Symbolic Linear Algebra (selected slides)

Carsten Schneider

Research Institute for Symbolic Computation (RISC) Johannes Kepler University Linz

Lecture 1: March 7, 2023

Definition. Let $(\mathbb{G},+, \cdot)$ be a field and let $M \neq \emptyset$ be a set with two operations $+: M \times M \rightarrow M$ and $*: \mathbb{G} \times M \rightarrow M$. $(M,+, *)$ is called a vector space over \mathbb{G} (or a \mathbb{G}-vector space) if $(M,+)$ is an abelian group and in addition the following properties hold:

1. $\forall a \in M \forall \lambda, \mu \in \mathbb{G}:(\lambda \cdot \mu) * a=\lambda *(\mu * a)$;
2. $\forall a \in M: 1 * a=a$ (here 1 is the neutral element in \mathbb{G} w.r.t. •);
3. $\forall a, b \in M \quad \forall \lambda \in \mathbb{G}: \lambda *(a+b)=\lambda * a+\lambda * b$;
4. $\forall a \in M \forall \lambda, \mu \in \mathbb{G}:(\lambda+\mu) * a=\lambda * a+\mu * a$.

* is also called a scalar multiplication.

Definition. Let $(\mathbb{G},+, \cdot)$ be a ring and let $M \neq \emptyset$ be a set with two operations $+: M \times M \rightarrow M$ and $*: \mathbb{G} \times M \rightarrow M$. $(M,+, *)$ is called a left module over \mathbb{G} (or a left \mathbb{G}-module) if $(M,+)$ is an abelian group and in addition the following properties hold:

1. $\forall a \in M \forall \lambda, \mu \in \mathbb{G}:(\lambda \cdot \mu) * a=\lambda *(\mu * a)$;
2. $\forall a \in M: 1 * a=a$ (here 1 is the neutral element in \mathbb{G} w.r.t. •);
3. $\forall a, b \in M \quad \forall \lambda \in \mathbb{G}: \lambda *(a+b)=\lambda * a+\lambda * b$;
4. $\forall a \in M \forall \lambda, \mu \in \mathbb{G}:(\lambda+\mu) * a=\lambda * a+\mu * a$.

* is also called a scalar multiplication.

Definition. Let $(\mathbb{G},+, \cdot)$ be a ring and let $M \neq \emptyset$ be a set with two operations $+: M \times M \rightarrow M$ and $*: \mathbb{G} \times M \rightarrow M$.
$(M,+, *)$ is called a right module over \mathbb{G} (or a right \mathbb{G}-module) if $(M,+)$ is an abelian group and in addition the following properties hold:

1. $\forall a \in M \forall \lambda, \mu \in \mathbb{G}: a *(\mu \cdot \lambda)=(a * \mu) * \lambda$;
2. $\forall a \in M: a * 1=a$ (here 1 is the neutral element in \mathbb{G} w.r.t. \cdot);
3. $\forall a, b \in M \quad \forall \lambda \in \mathbb{G}:(a+b) * \lambda=a * \lambda+b * \lambda$;
4. $\forall a \in M \forall \lambda, \mu \in \mathbb{G}: a *(\lambda+\mu)=a * \lambda+a * \mu$.

* is also called a scalar multiplication.

Lecture 6: April 25, 2023

Theorem CHAR. Let R be a PID and $A \in M_{n}(R)$. Then the following statements are equivalent:

1. $A \in \mathrm{GL}_{n}(R)$
2. $\operatorname{det}(A) \in R^{*}$
3. $S_{R}(A)=R^{n}$.
4. The rows of A form a basis of R^{n}.
5. The columns of A form a basis of R^{n}.
6. A is row equivalent to I_{n}.
7. A is a product of elementary matrices.

Note: If R is commutative, the equivalences (1)-(5) hold.

Lecture 7: May 2, 2023

Lemma Q. Let R be a commutative ring, $A \in R^{m \times n}, b \in R^{m}$ and $Q \in \mathrm{GL}_{n}(R)$. Define

$$
\begin{aligned}
& S_{1}=\left\{x \in R^{n} \mid A x=b\right\} \\
& S_{2}=\left\{x \in R^{n} \mid A Q x=b\right\}
\end{aligned}
$$

Then: S_{1} and S_{2} are in $1-1$ correspondence with $f: S_{1} \rightarrow S_{2}$ where $f(x)=Q^{-1} x$ and $f^{-1}(x)=Q x$.

Lemma P. Let R be a commutative ring, $A \in R^{m \times n}, b \in R^{m}$ and $P \in \mathrm{GL}_{m}(R)$. Define

$$
\begin{aligned}
& S_{1}=\left\{x \in R^{n} \mid A x=b\right\} \\
& S_{2}=\left\{x \in R^{n} \mid P A x=b\right\}
\end{aligned}
$$

Then: $S_{1}=S_{2}$.

