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Since early 90’s in the past century our research has been focused on the acceleration of computer
simulations of PDEs. Another equally important and uncompromising objective has been the
accuracy enhancement of the numerical results. As a first step towards these goals we have devised
a symbolic procedure for systematically and conveniently diagonalizing the linear PDEs, which are
commonly encountered in mathematical physics and computational engineering applications.

This presentation provides a detailed account of the ideas behind diagonalization, and discusses its
consequences on designing robust, accurate and accelerated algorithms for solving boundary value
problems (BVPs) in both integral- and differential form.

The discussion starts with a conjecture stating that all linearized PDEs, as models for physically
realizable systems, can be diagonalized. As byproducts, our conjecture implies several constraints,
consistent with known classical results, upon the involved constitutive equations.

Diagonalized forms are, by construction, equivalent to the originating PDEs, but distinguish the
space coordinate with respect to which the diagonalization has been performed. As will be shown
in this presentation diagonalized forms intrinsically allow several useful interpretations which are
generally deeply hidden in their PDE counterparts.

We demonstrate the technical details by converting several PDEs into their respective diagonalized
forms. In particular we consider the Laplace equation for the electrostatic and magnetostatic
fields, elastostatic equations, the Helmholz equation for the scalar wave propagation, the acoustic-,
piezoelectric-, and electromagnetic wave equations for vector fields in anisotropic and transversally
inhomogeneous media, and finally the Schrodinger wave equation. Thereby, a symbolic notation,
which can easily be automated, will enable us to replace lengthy and tedious calculations by a
simply-by-inspection manipulatory procedure.

For reasons which will be made clear we refer to diagonalized representations as Huygens’ Principle
in Differential Form. We will interpret this principle and show that it can favorably be used
for (i) generating novel stencils in the finite difference method (leading to our recently developed
Differential Boundary Element Method, DBEM); (ii) constructing functionals in the finite element
method; and most importantly, (iii) establishing singular surface integrals in the boundary element
method.



Diagonalized forms in spectral domain transform into algebraic eigenvalue equations. Using the
associated eigenpairs we suggest three procedures for constructing Green’s functions associated with
a given boundary value problem, keeping in mind the automatization aspect in our derivations.

We investigate the asymptotic properties of the eigenpairs in the far- and near-field in the spec-
tral domain. In accordance with Heisenberg’s uncertainty principle these asymptotic expansions
correspond to the near- and far-fields in the spatial domain. Utilizing the far-field expansions
in the spectral domain we propose an easy-to-implement recipie for the regularization of singular
surface integrals in the boundary element formulations. For completeness, the presentation of the
proposed regularization will proceed a discussion on Hadamard’s definition of well-behavedness of
linear operator equations, and Tikhonov’s regularization technique.

Using our regularization technique we show that moments of Green’s functions associated with
a given BVP can be written in coordinate (geometry)-free, frequency-, and material independent
forms, and therefore, they can be regarded as universal functions for the underlying class of prob-
lems. It turns out that the universal functions are generally astonishingly smooth; they can be pre-
calculated, stored, and thus retrieved as often as required (data recycling). This capability allows
us to separate the scientific computing efforts from the pre- and postprocessing steps in simulations,
suggesting the following organization of our software: preprocessing-buffer-computational:engine-
buffer-postprocessing. These considerations have resulted in the development of the Fast-MoM,
which is an accelerated form of the conventional method of moments (boundary element method).

Using precalculated universal functions the computation times for the calculation of impedance
matrices in the BEM applications reduce to the times required for retrieving data from the chosen
storage medium. However, in spite of this advancement, a major drawback in the BEM still
remains to be removed: the impedance matrices are dense. Several techniques have been suggested
in literature for obtaining sparse matrices, each with its own limitation. We have suggested a
procedure which consists of constructing problem-specific orthogonal sequences of basis functions
derived from the involved Green’s functions. The idea is to expand the unknowns in our problems in
terms of basis functions which embed intrinsic features of the underlying PDEs in their structures:
Using Meyer’s orthogonalization technique and Green’s functions associated with a given BVP,
we construct functions which are orthonormal to their integer-translates. In the case of Laplace
operator, we are able to show that the resulting functions even support a multiresolution analysis,
leading to Green’s-functions-based scaling functions and wavelets. Several numerical examples will
illuminate the underlying concepts.

We continue our presentation by briefly discussing several alternative localization techniques for
generating sparse matrices in computations, including coherent states and Wannier fucntions, orig-
inally suggested in quantum mechanics, and photonics applications, respectively.

We conclude our discussion by posing the following existence question: Why is it possible to
diagonalize a given system of linearized PDEs in the first place?



