− x− xy is invertible, the question remains: What is the inverse
in K[[x, y]]?

1

1− x− xy
=

1

1− x
· 1

1− x
1−xy

=
1

1− x
y0 +

x

(1− x)2
y1 +

x2

(1− x)3
y2 + · · ·

= (1 + x+ x2 + x3 + . . . )y0 + (x+ 2x2 + 3x3 + 4x4 + . . . )y1

+ (x2 + 3x3 + 6x4 + 10x5 + . . . )y2 + (x3 + 4x4 + 10x5 + 20x6 + . . . )y3 + . . .

Exactly as in the univariate case, the bivariate formal power series corresponds to a bivari-
ate coefficient sequence. What is the coefficient sequence above, i.e. what is

[xn][yk]
1

1− x− xy
=?

With f(x, y) = 1/(1− x− xy), we have

n = 0 : [x0][y0]f(x, y) = 1, [x0][yk]f(x, y) = 0, for k > 0,

n = 1 : [x1][y0]f(x, y) = 1, [x1][y1]f(x, y) = 1, [x1][yk]f(x, y) = 0, for k > 1,

n = 2 : [x2][y0]f(x, y) = 1, [x2][y1]f(x, y) = 2, [x2][y2]f(x, y) = 1,

[x2][yk]f(x, y) = 0, for k > 2,

n = 3 : [x3][y0]f(x, y) = 1, [x3][y1]f(x, y) = 3, [x3][y2]f(x, y) = 3, [x3][yk] = 1,

[x3][yk]f(x, y) = 0, for k > 3, . . .

It turns out that the coefficient sequence is the binomial coefficient,

1

1− x− xy
=
∑
n,k≥0

(
n

k

)
xnyk ∈ K[[x, y]].

Similar to what we have seen in the QuickSort example, also operations on multivariate
formal power series correspond to operations on multivariate sequences. We have,

(1− x− xy)
∑
n,k≥0

(
n

k

)
xnyk = 1. (5)

Expanding the LHS gives∑
n,k≥0

(
n

k

)
xnyk −

∑
n,k≥0

(
n

k

)
xn+1yk −

∑
n,k≥0

(
n

k

)
xn+1yk+1,
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and shifting indices,∑
n,k≥0

(
n

k

)
xnyk −

∑
n≥1

∑
k≥0

(
n− 1

k

)
xnyk −

∑
n≥1

∑
k≥1

(
n− 1

k − 1

)
xnyk.

Coefficient comparison on both sides in (5) yields the well-known Pascal’s triangle relation(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
, n, k ≥ 1.

This procedure also works in general to derive a recurrence relation for the coefficient
sequence, i.e., in our example for the bivariate sequence (a(n, k))n,k≥0 of

1/(1− x− xy) =
∑
n,k≥0

a(n, k)xnyk,

we have obtained the recurrence

a(n, k) = a(n− 1, k) + a(n− 1, k − 1), n, k ≥ 1.

Definition 34. For n, k ∈ N define the Stirling numbers of the second kind by

S2(n, k) = #(ways to partition an n-element set into a disjoint union
of k non-empty subsets)

W.l.o.g. we can choose the set {1, 2, . . . , n} for the n-element set. Let us first consider
some particular choices of n and k.

• What is S2(3, 1)? We have {1, 2, 3} = {1, 2, 3}, hence S2(3, 1) = 1 and in general
S2(n, 1) = 1 for all n ≥ 1.

• What is S2(3, 2)? We have

{1, 2, 3} = {1}∪̇{2, 3} = {2}∪̇{1, 3} = {3}∪̇{1, 2},

hence S2(3, 2) = 3. This could be viewed as a special case of S2(n, 2) or S2(n, n− 1).
For these two we have,

S2(n, 2) = 2n
1

2
− 1 and S2(n, n− 1) =

(
n

2

)
, n ≥ 2.

We see that for specific pairs of parameters a simple closed form can be found, but can
we find a recurrence for the general case? In order to determine a recurrence for S(n, k),
consider the following two distinct cases,

1. {n} is a one element subset in the partition.
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2. n is in a subset with more than one elements.

In the latter case, there are k places, where the n can be put. Summarizing, this yields
the recurrence

S2(n, k) = S2(n− 1, k − 1) + k S2(n− 1, k), n, k ≥ 1, (6)

with initial values

S2(0, 0) = 1, S2(n, k) = 0, n < k, S2(n, 0) = 0, n ≥ 1.

The Stirling numbers of the second kind are an example, where the generating function of
the univariate sequence (S2(n, k))n≥0 for any k ∈ N has a fairly simple closed form wheter
the ordinary or the exponential generating function is considered, namely∑

n≥0

S2(n, k)xn =
xk

(1− x)(1− 2x) · · · (1− kx)
, (7)

and, ∑
n≥0

S2(n, k)
xn

n!
=

(exp(x)− 1)k

k!
. (8)

For the bivariate generating function, we can note the following,∑
n,k≥0

S2(n, k)
xn

n!
zk = exp(z(exp(x)− 1)). (9)

Next let

C(n, k) = #(permutations of {1, 2, . . . , n} with exactly k cycles).

For example the following permutation of {1, 2, 3, 4, 5, 6, 7} written in two-line and cycle
notation has exactly 3 cycles,(

1 2 3 4 5 6 7
5 6 7 2 1 4 3

)
= (15)(264)(37).

Definition 35. For n, k ∈ N,

S1(n, k) = (−1)n−kC(n, k)

are the Stirling numbers of the first kind. C(n, k) are also called the signless (or unsigned)
Stirling numbers of the first kind.

Stirling numbers of the first and second kind are the connection coefficients between
the monomial basis and the falling factorials:

22



Proposition 36. Let x be an indeterminate and n ∈ N, then

xn =
n∑
k=0

S2(n, k)xk,

and

xn =
n∑
k=0

S1(n, k)xk.
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3 C-finite sequences

A sequence is called C-finite (or also C-recursive), if it satisfies a linear recurrence with
constant coefficients.

Definition 37. A sequence (an)n≥0 is called C-finite if ∃c0, . . . , cr ∈ K, c0 6= 0, cr 6= 0 such
that

cran+r + · · ·+ c1an+1 + c0an = 0, (n ≥ 0).

We call r the order of the recurrence.

All terms in a C-finite sequence of order r are uniquely determined by the r + 1 coeffi-
cients c0, . . . , cr and r initial values a0, . . . , ar−1.

Note: If (an)n≥0 is such that

cran+r + · · ·+ c1an+1 + c0an = c, n ≥ 0,

with ci as above and c ∈ K, then we also have

cran+r+1 + · · ·+ c1an+2 + c0an+1 = c, n ≥ 0.

Taking the difference of these two equations yields

cran+r+1 + (cr−1 − cr)an+r + · · ·+ (c0 − c1)an+1 − c0an = 0, n ≥ 0,

i.e., a non-trivial homogeneous recurrence for (an)n≥0 of order r + 1.

3.1 Fibonacci numbers

A prominent example of C-finite sequence are Fibonacci numbers. This is in part, because
they satisfy a very simple recurrence and in part because of the many applications that
these numbers appear in. Typically, they are introduced as

Fn = #(offsprings a single rabbit produces in n months),

subject to the following rules:

• the initial rabbit is born in the first month, i.e., F0 = 0, F1 = 1;

• each rabbit produces 1 rabbit per month starting from the second month of its
existence;

• no rabbit ever dies.

Let’s have a look at the rabbit population in the first few months. Each level corre-
sponds to a new month, starting from month 1 and Ri denotes rabbit number i.
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R1

R1

R1

R1

R1 R4

R3

R3

R2

R2

R2 R5

A recurrence for the Fibonacci numbers is easily derived: we have that at month n+ 2
there are all the rabbits from the previous generation (n + 1) and an offspring of rabbits
that are at least two months old (n), i.e.,

Fn+2 = Fn+1 + Fn, n ≥ 0, F0 = 0, F1 = 1. (10)

From the self-similarity of the tree, we can easily deduce the following functional equation
for the generating function f(x) =

∑
n≥0 Fnx

n,

f(x) = xf(x) + x2f(x) + x.

Solving for f(x) yields,

f(x) =
x

1− x− x2
=
∑
n≥0

Fnx
n.

Let’s return to the recurrence and write (10) as follows,

Fn+1 = Fn+1

Fn+2 = Fn+1 + Fn

From this we see how to write the recurrence in its matrix form,(
Fn+1

Fn+2

)
=

(
0 1
1 1

)
︸ ︷︷ ︸

=:A

(
Fn
Fn+1

)
︸ ︷︷ ︸

=:zn

.

Repeated application of the recurrence gives(
Fn+1

Fn+2

)
=

(
0 1
1 1

)2(
Fn−1
Fn

)
= · · · =

(
0 1
1 1

)n+1(
F0

F1

)
.
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The matrix A is called the companion matrix of the recurrence and an analogous
rewriting in the form

zn+1 = Azn = An+1z0,

can be done for any C-finite recurrence. The Matrix representation can be used to derive
identities on the sequence. Let’s continue with the example of the Fibonacci numbers.
First note that for n = −1,

F1 = F0 + F−1 =⇒ 1 = 0 + F−1,

hence the choice F−1 = 1 is consistent with the recurrence. Then(
Fn−1 Fn
Fn Fn+1

)
=

(
0 1
1 1

)n(
F−1 F0

F0 F1

)
.

Taking determinants on both sides yields,

Fn−1Fn+1 − F 2
n = (−1)n, (n ≥ 0), (11)

which is known as Cassini’s identity.

Diagonalization: Let’s compute the eigendecomposition of A =

(
0 1
1 1

)
, i.e., the matrix

S of eigenvectors and the diagonal matrix D of eigenvalues with the property A = SDS−1.

|λI − A| =
∣∣∣∣ λ −1
−1 λ− 1

∣∣∣∣ = λ2 − λ− 1 = 0.

From this equation we get the two eigenvalues

φ1 =
1

2
−
√

5

2
, and φ2 =

1

2
+

√
5

2
≈ 1.61803 . . . .

φ2 is known as the golden ratio. The corresponding eigenvectors are

v1 =

(
1
φ1

)
and v2 =

(
1
φ2

)
.

Hence,

S =

(
1 1
φ1 φ2

)
and with |S| = φ2 − φ1 =

√
5 we have S−1 =

1√
5

(
φ2 −1
−φ1 1

)
.

Then A = SDS−1 with D =

(
φ1 0
0 φ2

)
and

An = (SDS−1)n = SDS−1SDS−1 · · ·SDS−1 = SDnS−1.
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Summarizing, we have,

An =
1√
5

(
1 1
φ1 φ2

)(
φ1 0
0 φ2

)n(
φ2 −1
−φ1 1

)
=

(
. . . 1√

5
(φn2 − φn1 )

1√
5
(φn2 − φn1 ) . . .

)
=

(
Fn−1 Fn
Fn Fn+1

)
.

Thus we have derived the Euler-Binet formula,

Fn =
1√
5

(φn2 − φn1 ), n ≥ 0. (12)

Since φ1 ≈ −0.61803 . . . , the asymptotic behaviour of Fn is governed by φ2, i.e.,

Fn ∼
1√
5
φn2 (n→∞), (13)

hence also

lim
n→∞

Fn+1

Fn
= φ2.

A different approach for finding a closed form solution of the Fibonacci recurrence (10) is
by considering the characteristic polynomial of the recurrence: to this end, replace Fn by
xn in the recurrence:

Fn+2 − Fn+1 − Fn = 0 −→ xn+2 − xn+1 − xn = xn(x2 − x− 1︸ ︷︷ ︸
=:χ(x)

) = 0.

The polynomial χ(x) is called the characteristic polynomial of the recurrence and the roots
of it are φ1 and φ2. Then (as can easily be checked),

an = αφn1 + βφn2 , ∀α, β ∈ K,

is a solution to (10).
The initial values yield

n = 0 : 0 = α + β

n = 1 : 1 = αφ1 + βφ2.

Solving this system gives α = − 1√
5

and β = 1√
5

and hence we obtained once more the

Euler-Binet formula Fn − 1√
5
(φn2 − φn1 ).

Example 38. (Tower of Hanoi)
Given: a tower of n disks that are initially stacked in increasing size on one of three

pegs.
Task: transfer the entire tower to one of the other pegs moving only one disk at a time

and never moving a larger disk onto a smaller one.
Find: an = minimal number of moves needed.

Example 39. n people numbered from 1 to n are sitting at a round table; starting from
person 1 in clockwise order every second person leaves until only one person remains. What
is J(n) = number of the remaining person?
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3.2 Properties of C-finite recurrences

In general, the closed form of a C-finite recurrence can be derived from its characteristic
polynomial.

Theorem 40. Let c0, c1, . . . , cr−1 ∈ K with c0 6= 0 be such that

xr + cr−1x
r−1 + · · ·+ c1x+ c0 = (x− α1)

m1 · · · · · (x− αk)mk

for mj ∈ N∗ and pairwise distinct αj ∈ K. Then the sequences

(niαnj )n≥0 for 1 ≤ j ≤ k, 0 ≤ i ≤ mj − 1,

form a basis of solutions of the K-vector space of all solutions of the recurrence

an+r + cr−1an+r−1 + · · ·+ c1an+1 + c0an = 0, n ≥ 0.

Example 41. Let the sequence (an)n≥0 be defined by

an+3 − 3an+2 + 3an+1 − an = 0, n ≥ 0 with a0 = 0, a1 = 1, a2 = 3.

Then the characteristic polynomial is

χ(x) = x3 − 3x2 + 3x− 1 = (x− 1)3

and it has one triple root x = 1. Hence, by the theorem, the general solution is

an = γ01
n + γ1n1n + γ2n

21n.

From the initial values, we compute γ0 = 0, γ1 = γ2 = 1
2

and thus

an =
1

2
n(n+ 1) =

(
n+ 1

2

)
.

What is the generating function of this sequence, i.e., what is A(x) =
∑

n≥0 anx
n? Let’s

start from the recurrence and multiply it by xn+3:

an+3x
n+3 − 3an+2x

n+3 + 3an+1x
n+3 − anxn+3 = 0.

Summing over n ≥ 0 and pulling out some powers of x gives∑
n≥0

an+3x
n+3

︸ ︷︷ ︸
A(x)− x− 3x2

−3x
∑
n≥0

an+2x
n+2

︸ ︷︷ ︸
A(x)− x

+3x2
∑
n≥0

an+1x
n+1

︸ ︷︷ ︸
A(x)− a0x0

−x3
∑
n≥0

anx
n

︸ ︷︷ ︸
A(x)

= 0.

Putting everything together gives

A(x) =
x

(1− x)3
.
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This is again a rational function as it was in the case of the Fibonacci numbers and
this is not a coincidence.

Theorem 42. A sequence (an)n≥0 in K satisfies a C-finite recurrence

an+r + cr−1an+r−1 + · · ·+ c1an+1 + c0an = 0, n ≥ 0,

with ci ∈ K and c0 6= 0 if and only if∑
n≥0

anx
n =

p(x)

1 + cr−1x+ · · ·+ c1xr−1 + c0xr

for some p ∈ K[x] with deg p(x) ≤ r − 1.

Theorem 43. (Closure properties) Let (an)n≥0, (bn)n≥0 be C-finite sequences in K of orders
r and s, respectively, and let m ∈ N∗. Then,

(1) (an + bn)n≥0 is C-finite of order at most r + s.

(2) (an · bn)n≥0 is C-finite of order at most rs.

(3) (
∑n

k=0 ak)n≥0 is C-finite of order at most r + 1.

(4) (amn)n≥0 is C-finite of order at most r.

(5) (abn/mc)n≥0 is C-finite of order at most mr.

Proof. (1) By definition there exist q0, . . . , qr, p0, . . . , ps ∈ K, not all zero, s.t. for all n ≥ 0,

qran+r + · · ·+ q1an+1 + q0an = 0

psbn+r + · · ·+ p1bn+1 + p0bn = 0

Then cn = an + bn is in the vector space generated by

(an)n≥0, (an+1)n≥0, . . . , (an+r−1)n≥0, (bn)n≥0, (bn+1)n≥0, . . . , (bn+s−1)n≥0.

This vector space contains all the shifted sequences (an+k)n≥0, (bn+k)n≥0 for k ∈ N. The
dimension of this space is at most r + s, hence any r + s+ 1 sequences (cn+k)n≥0 must be
linearly dependent.

This theorem is constructive in the sense that, given the recurrence coefficients of
(an)n≥0 and (bn)n≥0, the recurrence coefficients of (an + bn)n≥0, (an · bn)n≥0, . . . can be
computed.
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Example 44. Consider the following two combinatorial sequences given by their defining
recurrences: the Lucas numbers (Ln)n≥0,

Ln+2 − Ln+1 − Ln = 0, L0 = 2, L1 = 1, n ≥ 0,

and the Perrin numbers,

Pn+3 − Pn+1 − Pn = 0, P0 = 3, P1 = 0, P2 = 2, n ≥ 0.

For n ≥ 0, let an = Ln+Pn. According to Theorem 43, (an)n≥0 satisfies a recurrence of or-
der at most five. This recurrence can be computed using an ansatz solving for undetermined
coefficients.

an = Ln + Pn

an+1 = Ln+1 + Pn+1

an+2 = Ln+2 + Pn+2 = Ln+1 + Ln + Pn+1

an+3 = Ln+2 + Ln+1 + Pn+3 = 2Ln+1 + Ln + Pn+1 + Pn

an+4 = 3Ln+1 + 2Ln + Pn+2 + Pn+1

an+5 = 5Ln+1 + 3Ln + Pn+2 + Pn+1 + Pn

If we define the matrix

A =


1 0 1 1 2 3
0 1 1 2 3 5
1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 ,

we can write

(an, an+1, an+2, an+3, an+4, an+5) = (Ln, Ln+1, Pn, Pn+1, Pn+2) · A.

Then for any vector v ∈ N (A) = {w | Aw = 0}, the right nullspace of A, we have

(an, an+1, an+2, an+3, an+4, an+5)v = (Ln, Ln+1, Pn, Pn+1, Pn+2) · Av = 0.

One such (non-trivial) element is v = (1, 2, 0,−2,−1, 1)>.

Example 45. Let sn =
∑n

k=0 Fk for (Fn)n≥0 the Fibonacci numbers, i.e.,

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1, n ≥ 0.

Then
Fn = sn − sn−1, n ≥ 1.

Plugging this into the Fibonacci recurrence yields,

sn+2 − sn+1 = sn+1 − sn + sn − sn−1, n ≥ 1,

and thus
sn+3 − 2sn+2 + sn = 0, s0 = 0, s1 = 1, s2 = 2, n ≥ 0.
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4 Hypergeometric sequences

Definition 46. A sequence (an)n≥0 is called hypergeometric iff there exists a fixed rational
function r ∈ K(x) s.t.,

an+1 = r(n)an, n ≥ 0.

We call r(n) the shift quotient of (an)n≥0.

Example 47. • an = p(n) for some p ∈ K[x] ( polynomial sequences)

• an = zn for z ∈ K or z an indeterminate

• an = αn = (α)n for α ∈ K or α an indeterminate:

an+1

an
=
α(α + 1) · · · (α + n− 1) · (α + n)

α(α + 1) · · · (α + n− 1)
= α + n.

• products or quotients of any of the above.

One can unwind the recurrence from definition 46 down to the initial value,

an+1 = r(n)an = r(n)r(n− 1)an−1 = · · · = r(n)r(n− 1) · · · r(1)r(0)a0,

which gives some sort of closed form solution to a hypergeometric recurrence.
Recall, that solutions of C-finite recurrences are built from sequences of the form,

(niαn)n≥0,

for some α ∈ K and i ∈ N fixed. The shift quotient of this sequence above is

(n+ 1)i

ni
αn+1

αn
=

(
1 +

1

n

)i
α = r(n) ∈ K(n),

i.e., solutions of C-finite recurrences are linear combinations of hypergeometric terms.
These are in general not hypergeometric.

Let’s have a closer look at how closure properties work for hypergeometric sequences:
let (an)n≥0, (bn)n≥0 be hypergeometric sequences, i.e.,

∃r, s ∈ K(x) :
an+1

an
= r(n) and

bn+1

bn
= s(n).

Then:

1. (anbn)n≥0 is hypergeometric,

an+1bn+1

anbn
= r(n)s(n).
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2. if an 6= 0 for all n ≥ 0 then (1/an)n≥0 is hypergeometric.

3. (akn+d)n≥0 for k, d ∈ N fixed is hypergeometric.

4. What about (an + bn)n≥0? We have

(an + bn)n≥0 hypergeometric ⇔ an+1 + bn+1

an + bn
= t(n),

for some fixed rational function t ∈ K(x). Then this is equivalent to

r(n)an + s(n)bn
an + bn

= t(n)

⇔ (r(n)− t(n))an = (t(n)− s(n))bn

⇔ an =
t(n)− s(n)

r(n)− t(n)
bn.

Hence, (an + bn)n≥0 is hypergeometric if and only if an is a rational multiple of bn.

Definition 48. Two hypergeometric sequences (an)n≥0 and (bn)n≥0 are called similar if

∃p, q ∈ K[x] : p(n)an = q(n)bn, n ∈ N.

Example 49. • an = n! and bn = 1 are not similar.

• an = (n+ 1)! and bn = n! are similar.

• (an)n≥0 and (an+m)n≥0 (m ∈ N fixed) are similar.

Example 50. Let

an+2 − 4an+1 + 4an = 0, a0 = 1, a1 = 3, n ≥ 0.

Then the characteristic polynomial is χ(x) = x2 − 4x + 4 = (x− 2)2 and thus the general
solution to the recurrence is

an = c02
n + c1n2n,

and from the initial values we compute the particular solution

an = 2n + n2n−1 = 2n−1(2 + n).

Then we have for the shift quotient of this sequence,

an+1

an
=

2n(n+ 3)

2n−1(n+ 2)
= 2

n+ 3

n+ 2
,

i.e., (an)n≥0 is hypergeometric (and as such, satisfies a first order recurrence with polyno-
mial coefficients

(n+ 2)an+1 − 2(n+ 3)an = 0, a0 = 1, n ≥ 0.
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Unrolling the recurrence in this form gives

an+1 = 2
n+ 3

n+ 2
· an

= 4
(n+ 3)(n+ 2)

(n+ 2)(n+ 1)
· an−1

= · · · = 2n+1 (n+ 3)(n+ 2) · · · · 3
(n+ 2)(n+ 1) · · · · 2

· a0

= 2n+1 (3)n+1

(2)n+1

.

Since by our assumption K is algebraically closed, the numerator and denominator of the
shift quotient of a hypergeometric sequences can be factored into integer linear factors,

an+1

an
= c · (α1 + n)(α2 + n) · · · (αp + n)

(β1 + n)(β2 + n) · · · (βq + n)
,

and thus

an = cn
(α1)n(α2)n · · · (αp)n
(β1)n(β2)n · · · (βq)n

· a0.

Generating functions of hypergeometric sequences are called hypergeometric series,
commonly noted as follows,

pFq

(
a1, . . . , ap
b1, . . . , bq

;x

)
:=
∑
n≥0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

xn

n!
∈ K[[x]] (14)

with ai ∈ K and bi ∈ K \ {0,−1,−2,−3, . . . }.
Many elementary series can be expressed in terms of hypergeometric series:

•
exp(x) =

∑
n≥0

xn

n!
= 0F0

(
–
–

;x

)
.

•
1

(1 + x)λ
=
∑
n≥0

(
−λ
n

)
(−x)n =

∑
n≥0

(−λ)n

n!
(−x)n =

∑
n≥0

(λ)n
n!

xn = 1F0

(
λ
–

;x

)
.

Lastly in this section, we have a look at the asymptotic behaviour of hypergeometric
sequences. First, recall the definition of the Gamma function: for z ∈ C,

Γ(z) =

∫ ∞
0

tz−1e−t dt, if Re(z) > 0,

and else by analytic continuation. We have Γ(z + 1) = zΓ(z) for z ∈ C \ {0,−1,−2, . . . }.
In particular, for n ∈ N, we have

Γ(n+ 1) = n!,
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and

(a)n = an = a · (a+ 1) · · · (a+ n− 1) =
(a+ n− 1)!

(a− 1)!
=

Γ(n+ a)

Γ(a)
.

The asymptotic behaviour of the gamma function is

Γ(n+ z) ∼
√

2πnn+z−
1
2 e−n (n→∞),

for z ∈ C. A special case of this is Stirling’s formula,

n! ∼
√

2πnn+1/2e−n.

Summarizing, we obtain,

(a)n
(b)n

=
Γ(n+ a)

Γ(a)

Γ(b)

Γ(n+ b)
∼ · · · ∼ Γ(b)

Γ(a)
na−b (n→∞).
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5 The holonomic universe

Definition 51. A sequence (an)n≥0 is called, holonomic or P-finite, if there exist polyno-
mials p0, . . . , pr ∈ K[x] with p0(x) 6= 0 and pr(x) 6= 0 s.t.,

pr(n)an+r + · · ·+ p1(n)an+1 + p0(n)an = 0, ∀n ∈ N.

If d = maxk deg pk(x), then we say that (an)n≥0 is holonomic of order r and degree d.

We will sometimes use the term P-finite, sometimes the term holonomic. Another
commonly used notion is P-recursive.

Example 52. • C-finite sequences are P-finite.

• Hypergeometric sequences are P-finite.

• Harmonic numbers are P-finite (but not C-finite): Recall that Hn =
∑n

k=1
1
k

for n ≥ 1
with H0 = 0. We used earlier that

Hn+1 −Hn =
1

n+ 1
,

and hence, for all n ≥ 0,

(n+ 1)Hn+1 − (n+ 1)Hn = 1,

(n+ 2)Hn+2 − (n+ 2)Hn+1 = 1,

Subtracting those two equations gives

(n+ 2)Hn+2 − (2n+ 3)Hn+1 + (n+ 1)Hn = 0, n ≥ 0, H0 = 0, H1 = 1.

Remark 53. An equivalent characterization for holonomic sequences is

∃p0, . . . , pr, q ∈ K[x], p0 6= 0, pr 6= 0: pr(n)an+r+· · ·+p1(n)an+1+p0(n)an = q(n), ∀n ∈ N.

Also the average number of comparisons in QuickSort is holonomic:

(n+ 1)a(n+ 1)− (n+ 2)a(n) = 2n, n ≥ 0, a(0) = 0.

Recall that we had the closed form representation,

a(n) = 2(n+ 1)Hn − 4n,

which is a combination of multiplying and adding P-finite sequences. The same way as
C-finite sequences, also P-finite sequences satisfy several closure properties. We summarize
a few in the following theorem.

Theorem 54. (Closure properties) Let (an)n≥0, (bn)n≥0 be holonomic. Then
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(1) (αan + βbn)n≥0 is holonomic (α, β ∈ K fixed)

(2) (
∑n

k=0 akbn−k)n≥0 and (an · bn)n≥0 are holonomic.

The proofs of these closure properties are analogous to the proofs of the corresponding
statements on C-finite sequences and the same bounds on the orders apply. Further closure
properties include the forward shift, taking subsequences or interlacing.

Since any hypergeometric sequence is also P-finite, the addition of two hypergeometric
sequences is always P-finite (of order at most 2).

The generating function of a holonomic sequence is also called holonomic.

Definition 55. A formal power series a(x) =
∑

n≥0 anx
n is called holonomic or D-finite,

iff its coefficient sequence (an)n≥0 is holonomic.

Holonomic power series satisfy linear differential equations with polynomial coefficients.

Theorem 56. A formal power series a(x) is holonomic if and only if there exist polyno-
mials p0, . . . , pr ∈ K[x], not all zero, such that

pr(x)a(r)(x) + · · ·+ p1(x)a′(x) + p0(x)a(x) = 0.

As for sequences, we say that, with d = maxk deg pk(x), the formal power series is
holonomic of order r and degree d.

Using operator notation, we can write the ordinary differential equation from the the-
orem above as

pr(x)Dr
xa(x) + · · ·+ p1(x)Dxa(x) + p0(x)a(x) = 0

⇐⇒ (pr(x) ·Dr
x + · · ·+ p1(x) ·Dx + p0(x) · 1) • a(x) = 0.

Also for holonomic functions, the equivalent characterization using inhomogeneous differ-
ential equations holds.

Theorem 57. Let a(x) =
∑

n≥0 anx
n be a formal power series. Then:

(1) If a(x) is holonomic of order r and degree d, then (an)n≥0 is holonomic of order at
most r + d and degree at most r.

(2) If (an)n≥0 is holonomic of order r and degree d, then a(x) is holonomic of order at
most d and degree at most r + d.

Proof. (1): Suppose a(x) satisfies,

pr(x)Dr
xa(x) + · · ·+ p1(x)Dxa(x) + p0(x)a(x) = 0,

with deg pk(x) ≤ d for all k = 0, . . . , r and with p0, pr 6= 0.
Now,

xiDj
xa(x) =

∑
n≥0

anx
iDj

xx
n =

∑
n≥0

anx
injxn−j =

∑
n≥j

ann
jxn+i−j =

∑
n≥i

an−i+j(n− i+ j)jxn.
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Next, we rewrite the differential equation above,

r∑
j=0

pj(x)Dj
xa(x) =

r∑
j=0

d∑
i=0

pj,ix
iDj

xa(x) =
∑
n≥0

xn
r∑
j=0

d∑
i=0

pj,ian−i+j(n− i+ j)j.

Equating the coefficients of xn to zero for n ≥ d gives the recurrence

r∑
j=0

d∑
i=0

pj,ian−i+j(n− i+ j)j = 0, n ≥ d.

Since j ranges from 0 to r, we have that the degree of the recurrence coefficients is at most r.
Concerning the order, note that we have an−d, . . . , an+r appearing in the recurrence above.
Hence, we have that the order of the coefficient recurrence is at most r + d.

This proof is constructive, i.e., given the polynomial coefficients of the differential equa-
tion, the polynomial coefficients of the recurrence equation can be computed (and vice
versa).

Theorem 58. (Closure properties II) Let a(x), b(x) be holonomic. Then:

(1) αa(x) + βb(x) is holonomic (α, β ∈ K fixed).

(2) a(x)b(x) is holonomic.

(3) a′(x),
∫
x
a(x) are holonomic.

Any algebraic formal power series is also holonomic. Recall first that y(x) ∈ C[[x]] is
algebraic, iff

∃q0, . . . , qd ∈ C[x], not all zero : q0(x) + q1(x)y(x) + · · ·+ qd(x)y(x)d = 0.

Theorem 59. If y(x) ∈ C[[x]] is algebraic then it is also holonomic.

The proof of this result is constructive: given the minimal polynomial of degree d, the
linear differential equation of order d can be computed.

Theorem 60. (Algebraic substitution) If y(x) ∈ C[[x]] is holonomic and a(x) ∈ C[[x]] is
algebraic with a(0) = 0, then y(a(x)) is holonomic.

Example 61. exp

(
x√

1− 4x

)
∈ C[[x]] is holonomic, because: y(x) = exp(x) ∈ C[[x]] is

holonomic,
y′(x)− y(x) = 0, y(0) = 1,

and a(x) =
x√

1− 4x
∈ C[[x]] is algebraic,

(1− 4x)a(x)2 − x2 = 0, a(0) = 0.
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Proving the converse, i.e., that a sequence is non-holonomic, is often very hard.

Theorem 62. Let y(x) ∈ C[[x]] be holonomic with y(0) 6= 0. Then

1

y(x)
holonomic ⇐⇒ y′(x)

y(x)
algebraic.

The can proof can be found, e.g., in Stanley, Enumerative Combinatorics [6].

Example 63. Let y(x) = cos(x). Since y(0) = 1 6= 0, we can consider the fraction

y′(x)

y(x)
= − sin(x)

cos(x)
= − tan(x).

The tangent is well known NOT to be algebraic. Hence, by Theorem 62, we conclude that
1/ cos(x) is NOT holonomic.

Example 64. We define a plane binary tree (PBT) as

1. a single node (root) •, OR

2. the composition of a root with two PBTs.

•

• •

•

•

• •

•

•

•

• •

•

Now let

Cn = #(PBTs with n internal nodes).

For the first few cases we have:

• C0 = 1

•

• • C1 = 1

•

•

• •

•

•

• •

• • C2 = 2
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2×

•

•

•

• •

•

•

•

•

• •

•

• •

2×

•

•

• •

• •

•

C3 = 5

In general we have that a PBT with n internal nodes is built from 1 root, a subtree
with k internal nodes and a subtree with n− k − 1 nodes. This holds for all n ≥ 1 and all
0 ≤ k ≤ n− 1 and can be spelled out as recurrence as follows,

Cn =
n−1∑
k=0

CkCn−k−1, n ≥ 1, C0 = 1.

Let’s denote the generating function of this sequence by C(x) =
∑

n≥0Cnx
n. Using the

recurrence, we have

C(x) = 1 +
∑
n≥1

n−1∑
k=0

CkCn−k−1x
n = 1 + x

∑
n≥0

n∑
k=0

CkCn−kx
n,

by shifting n 7→ n+ 1 in the last step. Hence,

C(x) = 1 + xC(x)2,

which is an algebraic equation. It can be shown (Exercise!) that

C(x) =
1−
√

1− 4x

2x
.

The sequence (Cn)n≥0 is known as the Catalan numbers.
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6 Polynomial solutions of holonomic recurrences

In this section we derive an algorithm for finding the general polynomial solution (if there
is one). In this derivation we restrict ourselves to recurrences of order two for ease of
presentation. The generalization to arbitrary orders is immediate. Hence, the problem
under consideration is:

Given: a0, a1, a2 ∈ K[x], a0, a2 6= 0, c ∈ K[x]

Find: y ∈ K[x] s.t.

a2(n)y(n+ 2) + a1(n)y(n+ 1) + a0(n)y(n) = c(n), (n ∈ N). (15)

Notation

• forward shift Sn:
Snf(n) = f(n+ 1);

it is non-commutative w.r.t. n, i.e.,

Sn(nf(n)) = (n+ 1)f(n+ 1) = (n+ 1)Snf(n),

or in operator notation: Snn = (n+ 1)Sn.

• forward difference ∆n = Sn − 1, i.e., ∆nf(n) = f(n+ 1)− f(n).

Note, that

∆nn
k = ∆n (n(n− 1) · · · (n− k + 1))

= (n+ 1) · n · · · (n− k + 2)− n · (n− 1) · · · (n− k + 2)(n− k + 1)

= nk−1(n+ 1− n+ k − 1)

= knk−1.

In other words, the action of the forward difference on the falling factorial basis corresponds
to the action of the derivative on the monomial basis. Furthermore, for any polynomial p,
we have

deg p(n) = d =⇒ deg ∆n(p(n)) ≤ d− 1.

Note, that we follow the convention that deg 0 = −∞.

STEP 1: Determine a degree bound D for potential polynomial solutions y of (15).
First, we rewrite the LHS of the recurrence (15) in operator notation and expand in

∆n (instead of Sn = ∆n + 1):

L =
2∑
i=0

ai(n)Sin =
2∑
i=0

ai(n)(∆n + 1)i

= a0(n) + a1(n)(∆n + 1) + a2(n)(∆2
n + 2∆n + 1)

= (a0(n) + a1(n) + a2(n)) + (a1(n) + 2a2(n))∆n + a2(n)∆2
n.
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For general order r, we have

L =
r∑
i=0

ai(n)Sin =
r∑
i=0

ai(n)(∆n + 1)i

=
r∑
i=0

ai(n)
i∑

j=0

(
i

j

)
∆j
n

=
r∑
j=0

(
r∑
i=j

(
i

j

)
ai(n)

)
∆j
n.

Now we define the coefficients in this expansion as

bj(n) =
r∑
i=j

(
i

j

)
ai(n),

and then we can rewrite in particular (15) as

b0(n)y(n) + b1(n)∆ny(n) + b2(n)∆2
ny(n) = c(n). (16)

Let d = deg y(n), then we have

deg ∆ny(n) ≤ d− 1 and deg ∆i
ny(n) ≤ d− i.

Define

β := max
0≤i≤2

(deg bi(n)− i) (β := max
0≤i≤r

(deg bi(n)− i) in general).

Note, that β can be negative. With this definition, we obviously have that

deg(Ly(n)) ≤ d+ β.

Now we distinguish the following cases:

Case 1) d+ β < 0: then a candidate for the degree bound D is

D = −β − 1 ≥ d.

Case 2a) deg(Ly(n)) = deg(c(n)) and deg(Ly(n)) = d+ β: then a candidate for D is

D = deg(c(n))− β.

Case 2b) deg(Ly(n)) = deg(c(n)) and deg(Ly(n)) < d + β: This happens if (at least) the
leading coefficient of Ly(n) vanishes.
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Say y(n) =
∑d

j=0 yjn
j. Then

∆ny(n) =
d∑
j=0

yjjn
j−1 =⇒ lc(∆ny(n)) = dyd = d1yd,

and

∆2
ny(n) =

d∑
j=0

yjj(j − 1)nj−2 =⇒ lc(∆2
ny(n)) = d2yd,

and so forth. Hence,
lc
(
bi(n)∆i

ny(n)
)

= lc(bi(n)) lc(y(n))di.

Thus, we have

[nd+β]Ly(n) =
2∑

i=0,deg(bi)−i=β

lc(y(n))di lc(bi(n)) =: ϕ(d).

This is a second degree polynomial in d (in general, a degree r polynomial). Let d1 denote
the maximal integer root of this polynomial (with d1 = −∞ if there is no integer root).
This is the final candidate for D,

D = d1 = max{m ∈ N | ϕ(m) = 0}.

STEP 2: Let D = max{−β − 1, deg(c(n))− β, d1} and set up the ansatz

y(n) =
D∑
j=0

yjn
j,

with undetermined coefficients yj. Plug this ansatz into (16) and solve for yj by equating
like powers of n on both sides.

Either a polynomial solution is found OR not. In the latter case, we have shown
that NO polynomial solution to (15) exists. We summarize these steps in the following
algorithm.

Algorithm 65. (POLY)

IN: ai ∈ K[x], c ∈ K[x], i = 0, . . . , r

OUT: the general polynomial solution of

ar(n)y(n+ r) + · · ·+ a1(n)y(n+ 1) + a0(n)y(n) = c(n), (17)

if exists.

1. Compute bj(n) =
∑r

i=j

(
i
j

)
ai(n) for j = 0, . . . , r
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2. β = max0≤i≤r(deg(bi(n))− i)

3. ϕ(d) =
∑r

i=0,deg(bi)−i=β d
i lc(bi(n))

4. d1 = max{m ∈ N | ϕ(m) = 0}

5. D = max{−β − 1, deg(c)− β, d1}

6. Use the method of undetermined coefficients to find

y(n) =
D∑
j=0

yjn
j

7. RETURN y(n) OR “No polynomial solution exists”

Example 66. We consider the following recurrence,

(n− 1)y(n+ 2)− (3n− 2)y(n+ 1) + 2ny(n) = 0.

Hence, we have c(n) = 0 and deg(c(n)) = −∞. The annihilating operator for y(n) is

L = (n− 1)S2
n − (3n− 2)Sn + 2n.

First rewrite L in terms of ∆n:

L = (n− 1)(∆n + 1)2 − (3n− 2)(∆n + 1) + 2n

= (n− 1)∆2
n + (2n− 2− 3n+ 2)∆n + (n− 1− 3n+ 2 + 2n)

= (n− 1)∆2
n − n∆n + 1,

i.e., b2(n) = n− 1, b1(n) = −n, b0(n) = 1. With this we have

β = max
i

(deg(bi)− i) = max{1− 2, 1− 1, 0− 0} = 0.

Then we compute d1 as the maximal integer root of

ϕ(d) =
2∑

i=0,deg bi−i=0

lc(bi)d
i = −d1 + 1d0 = −d+ 1,

hence d1 = 1. Summarizing, we obtain the degree bound

D = max{−β − 1, deg(c)− β, d1} = max{−1,−∞, 1} = 1.

We set up the ansatz y(n) = y0 + y1n and plug into the given recurrence:

(n− 1)(y0 + y1(n+ 2))− (3n− 2)(y0 + y1(n+ 1)) + 2n(y0 + y1n) = 0.

Next we do coefficient comparison (in this case, equate the coefficients to zero):

[n2]LHS = y1 − 3y1 + 2y1 = 0 =⇒ 0 = 0

[n1]LHS = y0 + 2y1 − y1 − 3y0 − 3y1 + 2y1 + 2y0 = 0 =⇒ 0 = 0

[n0]LHS = −y0 − 2y1 + 2y0 + 2y1 = y0 =⇒ y0 = 0.

Hence y(n) = y1n is a general polynomial solution to the recurrence.
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7 Summation

7.1 Polynomial sequences

Fix p ∈ K[x] with deg p(x) = d. Then (an)n≥0 with

an = p(n), n ≥ 0,

is called a polynomial sequence of degree d.
Recall that

∆nn
k = knk−1 and ∆s

nn
k = ksnk−s.

Since deg p(x) = d, we have ∆d+1
n p(n) = 0, i.e.

∆d+1
n p(n) = (Sn − 1)d+1p(n) =

d+1∑
k=0

(
d+ 1

k

)
︸ ︷︷ ︸
∈N

p(n+ k) = 0.

Hence, an = p(n) is C-finite of order d + 1 (and of course hypergeometric, i.e., holonomic
of order one).

Earlier, we had
d∑

k=0

(2k + 1) =
n∑
k=0

(k + 1)2 − k2 = (n+ 1)2.

Now we know how to do telescoping for polynomial sequences in a more systematic way:

kd =
1

d+ 1
∆kk

d+1.

Hence
n∑
k=0

kd =
1

d+ 1

n∑
k=0

(
(k + 1)d+1 − kd+1

)
=

1

d+ 1
(n+ 1)d+1.

Example 67. Since

k3 =
3∑
j=0

S2(3, j)k
j = 0 · k0 + 1 · k1 + 3 · k2 + 1 · k3,

we have
n∑
k=0

k3 =
n∑
k=0

k1 + 3
n∑
k=0

k2 +
n∑
k=0

k3

= 1
2
(n+ 1)2 + 3

3
(n+ 1)3 + 1

4
(n+ 1)4 = · · · =

(
n(n+1)

2

)2
.

We know that
∑n

k=0 k =
(
n
2

)
= n(n+1)

2
and hence, we have that

n∑
k=0

k3 =

(
n∑
k=0

k

)2

.

This is an identity that can also be illustrated nicely using a “pebble” argument.
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Remark 68. It follows that for any polynomial p of degree d, the sum

n∑
k=0

p(k) = q(k)

is some polynomial q of degree d+ 1. Hence, we can use interpolation to sum polynomials.

Remark 69. Polynomial sequences are closed under the same operations as C-finite se-
quences.

7.2 C-finite sequences

We know that if (an)n≥0 is C-finite of order r, then the sequence of partial sums sn =∑n
k=0 ak is C-finite of order r + 1.

Example 70. Let sn =
∑n

k=0 Fk, then sn+1−sn = Fn+1 and plugging this into the Fibonacci
recurrence

Fn+2 − Fn+1 − Fn = 0, F0 = 0, F1 = 1, (n ≥ 0)

gives the order three recurrence

sn+3 − 2sn+2 + sn = 0, s0 = 0, s1 = 1, s2 = 2, (n ≥ 0).

Then we can compute the characteristic polynomial of this recurrence,

χ(x) = x3 − 2x2 + 1 = (x2 + x− 1)(x− 1),

from which we know how to compute a closed form solution.

Note that

sn =
n∑
k=0

ak =
n∑
k=0

akbn−k

for the constant sequence bn = 1. Hence, with a(x) =
∑

n≥0 anx
n, we have∑

n≥0

snx
n =

1

1− x
a(x).

More interesting is the question: Can we express sn =
∑n

k=0 ak in terms of an? For
example, for the Fibonacci numbers we have

n∑
k=0

Fk = Fn+1 + Fn − 1, n ≥ 0.

Instead of using sn+1 − sn = an we ant to find bk, a linear combination of ak and shifts of
ak, with

ak = bk+1 − bk.
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Example 71.

Fk+1 = Fk+1 + Fk+2 − Fk+1 − Fk︸ ︷︷ ︸
=0

= (Fk+2 + Fk+1)− (Fk+1 + Fk).

Thus
n∑
k=0

Fk =
n∑
k=1

Fk =
n−1∑
k=0

Fk+1

=
n−1∑
k=0

(Fk+2 + Fk+1)− (Fk+1 + Fk)

= (Fn+1 + Fn)− (F1 + F0) = Fn+1 + Fn − 1.

This derivation was a bit ad hoc, but it is possible to derive such identities in a sys-
tematic way. For this, we define the following operation:

⊗ : K[x]×KN → KN, (c0 + c1x+ · · ·+ crx
r)⊗ (an)n≥0 := (c0an+ c1an+1 + · · ·+ cran+r)n≥0.

Example 72.
(x− 1)⊗ (an)n≥0 = (an+1 − an)n≥0 = (∆nan)n≥0

Let (an)n≥0 be a C-finite sequence satisfying

c0an + c1an+1 + · · ·+ an+r = 0.

Then the characteristic polynomial is given by

χ(x) = c0 + c1x+ · · ·+ xr

and we can distinguish the following two cases:

Case 1: χ(1) 6= 0 Then
χ(x) = (x− 1)q(x) + χ(1)

for some
q(x) = q0 + q1x+ · · ·+ qr−2x

r−2 + xr−1.

Define
(bn)n≥0 := q(x)⊗ (an)n≥0 = (q0an + q1an+1 + · · ·+ an+r−1)n≥0.

Then
χ(x)⊗ (an)n≥0 = 0

⇔ (x− 1)q(x)⊗ (an)n≥0 + χ(1)(an)n≥0 = 0

and thus
bn+1 − bn + χ(1)an = 0, n ≥ 0.

Using telescoping this yields,

n∑
k=0

ak = − 1

χ(1)
(bn+1 − b0), n ≥ 0.

46



Case 2: χ(1) = 0 Then
χ(x) = (x− 1)mχ̄(x)

for some m ≥ 1, χ̄(x) ∈ K[x] with χ̄(1) 6= 0. Then

χ(x) = (x− 1)m ((x− 1)q̄(x) + χ̄(1)) .

Let (bn)n≥0 = q̄(x)⊗ (an)n≥0. Then

∆m(bn+1 − bn + χ̄(1)an) = 0, n ≥ 0.

The m-fold differences can be undone by repeated summation.
For the first sum, we have

n∑
k=0

∆k

∆m−1
k (bk+1 − bk + χ̄(1)ak)︸ ︷︷ ︸

=F (k)

 = 0.

By telescoping, we obtain F (n + 1) − F (n) = 0, hence F (n) = const. The second sum
shows that ∆m−2

k (bk+1 − bk + χ̄(1)ak) must be a linear polynomial. After m summations,
we have an identity of the form

bk+1 − bk + χ̄(1)ak = p̄(k), k ≥ 0,

for some polynomial p̄(k) of degree at most m− 1. Hence, in this case, summing a C-finite
sequence amounts to telescoping and summing a polynomial sequence.

Example 73. Let (an)n≥0 be given by the recurrence

an+2 − 6an+1 + 9an = 0, a0 = −1, a1 = 3.

For the characteristic polynomial we have

χ(x) = x2 − 6x+ 9 and χ(1) = 4 6= 0.

Polynomial division yields

χ(x) = (x− 1)(x− 5) + 4, i.e. q(x) = x− 5.

Hence, we define bn = an+1 − 5an and we have for the partial sum

n∑
k=0

ak = −1

4
(an+2 − 5an+1 − a1 + 5a+ 0) = −1

4
(an+2 − 5an+1 − 8) .

Before we turn to summation for the next class of sequences (which will be hypergeo-
metric sequences), we present another example for a C-finite sequence.
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Example 74. Let Tn denote the number of ways to cover a 2 × n rectangle with 2 × 1
dominoes, i.e.,

Before we can derive a recurrence for the general pattern, as usual we have a look at some
particular cases:

• T0 = 1: there is only one way to cover the empty rectangle

• T1 = 1: there is only one way to cover a 2× 1 rectangle

• T2 = 2: there are the following two ways to cover a 2× 2 rectangle

• T3 = 3: there are the following three ways to cover a 2× 3 rectangle

• T4 =?: there are two ways to cover the first column,

depending on which there is either a 2 × 3 or a 2 × 2 rectangle left to be covered.
Hence T4 = T3 + T2 = 5.
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In general: there are two ways to cover the first column and then one is left with one
2× (n− 1) and one 2× (n− 2) rectangle, hence,

Tn = Tn−1 + Tn−2, T0 = T1 = 1.

These are just the Fibonacci numbers - compared to our convention, shifted by one to the
left. Thus the generating function now is given by

f(z) =
∑
n≥0

Tnz
n =

1

1− z − z2
.

Instead of just counting the overall number of tiles, we could also count the number of
horizontal and vertical tiles separately and consider

c(i, j) = #( ways to cover a 2× (i+ j) rectangle with i vertical and j horizontal tiles)

This can be encoded in a bivariate generating function

F (x, y) =
∑
i,j≥0

c(i, j)xiyj,

where x encodes the vertical and y the horizontal tiles. Then the coverings of different
rectangles that we considered earlier correspond to the following encodings:

• T1 = 1 corresponds to 1 · x1y0

• T2 = 2 corresponds to 1 · x0y2 + 1 · x2y0

• T3 = 3 corresponds to 2 · x1y2 + 1 · x3y0
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Observation: the horizontal pieces can only appear in even numbers, i.e.,

F (x, y) =
∑
i,j≥0

c(i, 2j)xiy2j.

Obviously we have that all possible combinations are given by

c(i, 2j) =

(
i+ j

i

)
and hence

F (x, y) =
∑
i,j≥0

(
i+ j

i

)
xiy2j =

∑
i,k≥0

(
k

i

)
xiy2k−2i =

∑
k≥0

(x+ y2)k =
1

1− x− y2
.

Back to counting tiles,

Tn = #(ways to cover a 2× n rectangle with 2× 1 tiles).

In the generating function this corresponds to setting x = y = z, i.e.,

f(z) =
∑
n≥0

Tnz
n = F (z, z) =

∑
i,k≥0

(
i+ k

i

)
zi+2k.

Then [zn]F (z, z) = Tn and thus

Tn =
∑

i+2k=n

(
i+ k

i

)
=

bn/2c∑
k=0

(
n− 2k + k

n− 2k

)
=

bn/2c∑
k=0

(
n− k
n− 2k

)
.

Now, since Tn = Fn+1, we found another summation identity, namely,

Fn+1 =

bn/2c∑
k=0

(
n− k
n− 2k

)
.
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7.3 Hypergeometric sequences

The main question of this section is: When is the sum over a hypergeometric term again
hypergeometric? We know that, if (an)n≥0 is hypergeometric, this does not imply that the
partial sum sequence

(sn)n≥0 with sn =
n∑
k=0

ak, n ≥ 0

is again hypergeometric.

Example 75. The sequence ak = 1
k+1

is hypergeometric, but the sequence of harmonic
numbers

Hn =
n−1∑
k=0

ak =
n∑
k=1

1

k

is not hypergeometric (for instance because Hn ∼ log n(n→∞)).

But we will show that for some hypergeometric sequences (ak)k≥0, we can find a hy-
pergeometric sequence (bk)k=0 with ak = bk+1 − bk. In that case, we have for the partial
sums

sn =
n∑
k=0

ak =
n∑
k=0

(bk+1 − bk) = bn+1 − b0,

i.e., sn is (at least) hypergeometric plus a constant.

Example 76. Let ak = k · k!. Then bk = k! is a hypergeometric telescoper for ak as

bk+1 − bk = (k + 1)!− k! = (k + 1− 1)k! = k · k!,

and hence,

sn =
n∑
k=0

k · k! = (n+ 1)!− 1.

We refer to sums of the type mentioned so far as indefinite summation in the sense that
the summand does not depend on the summation bound. Summarizing, we are looking at
the following problem:
Given (ak)k≥0 hypergeometric

Find (bk)k≥0 hypergeometric s.t.
ak = bk+1 − bk, (18)

if such a bk exists.
We will refer to equation (18) as the telescoping equation. Next, we go through the

derivation of an algorithm to solve this problem, Gosper’s algorithm.
Since (ak)k≥0 is hypergeometric, there exists a fixed rational function r ∈ K(x) with

ak+1 = r(k)ak (almost everywhere: since there can only be finitely many zeros in the
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denominator of r, we assume for sake of simplicity that forward shift quotient is defined
for all k ≥ 0).

Analogously, if (bk)k≥0 is hypergeometric, then there exists a rational function s ∈ K(x)
with bk+1 = s(k)bk.

Hence, by the telescoping equation (18),

ak = bk+1 − bk = (s(k)− 1)bk.

Since s(k)− 1 is rational, this implies that ak and bk have to be similar, see Definition 48.
Let

w(k) =
1

s(k)− 1
⇒ bk = w(k)ak.

If we plug this into (18), we obtain

ak = bk+1 − bk = w(k + 1)ak+1 − w(k)ak = w(k + 1)r(k)ak − w(k)ak,

and after diving through ak, we end up with 1 = w(k+1)r(k)−w(k). This way, we arrived
at the new equivalent task:
Find w ∈ K(x) s.t.

1 = w(x+ 1)r(x)− w(x). (19)

So in the first step, we reduced the problem of finding a hypergeometric solution to the
problem of finding a rational solution.

The numerator and the denominator on both sides of (19) have to be equal. Let

r(x) =
r1(x)

r2(x)
and w(x) =

w1(x)

w2(x)
,

for polynomials ri, wi ∈ K[x] (i = 1, 2) with

gcd(r1(x), r2(x)) = gcd(w1(x), w2(x)) = 1.

Plugging this into (19) we get

1 =
w1(x+ 1)r1(x)w2(x)− w1(x)w2(x+ 1)r2(x)

r2(x)w2(x)w2(x+ 1)
.

Since on the left hand side, we have a number, some cancellation has to happen on the
right hand side. In other words, we must have

w2(x)|w1(x+ 1)r1(x)w2(x)− w1(x)w2(x+ 1)r2(x)

⇒ w2(x)|w1(x)w2(x+ 1)r2(x) (gcd(w1(x), w2(x) = 1)

⇒ w2(x)|w2(x+ 1)r2(x) (20)

52



and

w2(x+ 1)|w1(x+ 1)r1(x)w2(x)− w1(x)w2(x+ 1)r2(x)

⇒ w2(x+ 1)|w1(x+ 1)r1(x)w2(x) (gcd(w1(x), w2(x) = 1)

⇒ w2(x)|r1(x− 1)w2(x− 1). (21)

The two criteria (20) and (21) give an idea how w2(x) has to look like: Let p(x) be an
irreducible factor of w2(x). Then from (21) we get

p(x)|r1(x− 1) OR p(x)|w2(x− 1).

In the latter case, we have p(x + 1)|w2(x) and we have found another irreducible factor
of w2(x). Then again by (21) we have

p(x+ 1)|r1(x− 1) OR p(x+ 1)|w2(x− 1).

In the latter case, we can argue as before. Since w2 is a polynomial of finite degree, this
process has to terminate. Hence,

∃i ∈ N : p(x+ i)|r1(x− 1).

Analogously, using (20), one can derive

∃j ∈ N : p(x− j)|r2(x).

Summarizing, we found that w(x) can have a non-trivial denominator ONLY if for some
h ∈ N∗,

gcd(r1(x), r2(x+ h)) 6= 1.

The next goal is to reduce the problem further to finding polynomial solutions. Based on
the observations above William R. Gosper suggested to use the following form of r,

r(x) =
t(x+ 1)

t(x)

u(x)

v(x+ 1)
with gcd(u(x), v(x+ h)) = 1, h ≥ 1. (22)

This representation is now known as the Gosper form. Every rational function can be
written in this way. If we substitute (22) into (19), we obtain

w(x+ 1)t(x+ 1)︸ ︷︷ ︸
=w̃(x+1)

u(x)

v(x+ 1)
− w(x)t(x)︸ ︷︷ ︸

=w̃(x)

= t(x).

This is an equation of the same form as (19) with a polynomial right hand side. Since

gcd(u(x), v(x+ h)) = 1 for h ≥ 1,
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by the reasoning above, we can conclude that any solution w̃ of this equation has a trivial
denominator, i.e., den(w̃(x)) ∈ K. A similar argument shows that v(x + 1) has to cancel
w̃(x+ 1) and we arrive at the final substitution

w̃(x) = v(x)y(x) ∈ K[x].

This completes the reduction from searching for a hypergeometric solution to searching for
a polynomial solution of the Gosper equation:
Find y ∈ K[x] :

u(x)y(x+ 1)− v(x)y(x) = t(x). (23)

The algorithm POLY (Algorithm 65) decides whether this equation has a solution.
Hence, also the algorithm we just derived decides whether a hypergeometric telescoper
exists.

Algorithm 77. (GOSPER’s ALGORITHM, 1978)

IN: (ak)k≥0 hypergeometric

OUT: (bk)k≥0 hypergeometric with ak = bk+1−bk OR “NO hypergeometric telescoper exists”

1. Compute r(k) = ak+1

ak

2. Determine the Gosper form (22) of r:

r(x) =
t(x+ 1)

t(x)

u(x)

v(x+ 1)
with gcd(u(x), v(x+ h)) = 1, h ≥ 1.

3. Use POLY (Algorithm 65) to find y ∈ K[x]:

u(x)y(x+ 1)− v(x)y(x) = t(x),

if exists.

4. Either let

w(x) =
v(x)

t(x)
y(x)

and RETURN bk = w(k)ak OR RETURN “NO hypergeometric antidifference”

Example 78. We execute Gosper’s algorithm with the input of Example 76, i.e., let ak =
k · k!.

1.

r(k) =
(k + 1)(k + 1)!

k k!
=

(k + 1)2

k
.
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2. We write

r(x) =
x+ 1

x

x+ 1

1
and choose

t(x) = x, u(x) = x+ 1, v(x) = 1.

3. The Gosper equation reads as

(x+ 1)y(x+ 1)− y(x) = x.

The algorithm POLY yields the degree bound D = 1 and so we use the ansatz y(x) =
y0 + y1x. Plugging in the Gosper equation gives,

(x+ 1)(y0 + y1 + y1x)− (y0 + y1x) = x ⇒ x2y1 + x(y0 + y1) + y1 = x.

Coefficient comparison yields y(x) = 1.

4. We compute

w(x) =
v(x)

t(x)
y(x) =

1

x
· 1,

and thus have

bk = w(k)ak =
1

k
k k! = k!

and ak = (k + 1)!− k! as expected.

In this example the polynomials in the Gosper form were chosen by “looking”. The
question remains, how to compute the Gosper form algorithmically. Given r ∈ K(x), we
need to determine polynomials t, u, v s.t.

r(x) =
t(x+ 1)

t(x)

u(x)

v(x+ 1)
with gcd(u(x), v(x+ h)) = 1, h ≥ 1.

First, write

r(x) =
f(x)

g(x)
with f, g ∈ K[x], gcd(f(x), g(x)) = 1.

Using resultants, possible values for h with gcd(f(x), g(x+ h)) 6= 1 can be computed. Let
h ∈ N∗ be one of these candidates (if there are any) and let z(x) be a non-constant common
factor of f(x) and g(x+ h). Then

f(x) = z(x)f1(x) and g(x) = z(x− h)g1(x),

for some polynomials f1, g1 ∈ K[x], and

r(x) =
f1(x)

g1(x)

z(x)

z(x− h)

(z(x− 1) · · · · · z(x− h+ 1)

z(x− h+ 1) · · · · · z(x− 1)
.

This way, we have found a first factor

t1(x) = (z(x− 1) · · · · · z(x− h+ 1)

of t(x). Repeating this process with f1, g1 yields the Gosper form after finitely many steps.
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7.4 Zeilberger’s algorithm

Let

s(n, a) =
n∑
k=0

(
a

k

)
=

n∑
k=0

ak

k!
,

for n ≥ 0 and a a formal parameter. If we run Gosper’s algorithm on this input, the output
is “no solution”, but we know that s(n, n) has a simple closed form,

s(n, n) =
n∑
k=0

(
n

k

)
= 2n, n ≥ 0.

This type of summand is not in the scope of Gosper’s algorithm, as the summation bound
occurs in it. We refer to this type of sums as definite sums. In this section, we consider
particular definite sums with summands that are hypergeometric in both n and k, i.e.,

∃r1, r2 ∈ K(x, y) :
a(n+ 1, k)

a(n, k)
= r1(n, k) ∧ a(n, k + 1)

a(n, k)
= r2(n, k).

Example 79. The summand above, a(n, k) =
(
n
k

)
is of this type, as

r1(n, k) =

(
n+1
k

)(
n
k

) =
(n+ 1)!

k!(n+ 1− k)!

k!(n− k)!

n!
=

n+ 1

n+ 1− k
,

and

r2(n, k) =

(
n
k+1

)(
n
k

) =
n!

(k + 1)!(n− k − 1)!

k!(n− k)!

n!
=
n− k
k + 1

.

Assume that

s(n) =
n∑
k=0

a(n, k)

satisfies a holonomic recurrence of order one (i.e., is hypergeometric). Then there exist
polynomials c1, c2 s.t.,

c0(n)s(n) + c1(n)s(n+ 1) = 0.

Plugging in the definition of s(n) yields,

c0(n)
n∑
k=0

a(n, k) + c1(n)
n+1∑
k=0

a(n+ 1, k) = 0

n∑
k=0

[c0(n)a(n, k) + c1(n)a(n+ 1, k)]︸ ︷︷ ︸
[c0(n) + c1(n)r1(n, k)]a(n, k) =: ã(n, k)

= −c1(n)a(n+ 1, n+ 1).

Since a(n, k) is hypergeometric in both n and k, we have that a(n+ 1, n+ 1) is hypergeo-
metric and that ã(n, k) is also hypergeometric both in n and k.
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Zeilberger’s idea was to apply Gosper’s algorithm to ã(n, k) with c0, c1 as additional
variables and fix n.

Gosper cannot return a hypergeometric solution for any c0, c1, but it can be modified to
determine c0, c1 such that a hypergeometric solution exists (if there is one). This method
is also sometimes referred to as parametrized Gosper.

1. Compute the shift quotient:

ã(n, k + 1)

ã(n, k)
=
c0(n) + c1(n)r1(n, k + 1)

c0(n) + c1(n)r1(n, k)

a(n, k + 1)

a(n, k)︸ ︷︷ ︸
=r2(n,k)

,

and define

r̃2(z, x) =
c0 + c1r1(z, x+ 1)

c0 + c1r1(z, x)
r2(z, x) ∈ K(c0, c1, z)(x).

Example 80. (Ex. 79 continued) We had a(n, k) =
(
n
k

)
, r1(n, k) = n+1

n+1−k , r2(n, k) =
n−k
k+1

. Hence,

r̃2(z, x) =
(z − x)c0 + (z + 1)c1

(z − x+ 1)c0 + (z + 1)c1

z − x+ 1

x+ 1

2. Determine the Gosper form of r̃2(z, x):

r̃2(z, x) =
t(z, x+ 1)

t(z, x)

u(z, x)

v(z, x+ 1)
, with gcd(u(z, x), v(z, x+ h)) = 1, h ≥ 1.

Example 81. (Ex. 79 continued) In our running example, we can choose

t(z, x) = (z − x+ 1)c0 + (z + 1)c1, u(z, x) = z − x+ 1, v(z, x) = x.

3. Set up the Gosper equation:

u(z, x)y(z, x+ 1)− v(z, x)y(z, x) = t(z, x).

Example 82. (Ex. 79 continued) We have,

(z − x+ 1)y(z, x+ 1)− xy(z, x) = (z − x+ 1)c0 + (z + 1)c1.

Note that the left hand side is independent of the constants ci and that in the right
hand side the ci appear linearly.

4. (Following Gosper’s idea:) Solve for y(z, x) polynomial in x. First, we fix the degree
d (using the degree bound we derived in the Algorith POLY). (Note, that the ci do
not depend on x.) Next, set up an ansatz

y(z, x) =
d∑
j=0

yj(z)xj ∈ K(z)[x],

plug into the Gosper equation and compare like powers of x to solve for y0, . . . , yd, c0, c1
simultaneously.
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Example 83. (Ex. 79 continued) Try d = 0 (coming from POLY), i.e., y(z, x) =
y0(z):

(z − x+ 1)y0 − xy0 = (z − x+ 1)c0 + (z + 1)c1

−2y0 · x+ (z + 1)y0 = −c0 · x+ (z + 1)(c0 + c1).

In this case, we find the non-trivial solution y0 = c0
2
, c1 = − c0

2
.

5. If there is a non-trivial solution (i.e., not both c0, c1 = 0), plug back in

w(z, x) =
v(z, x)

t(z, x)
y(z, x)

to obtain bk = wkak with ak = bk+1 − bk.

Example 84. (Ex. 79 continued) Plugging in yields

w(z, x) =
x

(z − x+ 1)c0 + (z + 1)c1

c0
2

=
x

(z − x+ 1)c0 − (z + 1)c0/2

c0
2

=
x

z − 2x+ 1
.

6. Plug the solution into the telescoping equation

c0(n)a(n, k) + c1(n)a(n+ 1, k) = ∆k [w(n, k)a(n, k)] .

Since the coefficients on the left hand side are independent of k, we can sum both
sides over k. By telescoping we obtain a recurrence for the sum (possibly with a
hypergeometric term on the right hand side).

Example 85. (Ex. 79 continued) Summarizing, we have

c0a(n, k)− c0
2
a(n+ 1, k) = ∆k

[
k

n− 2k + 1
a(n, k)

]
,

with a(n, k) =
(
n
k

)
and s(n) =

∑∞
k=0

(
n
k

)
(note that this sum has natural boundaries!).

Summing both sides of the telescoping equation over k = 0, . . . ,∞ gives,

c0s(n)− c0
2
s(n+ 1) =

∞∑
k=0

∆k

[
k

n− 2k + 1
a(n, k)

]
.

For the right hand side we note that

k = 0 :
0

n+ 1

(
n

0

)
= 0 and lim

k→∞
k + 1n− 2k + 1

(
n

k

)
= 0, n ≥ 0.

Hence, we end up with the recurrence relation,

s(n)− 1

2
s(n+ 1) = 0, n ≥ 0, s(0) = 1,

which can easily be solved to find s(n) = 2n.
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7. If in Step 4 no solution was found, increase the order

c0(n)a(n, k) + c1(n)a(n+ 1, k) + c2(n)a(n+ 2, k) = ã(n, k)

and apply Gosper’s algorithm (goto Step 1).

The following definition and theorem state for which type of summand this process termi-
nates.

Definition 86. A term a(n, k) is called proper hypergeometric if it can be written as

a(n, k) = p(n, k)

∏′
i(ain+ bik + ci)!∏′
j(αjn+ βjk + γj)!

zk,

with

• p ∈ K[z, x],

• ai, bi, ci, αi, βi, γi are specific integers,

• z ∈ C or z an indeterminate,

and where
∏′ denotes a finite product (of fixed length).

Theorem 87. Let (a(n, k))n,k≥0 be a proper hypergeometric sequence. Then there exists
an order r ∈ N and polynomials c0, . . . , cr ∈ K[z] not all zero, and w(z, x) ∈ K(z, x) s.t.,

c0(n)a(n, k) + c1(n)a(n+ 1, k) + · · ·+ cr(n)a(n+ r, k) = ∆k [w(n, k)a(n, k)] .

For further details see, e.g., the book “A=B” [4].
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8 Hypergeometric solutions of holonomic recurrences

Next, we discuss an algorithm to find all hypergeometric solutions to a holonomic recur-
rence. It is due to Marko Petkovšek and reduces the problem of finding hypergeometric
solutions to finding polynomial solutions - which is something we know how to do. Similar
to the derivation of the Algorith POLY, we only discuss the case order r = 2. The general
case extends analogously. Summarizing, we are looking at the following problem:
Given a0, a1, a2 ∈ K[x]

Find all hypergeometric solutions of

a2(n)y(n+ 2) + a1(n)y(n+ 1) + a0(n)y(n) = 0. (24)

Assume y(n) is a hypergeometric solution of (24), then

∃s ∈ K(x) : y(n+ 1) = s(n)y(n).

If we plug this into the recurrence, we obtain

a2(n)s(n+ 1)s(n)y(n) + a1(n)s(n)y(n) + a0(n)y(n) = 0,

i.e., assuming we have shifted beyond all zeroes of y(n), we are looking for a rational
solution s to

a2(n)s(n+ 1)s(n) + a1(n)s(n) + a0(n) = 0. (25)

Let’s write the (unknown) rational solution s(n) in its Gosper-Petkovšek form:

s(n) =
t(n+ 1)

t(n)

u(n)

v(n+ 1)
z,

with

• t, u, v ∈ K[x] monic, z ∈ K \ {0},

• gcd(u(x), v(x+ h)) = 1, h ≥ 1, and

• gcd(u(x), t(x)) = 1 and gcd(t(x+ 1), v(x+ 1)) = 1.

This generalization of the Gosper form was observed by Marko Petkovšek and it makes the
representation unique. Now, we plug this into (25),

a2(n)
t(n+ 2)

t(n+ 1)

u(n+ 1)

v(n+ 2)

t(n+ 1)

t(n)

u(n)

v(n+ 1)
z2 + a1(n)

t(n+ 1)

t(n)

u(n)

v(n+ 1)
z + a0(n) = 0.

After cancelation and clearing denominators, we have

a2(n)t(n+ 2)u(n+ 1)u(n)z2 + a1(n)v(n+ 2)t(n+ 1)u(n)z+ a0(n)v(n+ 2)v(n+ 1)t(n) = 0.
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From this, using the properties of the Gosper-Petkovšek form, we can derive the following
two conditions:

u(n)
∣∣a0(n)v(n+ 2)v(n+ 1)t(n) =⇒ u(n)

∣∣a0(n),

v(n+ 2)
∣∣a2(n)t(n+ 2)u(n+ 1)u(n) =⇒ v(n+ 2)

∣∣a2(n).

This gives a finite set of candidates for u and v: all possible combinations of monic,
irreducible factors of a0(n) and a2(n − 2). Furthermore, we can cancel u(n) and v(n + 2)
in (25),

z2
a2(n)

v(n+ 2)
u(n+ 1)t(n+ 2) + za1(n)t(n+ 1) +

a0(n)

u(n)
v(n+ 1)t(n) = 0. (26)

Note, that this is an equation with all polynomial coefficients. Every choice of u, v gives
rise to a quadratic equation for z (by equating the leading coefficient in n to zero) with at
most 2 solutions: For every choice of u, v, z, apply POLY to (26).

Example 88. This is a continuation of the Example 66 for Algorithm POLY. We consider
the following recurrence,

(n− 1)y(n+ 2)− (3n− 2)y(n+ 1) + 2ny(n) = 0, y(0) = 1, y(1) = 3.

We are looking for a hypergeometric solution with

y(n+ 1) = s(n)y(n) and s(n) =
t(n+ 1)

t(n)

u(n)

v(n+ 1)
z.

Now we determine the set of candidates for u, v:

v(n+ 2)
∣∣a2(n) = n− 1 =⇒ v(n+ 2) = 1, n− 1

u(n)
∣∣a0(n) = 2n =⇒ u(n) = 1, n.

To find all hypergeometric solutions (if there are any), we need to possibly check all com-
binations of these candidates, i.e., in this case (u, v) ∈ {(1, 1), (1, n− 3), (n, 1), (n, n− 3)}.
In our first try, we plug v(n+ 2) = u(n) = 1 into (26),

(n− 1)z2 − (3n− 2)z + 2n = 0.

From the leading coefficient w.r.t. n we get the equation

z2 − 3z + 2 = (z − 1)(z − 2) = 0,

and thus we have the two candidates z1 = 1, z2 = 2 for z. If we try POLY on the combi-
nation (u, v, z) = (1, 1, 1), we arrive at the equation

(n− 1)t(n+ 2)− (3n− 2)t(n+ 1) + 2nt(n) = 0,
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for which we already determined the general solution t0(n) = c0n. Trying POLY on the
combination (u, v, z) = (1, 1, 2), i.e., on

4(n− 1)t(n+ 2)− 2(3n− 2)t(n+ 1) + 2nt(n) = 0,

we obtain the solution t1(n) = c1. Since we are considering a second order recurrence and
have now found two linear independent solutions, we are done and we can compute the
hypergeometric solutions:

s0(n) =
n+ 1

n
⇒ y0(n+ 1) =

n+ 1

n
y(n) ⇒ y0(n) = C0n.

and

s1(n) = 2
c1
c1

1

1
⇒ y1(n+ 1) = 2y1(n) ⇒ y1(n) = C12

n.

Hence the general solution is y(n) = C0n + C12
n and the constants Ci can be computed

from the initial values.

Marko Petkovšek wrote a Mathematica implementation of the algorithm under the
name Hyper and it is available at

https://www.fmf.uni-lj.si/~petkovsek/software.html

An application of Hyper is the factorization of difference operators as it computes first
order right factors. As before, let Sn denote the forward shift operator acting on n. Let
p ∈ K(x), then

Snp(n) = p(n+ 1)Sn.

The right hand side can be viewed as operator multiplication of a zero order operator
(p(n+ 1)) with a first order operator (Sn). To divide operators from the right, we use the
formula,

p(n)Skn =

(
p(n)

q(n+ k −m)
Sk−mn

)
(q(n)Smn ) ,

for some q ∈ K(x). If we know how to divide monomials, we can divide operators.
Let L1, L2 ∈ K(n)[Sn], L2 6= 0, then there are operators Q,R ∈ K(n)[Sn] s.t.

L1 = QL2 +R with ord(R) < ord(L2),

where ord denotes the order of an operator. So we have right division with remainder.
Furthermore, we have a right Euclidean domain and can compute greatest common right
divisors (gcrd) and least common left multiples (lclm).

Say we are given L1, L2 ∈ K(n)[Sn] with L1y1 = 0 and L2y2 = 0 for sequences y1, y2 ∈
KN. Now let M = lclm(L1, L2), i.e., there exist operators M1,M2 ∈ K(n)[Sn] s.t.,

M = M1L1 = M2L2
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and
M(y1 + y2) = M1L1y1 +M2L2y2 = M10 +M20 = 0.

Given a sequence a ∈ KN and an annihilating operator L ∈ K(n)[Sn] with La = 0. Then
there exists a minimal order operator M with Ma = 0. and we can right divide L by M :
Let

L = QM +R with ord(R) < ord(M),

and we have
La︸︷︷︸
=0

= Q Ma︸︷︷︸
=0

+Ra =⇒ Ra = 0 =⇒ R = 0,

where in the last step we used the minimality of M .
Hence, the minimal order annihilating operator of a is a right factor of any annihilating

operator of a.
Hypergeometric solutions of Ly = 0 correspond to monic first order right factors of L.

Example 89. For the recurrence

(n− 1)y(n+ 2)− (3n− 2)y(n+ 1) + 2ny(n) = 0

we have found the two hypergeometric solutions

y0(n) = C0n, with recurrence y0(n+ 1) =
n+ 1

n
y0(n),

and
y1(n) = C12

n with recurrence y1(n+ 1) = 2y1(n).

Let’s write the given second order recurrence in operator form

(n− 1)S2
n − (3n− 2)Sn + 2n

and right divide the two operators corresponding to the two hypergeometric solutions. First,
we use the simpler operator Sn − 2 corresponding to y1:(

(n− 1)S2
n − (3n− 2)Sn + 2n

)
: (Sn − 2) = (n− 1)Sn − n

(n− 1)S2
n − 2(n− 1)Sn

− nSn + 2n

− nSn + 2n

0

So, we found that we can factor L as

L = ((n− 1)Sn − n) (Sn − 2).
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On the other hand, if we right divide by the operator Sn − n+1
n

, we obtain

(
(n− 1)S2

n − (3n− 2)Sn + 2n
)

:

(
Sn −

n+ 1

n

)
= (n− 1)Sn −

2n2

n+ 1

(n− 1)S2
n + (n− 1)

(
−n+ 2

n+ 1

)
Sn

− 2n2

n+ 1
Sn + 2n

− 2n2

n+ 1
Sn +

2n2

n+ 1

n+ 1

n

0

yielding

L =

(
(n− 1)Sn −

2n2

n+ 1

)(
Sn −

n+ 1

n

)
.
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9 A bivariate example: rook walks

Let us assume that we are moving a rook on an infinite dimensional chess board (the first
quadrant) from the origin (0, 0) to some endpoint (i, j) on the board. The possible moves
of a rook are

• direction: going North ↑ and going East →,

• length: arbitrary,

• there is NO going back.

We want to determine

a(i, j) = #(paths starting at (0, 0) and ending at (i, j)).

There is no simple closed form for this sequence, but we can determine a recurrence: a(i, j)
equals the number of possible positions before the last move, i.e.,

a(i, j) =

j−1∑
k=0

a(i, k) +
i−1∑
k=0

a(k, j), (i, j) ∈ N2 \ {(0, 0)}, a(0, 0) = 1. (27)

Next, let

α(n) := a(n, n) = #(number of paths on an n× n chess board from the lower left to the

upper right corner).

The cost for computing α(n) using the recurrence (27) is O(n3). Could we do better than
that?
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Let’s have a look at the bivariate generating function

f(x, y) =
∑
i,j≥0

a(i, j)xiyj

= 1 +
∑

(i,j)∈N2\{(0,0)}

a(i, j)xiyj

= 1 +
∑

(i,j)∈N2\{(0,0)}

(
j−1∑
k=0

a(i, k) +
i−1∑
k=0

a(k, j)

)
xiyj.

We start with the first sum and fix i: note, that

j−1∑
k=0

a(i, k) = 0 for j = 0,

and hence for all i ≥ 0 we must have j ≥ 1. Then for i ≥ 0,

∑
j≥1

j−1∑
k=0

a(i, k)yj =
∑
j≥0

j∑
k=0

a(i, k)yj+1

= y

(∑
j≥0

a(i, j)yj

)(∑
j≥0

yj

)
=

y

1− y
∑
j≥0

a(i, j)yj.

In the same way, we can argue that for fixed j ≥ 0 we have

∑
i≥1

i−1∑
k=0

a(k, j)xi = · · · = x

1− x
∑
i≥0

a(i, j)xi.

Summarizing, we obtain the following functional equation for f(x, y),

f(x, y) = 1 +
y

1− y
f(x, y) +

x

1− x
f(x, y).

From this, we can easily compute the closed form

f(x, y) =
(1− x)(1− y)

1− 2x− 2y + 3xy
,

which in turn allows to derive a C-finite recurrence for a(i, j). First, let

g(x, y) =
1

1− 2x− 2y + 3xy
=
∑
i,j≥0

b(i, j)xiyj.
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Then
1 = (1− 2x− 2y + 3xy)

∑
i,j≥0

b(i, j)xiyj

=
∑
i,j≥0

(
b(i, j)xiyj − 2b(i, j)xi+1yj − 2b(i, j)xiyj+1 + 3b(i, j)xi+1yj+1

)
=
∑
i,j≥0

b(i, j)xiyj −
∑

i≥1,j≥0

2b(i− 1, j)xiyj −
∑

i≥0,j≥1

2b(i, j − 1)xiyj

+
∑
i,j≥1

3b(i− 1, j − 1)xiyj.

Coefficient comparison for i, j ≥ 1 gives the recurrence

[xiyj] : 0 = b(i, j)− 2b(i− 1, j)− 2b(i, j − 1) + 3b(i− 1, j − 1),

and the initial values

[x0y0] : 1 = b(0, 0),

[x0yj] : 0 = b(0, j)− 2b(0, j − 1) ⇒ b(0, j) = 2j, j ≥ 1,

[xiy0] : 0 = b(i, 0)− 2b(i− 1, 0) ⇒ b(i, 0) = 2i, i ≥ 1.

Hence, summarizing, we have

b(i+ 1, j + 1) = 2b(i, j + 1) + 2b(i+ 1, j)− 3b(i, j), i, j ≥ 0,

b(0, k) = b(k, 0) = 2k, k ≥ 0.

In operator notation we thus can write Lb = 0 for

L = SiSj − 2Si − 2Sj + 3.

Note, that

(1− x)
∑
n≥0

cnx
n =

∑
n≥0

cnx
n −

∑
n≥1

cn−1x
n

= c0 +
∑
n≥1

(cn − cn−1)xn

= c0 +
∑
n≥0

(cn+1 − cn)︸ ︷︷ ︸
=(Sn−1)c(n)

xn+1

Since f(x, y) = (1− x)(1− y)g(x, y), we thus have

a(i, j) = (Si − 1)(Sj − 1)b(i, j), i, j ≥ 1. (28)

What happens if we apply this operator L to a(i, j)?

La = L(Si − 1)(Sj − 1)b = (Si − 1)(Sj − 1)Lb = 0.
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The operators commute, because their coefficients are constant, and hence L also anni-
hilates a. Since (28) only holds for i, j ≥ 1, we have to provide sufficiently many initial
values. Consequently, we have

a(i+ 1, j + 1) = 2a(i, j + 1) + 2a(i+ 1, j)− 3a(i, j), i, j ≥ 1, (29)

with

a(0, 0) = 1, a(0, k) = a(k, 0) = 2k−1, a(1, k) = a(k, 1) = 2k−2(k + 3), k ≥ 1.

Using the recurrence (29), the complexity for computing α(n) goes down to O(n2). There
is even a faster way: using Guessing we find

(n+2)α(n+2)− (10n+14)α(n+1)+9nα(n) = 0, α(0) = 1, α(1) = 2, n ≥ 0. (30)

With this, the complexity is linear (O(n)).

Remark 90. (Lipshitz, 1988) If
∑

i,j a(i, j)xiyj is holonomic, then
∑

n≥0 a(n, n)zn is also
holonomic. This results extends to more variables than two.
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10 Asymptotics of holonomic sequences

We briefly discuss what type of asymptotic behaviour holonomic sequences can have. First,
recall that we defined two sequences an, bn to be asymptotically equivalent as follows,

an ∼ bn(n→∞) ⇐⇒ lim
n→∞

an
bn

= 1.

For hypergeometric sequences, we noted that

(c1)n
(c2)n

∼ Γ(c1)

Γ(c2)
nc1−c2(n→∞),

where (a)n denotes the Pochhammer symbol (or rising factorial).
For holonomic sequences, finding the asymptotic behaviour is hard in general. If the

generating function is analytic, it is possible to determine the type of asymptotics of a
sequence.

Definition 91. Let a, b be complex functions, analytic in a neighbourhood of z0 ∈ C. Then
a, b are asymptotically equivalent at z0 iff

lim
z→z0

a(z)

b(z)
= 1.

Notation: a(z) ∼ b(z)(z → z0).

Let a(z) =
∑

n≥0 anz
n be analytic in a neighbourhood of 0 containing 1. Then,

a(z) ∼ (1− z)α log(1− z)β (z → 1) ⇔ an ∼
(−1)β

Γ(−α)
n−α−1 log(n)β (n→∞),

with α /∈ N, β ∈ N. These are the types of singularities that can be detected.
There are two obvious issues:

• the generating function is not analytic

• the coefficients grow too slow (there are no singularities)

In these two cases, sometimes scaling helps.

Example 92. We found earlier that the generating function for average QuickSort counting
is

A(z) = − 2z

(1− z)2
− 2

(1− z)2
log(1− z).

The second term is the dominating term for z → 1 and we read off α = −2, β = 1 and
thus find

a(n) ∼ 2
(−1)1

Γ(2)
n2−1 log(n)1 = 2n log(n) (n→∞).
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