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Rewriting

Computing the product of positive integers

prod(2, 4) = 8

int prod (int n, intm) {

if (n==0) return(0);

else return(prod(n-1,m)+m);

}

int prod ( int n, intm) {

int p= 0;

while (n!=0) {

p+=m;

n- -;

}

return(p);

}

prod(s(s(0)), s(s(s(s(0))))) = s(s(s(s(s(s(s(s(0))))))))

prod(0,m) → 0

prod(s(n′),m) → prod(n′,m) +m

prod(n,m) → prod1(n,m, 0)

prod1(0,m, p) → p

prod1(s(n′),m, p) → prod1(n′,m, p+m)
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, 3
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) →β
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Higher-Order rewriting

Combining rewriting and β-reduction.

With lambdas:

rewriting union β-reduction

rewriting over β-normalized terms
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Knuth-Bendix completion and theorem proving
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of the first papers on termination of rewriting.

1970, Knuth and Bendix. Knuth Bendix Ordering (KBO).

1978, Huet and Lankford. Undecidability of the termination of
Term Rewriting Systems.

1979, Dershowitz. Recursive Path Ordering (RPO).

1979, Dershowitz Manna. Multiset ordering.

1979, Lankford. One of the first references on polynomial
interpretations.

1980, Kamin and Levy. Lexicographic Path Ordering (LPO)
and Semantic Path Ordering (SPO).
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m
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well-founded

6 ∃t1 ≻ t2 ≻ t3 ≻ . . .

stable under sustitution

s ≻ t implies sσ ≻ tσ for every substitution σ

monotonic

s ≻ t implies u[s] ≻ u[t] for every context u[ ]
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Interpret terms by:

Pol( f (t1, . . . , tn)) = [ f ](Pol(t1), . . . , Pol(tn))
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Polynomial Interpretations

Interprets every function symbol as a (linear) polynomial:

[ f ] = Ak −→ A
where A is often the positive integers or the reals.

Interpret terms by:

Pol( f (t1, . . . , tn)) = [ f ](Pol(t1), . . . , Pol(tn))

Then a reduction ordering is obtained by

s ≻ t if Pol(s) − Pol(t) > 0
if all coeficients are strictly positive.

If there are zero coeficients then it is just weakly monotonic.
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Therecursive path ordering
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Therecursive path ordering

compares terms by extending an ordering on function symbols.
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Therecursive path ordering

compares terms by extending an ordering on function symbols.

Let ≻F be a (well-founded) ordering on the function symbols
For instance: prod ≻F + ≻F s ≻F 0
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Therecursive path ordering

compares terms by extending an ordering on function symbols.

Let ≻F be a (well-founded) ordering on the function symbols
For instance: prod ≻F + ≻F s ≻F 0

s = f (s1, . . . , sn) ≻rpo t if and only if

1. si �rpo t for some 1 ≤ i ≤ n.

2. t = g(t1, . . . , tm), f ≻F g and s ≻rpo tj for all 1 ≤ j ≤ m.

3. t = f (t1, . . . , tm) and {s1, . . . , sn} ≻≻rpo {t1, . . . , tm}
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The recursive path ordering (cont.)

s = f (s1, . . . , sn) ≻rpo t if and only if

1. si �rpo t for some 1 ≤ i ≤ n.

2. t = g(t1, . . . , tm), f ≻F g and s ≻rpo tj for all 1 ≤ j ≤ m.

3. t = f (t1, . . . , tm) and {s1, . . . , sn} ≻≻rpo {t1, . . . , tm}

Let prod ≻F + ≻F s ≻F 0
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The recursive path ordering (cont.)

s = f (s1, . . . , sn) ≻rpo t if and only if

1. si �rpo t for some 1 ≤ i ≤ n.

2. t = g(t1, . . . , tm), f ≻F g and s ≻rpo tj for all 1 ≤ j ≤ m.

3. t = f (t1, . . . , tm) and {s1, . . . , sn} ≻≻rpo {t1, . . . , tm}

Let prod ≻F + ≻F s ≻F 0

prod(s(n),m) ≻rpo s(prod(n,m))
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The recursive path ordering (cont.)

s = f (s1, . . . , sn) ≻rpo t if and only if

1. si �rpo t for some 1 ≤ i ≤ n.

2. t = g(t1, . . . , tm), f ≻F g and s ≻rpo tj for all 1 ≤ j ≤ m.

3. t = f (t1, . . . , tm) and {s1, . . . , sn} ≻≻rpo {t1, . . . , tm}

Let prod ≻F + ≻F s ≻F 0

prod(s(n),m) ≻rpo s(prod(n,m)) Case 2

prod(s(n),m) ≻rpo prod(n,m)
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The recursive path ordering (cont.)

s = f (s1, . . . , sn) ≻rpo t if and only if

1. si �rpo t for some 1 ≤ i ≤ n.

2. t = g(t1, . . . , tm), f ≻F g and s ≻rpo tj for all 1 ≤ j ≤ m.

3. t = f (t1, . . . , tm) and {s1, . . . , sn} ≻≻rpo {t1, . . . , tm}

Let prod ≻F + ≻F s ≻F 0

prod(s(n),m) ≻rpo s(prod(n,m)) Case 2

prod(s(n),m) ≻rpo prod(n,m) Case 3

{s(n),m} ≻≻rpo {n,m}

RTA 2008– p.14/31



Albert Rubio - UPC

The recursive path ordering (cont.)

s = f (s1, . . . , sn) ≻rpo t if and only if

1. si �rpo t for some 1 ≤ i ≤ n.

2. t = g(t1, . . . , tm), f ≻F g and s ≻rpo tj for all 1 ≤ j ≤ m.

3. t = f (t1, . . . , tm) and {s1, . . . , sn} ≻≻rpo {t1, . . . , tm}

Let prod ≻F + ≻F s ≻F 0

prod(s(n),m) ≻rpo s(prod(n,m)) Case 2

prod(s(n),m) ≻rpo prod(n,m) Case 3

{s(n), 6m} ≻≻rpo {n, 6m} multiset comparison
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The recursive path ordering (cont.)

s = f (s1, . . . , sn) ≻rpo t if and only if

1. si �rpo t for some 1 ≤ i ≤ n.

2. t = g(t1, . . . , tm), f ≻F g and s ≻rpo tj for all 1 ≤ j ≤ m.

3. t = f (t1, . . . , tm) and {s1, . . . , sn} ≻≻rpo {t1, . . . , tm}

Let prod ≻F + ≻F s ≻F 0

prod(s(n),m) ≻rpo s(prod(n,m)) Case 2

prod(s(n),m) ≻rpo prod(n,m) Case 3

{s(n), 6m} ≻≻rpo {n, 6m} multiset comparison

s(n) ≻rpo n
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The recursive path ordering (cont.)

s = f (s1, . . . , sn) ≻rpo t if and only if

1. si �rpo t for some 1 ≤ i ≤ n.

2. t = g(t1, . . . , tm), f ≻F g and s ≻rpo tj for all 1 ≤ j ≤ m.

3. t = f (t1, . . . , tm) and {s1, . . . , sn} ≻≻rpo {t1, . . . , tm}

Let prod ≻F + ≻F s ≻F 0

prod(s(n),m) ≻rpo s(prod(n,m)) Case 2

prod(s(n),m) ≻rpo prod(n,m) Case 3

{s(n), 6m} ≻≻rpo {n, 6m} multiset comparison

s(n) ≻rpo n Case 1
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Powerful automatable methods

Methods that can be fully automated

Can handle hard examples.
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Powerful automatable methods

Methods that can be fully automated

Can handle hard examples.

Only two will be considered in this talk:

The Dependency Pair Method

The Monotonic Semantic Path Ordering
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The Dependency Pair Method (cont.)

(Arts and Giesl 1997)
Basically, it transforms the rewrite system into a new reduction
system which is simpler to analyze and (dis)prove termination.
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The Dependency Pair Method (cont.)

(Arts and Giesl 1997)
Basically, it transforms the rewrite system into a new reduction
system which is simpler to analyze and (dis)prove termination.

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

PROD(s(n),m) ⇒ SUM(prod(n,m),m)

PROD(s(n),m) ⇒ PROD(n,m)

SUM(s(n),m) ⇒ SUM(n,m)
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The Dependency Pair Method (cont.)

(Arts and Giesl 1997)
Basically, it transforms the rewrite system into a new reduction
system which is simpler to analyze and (dis)prove termination.

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

PROD(s(n),m) ⇒ SUM(prod(n,m),m)

PROD(s(n),m) ⇒ PROD(n,m)

SUM(s(n),m) ⇒ SUM(n,m)

PROD(s(n),m) PROD(s(n),m)

               PROD(n,m)             SUM(PROD(n,m))
SUM(n,m)

SUM(s(n),m)
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The Dependency Pair Method (cont.)

(Arts and Giesl 1997)
Basically, it transforms the rewrite system into a new reduction
system which is simpler to analyze and (dis)prove termination.

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

prod(0,m) ⇒ ZERO

PROD(s(n),m) ⇒ SUM(prod(n,m),m)

PROD(s(n),m) ⇒ PROD(n,m)

SUM(s(n),m) ⇒ SUM(n,m)

SUM(s(n),m) ⇒ SUC(n+m)
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The Dependency Pair Method (cont.)

(Arts and Giesl 1997)
Basically, it transforms the rewrite system into a new reduction
system which is simpler to analyze and (dis)prove termination.

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

prod(0,m) ⇒ ZERO

PROD(s(n),m) ⇒ SUM(prod(n,m),m)

PROD(s(n),m) ⇒ PROD(n,m)

SUM(s(n),m) ⇒ SUM(n,m)

SUM(s(n),m) ⇒ SUC(n+m)

PROD(s(n),m) PROD(s(n),m)

               PROD(n,m)

               ZERO

            SUM(prod(n,m)) SUM(n,m)

SUM(s(n),m)

SUM(s(n),m)

SUC(n+m)

PROD(s(n),m)

Does not change the potential cycles!!!
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The Dependency Pair Method (cont.)

(Arts and Giesl 1997)
Basically, it transforms the rewrite system into a new reduction
system which is simpler to analyze and (dis)prove termination.

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

prod(0,m) ⇒ ZERO

PROD(s(n),m) ⇒ SUM(prod(n,m),m)

PROD(s(n),m) ⇒ PROD(n,m)

SUM(s(n),m) ⇒ SUM(n,m)

SUM(s(n),m) ⇒ SUC(n+m)

PROD(s(n),m) PROD(s(n),m)

               PROD(n,m)

               ZERO

            SUM(prod(n,m)) SUM(n,m)

SUM(s(n),m)

SUM(s(n),m)

SUC(n+m)

PROD(s(n),m)
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The Dependency Pair Method (cont.)

(Arts and Giesl 1997)
Basically, it transforms the rewrite system into a new reduction
system which is simpler to analyze and (dis)prove termination.

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

prod(0,m) ⇒ ZERO

PROD(s(n),m) ⇒ SUM(prod(n,m),m)

PROD(s(n),m) ⇒ PROD(n,m)

SUM(s(n),m) ⇒ SUM(n,m)

SUM(s(n),m) ⇒ SUC(n+m)

PROD(s(n),m) PROD(s(n),m)

               PROD(n,m)

               ZERO

            SUM(prod(n,m)) SUM(n,m)

SUM(s(n),m)

SUM(s(n),m)

SUC(n+m)

PROD(s(n),m)
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The Dependency Pair Method (cont.)

(Arts and Giesl 1997)
Basically, it transforms the rewrite system into a new reduction
system which is simpler to analyze and (dis)prove termination.

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

prod(0,m) ⇒ ZERO

PROD(s(n),m) ⇒ SUM(prod(n,m),m)

PROD(s(n),m) ⇒ PROD(n,m)

SUM(s(n),m) ⇒ SUM(n,m)

SUM(s(n),m) ⇒ SUC(n+m)

PROD(s(n),m) PROD(s(n),m)

               PROD(n,m)             SUM(PROD(n,m))
SUM(n,m)

SUM(s(n),m)
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The Dependency Pair Method (cont.)

(Arts and Giesl 1997)
Basically, it transforms the rewrite system into a new reduction
system which is simpler to analyze and (dis)prove termination.

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

PROD(s(n),m) ⇒ SUM(prod(n,m),m)

PROD(s(n),m) ⇒ PROD(n,m)

SUM(s(n),m) ⇒ SUM(n,m)

PROD(s(n),m) PROD(s(n),m)

               PROD(n,m)             SUM(PROD(n,m))
SUM(n,m)

SUM(s(n),m)
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The Dependency Pair Method (cont.)

(Arts and Giesl 1997)
Basically, it transforms the rewrite system into a new reduction
system which is simpler to analyze and (dis)prove termination.

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

PROD(s(n),m) ⇒ SUM(prod(n,m),m)

PROD(s(n),m) ⇒ PROD(n,m)

SUM(s(n),m) ⇒ SUM(n,m)

PROD(s(n),m) PROD(s(n),m)

               PROD(n,m)             SUM(prod(n,m)) SUM(n,m)

SUM(s(n),m)
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The Dependency Pair Method (cont.)

(Arts and Giesl 1997)
Basically, it transforms the rewrite system into a new reduction
system which is simpler to analyze and (dis)prove termination.

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

PROD(s(n),m) ⇒ SUM(prod(n,m),m)

PROD(s(n),m) ⇒ PROD(n,m)

SUM(s(n),m) ⇒ SUM(n,m)

PROD(s(n),m)
               PROD(n,m) SUM(n,m)

SUM(s(n),m)
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The Dependency Pair Method (cont.)

(Arts and Giesl 1997)
Basically, it transforms the rewrite system into a new reduction
system which is simpler to analyze and (dis)prove termination.

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

PROD(s(n),m) ⇒ SUM(prod(n,m),m)

PROD(s(n),m) ⇒ PROD(n,m)

SUM(s(n),m) ⇒ SUM(n,m)

The first phase its a simple rewriting trace analysis.

This method was a breakthrough in the development of

automated termination provers for term rewriting
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The Dependency Pair Method (cont.)

After simplifying the graph we have to show that all pontential
cycles are finite.

Solve the ordering constraints ensuring that all cycles in the graph
are strictly decreasing.

Find an ordering satisfying the constraint:

Polynomial Interpretations.

RPO-like orderings with argument filterings.

...
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The (Monotonic) Semantic Path Ordering

(Borralleras, Ferreira and Rubio 2000)
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The (Monotonic) Semantic Path Ordering

(Borralleras, Ferreira and Rubio 2000)

s = f (s1, . . . , sn) ≻rpo t if and only if

1. si �rpo t for some 1 ≤ i ≤ n.

2. t = g(t1, . . . , tm), f ≻F g and s ≻rpo tj for all 1 ≤ j ≤ m.

3. t = f (t1, . . . , tm) and {s1, . . . , sn} ≻≻rpo {t1, . . . , tm}
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The (Monotonic) Semantic Path Ordering

(Borralleras, Ferreira and Rubio 2000)

s = f (s1, . . . , sn) ≻spo t if and only if

1. si �spo t for some 1 ≤ i ≤ n.

2. t = g(t1, . . . , tm), s = t and s ≻spo tj for all 1 ≤ j ≤ m.

3. t = g(t1, . . . , tm), s ⊒ t and {s1, . . . , sn} ≻≻spo {t1, . . . , tm}

in addition you need s ⊒ t to ensure monotonicity,
where ⊒ is monotonic.
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The (Monotonic) Semantic Path Ordering

(Borralleras, Ferreira and Rubio 2000)

s = f (s1, . . . , sn) ≻spo t if and only if

1. si �spo t for some 1 ≤ i ≤ n.

2. s = t and s ≻spo tj for all 1 ≤ j ≤ m.

3. s ⊒ t and {s1, . . . , sn} ≻≻spo {t1, . . . , tm}

in addition you need s ⊒ t to ensure monotonicity,
where ⊒ is monotonic.
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The (Monotonic) Semantic Path Ordering

(Borralleras, Ferreira and Rubio 2000)

s = f (s1, . . . , sn) ≻spo t if and only if

1. si �spo t for some 1 ≤ i ≤ n.

2. s = t and s ≻spo tj for all 1 ≤ j ≤ m.

in addition you need s ⊒ t to ensure monotonicity,
where ⊒ is monotonic.
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The (Monotonic) Semantic Path Ordering

(Borralleras, Ferreira and Rubio 2000)

s = f (s1, . . . , sn) ≻spo t if and only if

1. si �spo t for some 1 ≤ i ≤ n.

2. s = t and s ≻spo tj for all 1 ≤ j ≤ m.
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The (Monotonic) Semantic Path Ordering

(Borralleras, Ferreira and Rubio 2000)

s = f (s1, . . . , sn) ≻spo t if and only if

1. si �spo t for some 1 ≤ i ≤ n.

2. s = t and s ≻spo tj for all 1 ≤ j ≤ m.

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

prod(0,m) = ZERO

PROD(s(n),m) = SUM(prod(n,m),m)

PROD(s(n),m) = PROD(n,m)

SUM(s(n),m) = SUM(n,m)

SUM(s(n),m) = SUC(n+m)
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The (Monotonic) Semantic Path Ordering

(Borralleras, Ferreira and Rubio 2000)

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

prod(0,m) = ZERO

PROD(s(n),m) = SUM(prod(n,m),m)

PROD(s(n),m) = PROD(n,m)

SUM(s(n),m) = SUM(n,m)

SUM(s(n),m) = SUC(n+m)

PROD(s(n),m) PROD(s(n),m)

               ZERO

SUM(n,m)

SUM(s(n),m)

SUM(s(n),m)

SUC(n+m)

PROD(s(n),m)

               PROD(n,m)             SUM(prod(n,m))
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The (Monotonic) Semantic Path Ordering

(Borralleras, Ferreira and Rubio 2000)

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

prod(0,m) = ZERO

PROD(s(n),m) = SUM(prod(n,m),m)

PROD(s(n),m) = PROD(n,m)

SUM(s(n),m) = SUM(n,m)

SUM(s(n),m) = SUC(n+m)

PROD(s(n),m) PROD(s(n),m)

               ZERO

SUM(n,m)

SUM(s(n),m)

SUM(s(n),m)

SUC(n+m)

PROD(s(n),m)
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The (Monotonic) Semantic Path Ordering

(Borralleras, Ferreira and Rubio 2000)

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

prod(0,m) = ZERO

PROD(s(n),m) = SUM(prod(n,m),m)

PROD(s(n),m) = PROD(n,m)

SUM(s(n),m) = SUM(n,m)

SUM(s(n),m) = SUC(n+m)

PROD(s(n),m)

SUM(n,m)

SUM(s(n),m)

               PROD(n,m)
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The (Monotonic) Semantic Path Ordering

(Borralleras, Ferreira and Rubio 2000)

s = f (s1, . . . , sn) ≻spo t if and only if

1. si �spo t for some 1 ≤ i ≤ n.

2. s = t and s ≻spo tj for all 1 ≤ j ≤ m.

3. s ⊒ t and {s1, . . . , sn} ≻≻spo {t1, . . . , tm}
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The (Monotonic) Semantic Path Ordering

(Borralleras, Ferreira and Rubio 2000)

s = f (s1, . . . , sn) ≻spo t if and only if

1. si �spo t for some 1 ≤ i ≤ n.

2. s = t and s ≻spo tj for all 1 ≤ j ≤ m.

3. s ⊒ t and {s1, . . . , sn} ≻≻spo {t1, . . . , tm}

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

prod(0,m) = ZERO

PROD(s(n),m) = SUM(prod(n,m),m)

PROD(s(n),m) ⊒ PROD(n,m)

SUM(s(n),m) = SUM(n,m)

SUM(s(n),m) ⊒ SUC(n+m)
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The (Monotonic) Semantic Path Ordering

(Borralleras, Ferreira and Rubio 2000)
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The (Monotonic) Semantic Path Ordering

(Borralleras, Ferreira and Rubio 2000)

prod(0,m) → 0

prod(s(n),m) → prod(n,m) +m

0+m → m

s(n) +m → s(n+m)

prod(0,m) = ZERO

PROD(s(n),m) = SUM(prod(n,m),m)

PROD(s(n),m) ⊒ PROD(n,m)

SUM(s(n),m) = SUM(n,m)

SUM(s(n),m) ⊒ SUC(n+m)

Different pathes provide different constraints to be solved.

The Dependency Pair constraint is one of them

It is unkown whether there are, in general, better constraints than

the one used by the Dependency Pair Method.
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Comparison of both methods

Monotonic Semantic Path Ordering Dependency Pairs

Positive Positive

Easy to extend Conceptually simple

AC-case [Borralleras Thesis 2003]*

CS-case [Borralleras Thesis 2003]

HO-case [Borralleras Thesis 2003]*

Constraint Framework Constraint Framework

[Borralleras Thesis 2003]* [GTS2004]
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Comparison of both methods

Monotonic Semantic Path Ordering Dependency Pairs

Negative Negative

Conceptualy more difficult Harder to extend

e.g. HO-case
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XXI century motivation

Present and Future

Our main goal should be to provide termination tools for

programming languages

logic programs (PROLOG [SGST2006]; AProVE)

functional programs (Haskell [GSST2006]; AProVE)

imperative programs (e.g. recent work [FK2008])

logical frameworks

Maude (AProVE amd Mu-Term)

Isabelle (normal HO-rewriting with lambdas)

Coq (HO-rewriting with lambdas)

Making a lot of plublicity of performance results.
Certified Termination.
Keep existing successful known tools alive: e.g. CiME
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XXI century motivation

Discourage risks

We have to avoid being a small closed community,
making it accessible for users, developers and researchers.
We need new fresh ideas from time to time.
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XXI century motivation

Discourage risks

We have to avoid being a small closed community,
making it accessible for users, developers and researchers.
We need new fresh ideas from time to time.
Are there too many paper on termination of rewriting?
The numbers are the following (only for RTA):

RTA 2008: one third of the papers are on termination.

RTA 2005-2008: it is the 30% of the papers (34 papers).

RTA 2001-2004: it is the 18% of the papers (18.5 papers).

It’s hard to compare the real progress in two periods, but, at least
it’s a bit surprising.
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XXI century motivation

Discourage risks

Attacking undecidable problems has a risk of always finding an
example to handle by a new improvement

Research on first-order theorem proving has had a different
behavior

even though they also have a competition, a large list of problems
and an undecidable problem.
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Potential sources of improvement

Constraint Solving techniques

Finding orderings to ensure that all cycles decrease it’s a key
ingredient in all provers
Like, for instance, SAT solvers or SMT solvers in many verification
tools.
There have been several recent results on finding:

RPO, LPO, KBO

polynomial interpretations (integers and reals)

matrix interpretations

by translating the problem into SAT or integer programming.
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Potential sources of improvement

Constraint Solving techniques

These solvers can be used as an ingredient for the termination tool,
and it is possible to use them as a black box.
Termination tools for other languages can also make use of them.
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Potential sources of improvement

Constraint Solving techniques

These solvers can be used as an ingredient for the termination tool,
and it is possible to use them as a black box.
Termination tools for other languages can also make use of them.

How can we compare them?

Are there other useful functionalities?

being incremental, i.e. adding new constraints

being backtrackable, i.e. removing the last added constraints

reusing the work done in previous stages.

These solvers, in particular the ones on polynomial interpretations,
may be useful in other contexts.
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Potential sources of improvement

Constraint Solving techniques

Like in 2003 with the termination on competition, I have a proposal
to start a competion on solving these constraints.
For instance,

finding RPOs

finding polynomial interpretations over the integers

finding polynomial interpretations over the reals

....

The existing systems can provide the problems to be solved.
There is no need to implement a full competitive termination
prover.
It can be atractive for new participants.
It can be done together with the termination competition or not
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Potential sources of improvement

Trace analysis

In all currently existing methods potentially looping traces are
detected by analyzing the dependency graph.

There exist many other techniques, for instance in program
analysis, for approximating exectution traces, and so detecting
potential loops.

I don’t know about any work on termination of rewriting using, for
instance, predicate abstraction techniques.

New techniques need to be scalable to large programs.

This would be an alternative way of obtaining ordering constraints
to ensure termination of all potential loops.
These constraints can be solved by the same solvers we have just
described.
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Potential sources of improvement

Built-in theories

This is a crucial matter in other verification tools.

Only very recently [FK2008] there has been an attempt to handle
built-in intergers and other theories when proving termination of
rewriting.
Having built-in integers is mandatory for many aplications.

We need to study how it combines with

existing and new trace analysis techniques and

the constraint solving techniques.

Maybe constraint solving should be restricted to polynomial
interpretations, but not necessarily.
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Conclusion

How termination will be in 10 years?

We have to make it more accessible to other communities.
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Conclusion

How termination will be in 10 years?

We have to make it more accessible to other communities.

Make solvers useful for other purposes, and use this to make
publicity of our termination tools.

Find new fresh ideas maybe coming from other areas.

Make a lot of publicity of real code termination proofs (better
if there are thousands of lines!).

Make our tools available for logical frameworks:
Maude, Isabelle, Coq, ...

Look for a new breakthrough!

and will see....
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