Summer Semester 2023

Symbolic Linear Algebra (selected slides)

Carsten Schneider

Research Institute for Symbolic Computation (RISC) Johannes Kepler University Linz

Lecture 1: March 7, 2023

Definition. Let $(\mathbb{G}, +, \cdot)$ be a field and let $M \neq \emptyset$ be a set with two operations $+: M \times M \to M$ and $*: \mathbb{G} \times M \to M$. (M, +, *) is called a vector space over \mathbb{G} (or a \mathbb{G} -vector space) if (M, +) is

(M, +, *) is called a vector space over \mathbb{G} (or a \mathbb{G} -vector space) if (M, +) is an abelian group and in addition the following properties hold:

1.
$$\forall a \in M \ \forall \lambda, \mu \in \mathbb{G}$$
: $(\lambda \cdot \mu) * a = \lambda * (\mu * a)$;

2. $\forall a \in M : 1 * a = a$ (here 1 is the neutral element in \mathbb{G} w.r.t. \cdot);

3.
$$\forall a, b \in M \ \forall \lambda \in \mathbb{G} : \lambda * (a+b) = \lambda * a + \lambda * b;$$

4. $\forall a \in M \ \forall \lambda, \mu \in \mathbb{G} : (\lambda + \mu) * a = \lambda * a + \mu * a.$

* is also called a scalar multiplication.

Definition. Let $(\mathbb{G}, +, \cdot)$ be a ring and let $M \neq \emptyset$ be a set with two operations $+: M \times M \to M$ and $*: \mathbb{G} \times M \to M$. (M, +, *) is called a left module over \mathbb{G} (or a left \mathbb{G} -module) if (M, +) is an abelian group and in addition the following properties hold:

1.
$$\forall a \in M \ \forall \lambda, \mu \in \mathbb{G} : (\lambda \cdot \mu) * a = \lambda * (\mu * a);$$

2. $\forall a \in M : 1 * a = a$ (here 1 is the neutral element in \mathbb{G} w.r.t. \cdot);

3.
$$\forall a, b \in M \ \forall \lambda \in \mathbb{G} : \lambda * (a + b) = \lambda * a + \lambda * b;$$

4. $\forall a \in M \ \forall \lambda, \mu \in \mathbb{G} : (\lambda + \mu) * a = \lambda * a + \mu * a.$

* is also called a *scalar multiplication*.

Definition. Let $(\mathbb{G}, +, \cdot)$ be a ring and let $M \neq \emptyset$ be a set with two operations $+: M \times M \to M$ and $*: \mathbb{G} \times M \to M$. (M, +, *) is called a right module over \mathbb{G} (or a right \mathbb{G} -module) if (M, +) is an abelian group and in addition the following properties hold:

1.
$$\forall a \in M \ \forall \lambda, \mu \in \mathbb{G} : a * (\mu \cdot \lambda) = (a * \mu) * \lambda;$$

2. $\forall a \in M : a * 1 = a$ (here 1 is the neutral element in \mathbb{G} w.r.t. \cdot);

3.
$$\forall a, b \in M \ \forall \lambda \in \mathbb{G} : (a+b) * \lambda = a * \lambda + b * \lambda;$$

4. $\forall a \in M \ \forall \lambda, \mu \in \mathbb{G} : a * (\lambda + \mu) = a * \lambda + a * \mu.$

* is also called a *scalar multiplication*.

Lecture 6: April 25, 2023

Theorem CHAR. Let R be a PID and $A \in M_n(R)$. Then the following statements are equivalent:

- 1. $A \in \mathsf{GL}_n(R)$
- 2. $\det(A) \in R^*$
- 3. $S_R(A) = R^n$.
- 4. The rows of A form a basis of \mathbb{R}^n .
- 5. The columns of A form a basis of \mathbb{R}^n .
- 6. A is row equivalent to I_n .
- 7. A is a product of elementary matrices.

Note: If R is commutative, the equivalences (1)–(5) hold.

Lecture 7: May 2, 2023

Lemma Q. Let R be a commutative ring, $A \in R^{m \times n}$, $b \in R^m$ and $Q \in GL_n(R)$. Define

$$S_1 = \{ x \in R^n \mid A x = b \},\$$

$$S_2 = \{ x \in R^n \mid A Q x = b \}.$$

Then: S_1 and S_2 are in 1-1 correspondence with $f: S_1 \to S_2$ where $f(x) = Q^{-1}x$ and $f^{-1}(x) = Qx$.

Lemma P. Let R be a commutative ring, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $P \in GL_m(R)$. Define

$$S_1 = \{ x \in R^n \mid A x = b \},\$$

$$S_2 = \{ x \in R^n \mid P A x = b \}.$$

Then: $S_1 = S_2$.