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Aim of this Talk

• RTA organizers:
“ ... would be nice to show how a combination of the
theory of rewriting, implementation techniques, heuristics,
ideas ... whatever else ... lead to a design of the fastest
equational reasoner in the world”

• Some evidence of “fastest” from performance in the CADE ATP
System Competitions. A.D. 2007 (100 problems attempted):

WM VAMPIRE E OTTER METIS EQUINOX GEO

solved 91 63 59 27 15 2 2

av. time 18.2 42.3 16.7 21.6 38.3 13.4 255.8

• What are the underlying concepts?
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Outline

• Foundations

• Prover engineering

• Controlling redundancy

• Applications
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I Foundations
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Equational Logic

• Example: group axiomatization

E : (x + y) + z = x + (y + z) x + 0 = x x + (−x) = 0

Word problem: Does E |= x = −− x hold?
(Birkhoff 1935): replace equals by equals

• Confluent and terminating theory presentation:
Apply equations non-deterministically and in one direction only
Word problem decidable by computation of normal forms

• If terminating: confluence = local confluence (Newman 1942),
effective test via Critical Pair Lemma (Knuth, Bendix 1970):
Check if critical pairs rewrite into tautologies
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Completion

• In the negative case:
– enrich presentation with rewritten critical pairs
– perform mutual simplification
– iterate the procedure!

} essence of
Knuth-Bendix
completion

• Fails if non-orientable equations encountered
Ordered completion takes orientable instances into account,
produces ground confluent system in the limit (Lankford 1975)

• Limit normal form reached in finite approximation already
Semi-decision procedure for word problem with drastically
reduced search space (Hsiang, Rusinowitch 1987)
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Ordered Completion

• Proof-theoretic framework (Bachmair, Dershowitz, Hsiang 1986):
Completion as transformation of proofs, contained in
well-founded proof ordering where rewrite proofs are minimal
Proof steps weighted according to

s ←→u⇒mv t 7−→ ({s}, u, m, t) if s � t

• Deduction of new facts must ensure fairness: eventually smaller
proof for every persistent ground peak s ←− t −→ u in Σe

Equation redundant if every ground instance has smaller proof

• WALDMEISTER as an implementation of ordered completion:
performs fully automated proof search,
returns proof log in case of success . . .
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WALDMEISTER Searching for a Proof

**********************************************************************
************************* COMPLETION - PROOF *************************
**********************************************************************

new rule: 1 +(x1,0) -> x1
new rule: 2 +(x1,-(x1)) -> 0
new rule: 3 +(+(x1,x2),x3) -> +(x1,+(x2,x3))
new rule: 4 +(x1,+(0,x2)) -> +(x1,x2)
new rule: 5 +(x1,-(0)) -> x1
new rule: 6 +(x1,+(-(x1),x2)) -> +(0,x2)
new rule: 7 +(0,-(-(x1))) -> x1
new rule: 8 +(x1,-(-(x2))) -> +(x1,x2)
remove rule: 7
new rule: 9 +(0,x1) -> x1
remove rule: 4
simplify rhs of rule: 6
new rule: 10 -(0) -> 0
remove rule: 5
new rule: 11 -(-(x1)) -> x1
remove rule: 8
joined goal: 1 c ?= -(-(c)) to c

+--------------------------+
| this proves the goal |
+--------------------------+

Proved Goals:
No. 1: c ?= -(-(c)) joined, current: c = c
1 goal was specified, which was proved.

Waldmeister states: Goal proved.
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WALDMEISTER Presenting a Proof

Consider the following set of axioms:

Axiom 1: x + 0 = x

Axiom 2: x + (−x) = 0

Axiom 3: (x + y) + z = x + (y + z)

This theorem holds true:

Theorem 1: x = − − x

Proof:

Lemma 1: 0 + (− − x) = x

0 + (− − x)

= by Axiom 2 RL
(x + (−x)) + (− − x)

= by Axiom 3 LR
x + ((−x) + (− − x))

= by Axiom 2 LR
x + 0

= by Axiom 1 LR
x

Lemma 2: x + (− − y) = x + y

x + (− − y)

= by Axiom 1 RL
(x + 0) + (− − y)

= by Axiom 3 LR
x + (0 + (− − y))

= by Lemma 1 LR
x + y

Lemma 3: 0 + x = x

0 + x

= by Lemma 2 RL
0 + (− − x)

= by Lemma 1 LR
x

Theorem 1: x = − − x
x

= by Lemma 3 RL
0 + x

= by Lemma 2 RL
0 + (− − x)

= by Lemma 3 LR
− − x
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Calculus and Proof Procedure

• Ordered / unfailing completion: given as set of calculus rules

expanding:
l = r s[l ′] = t

(s[r ] = t)σ
critical pairing

contracting: rewrite-based simplification rules

• Additional control constraint: fairness
Parameter: reduction ordering

• How to turn this into a deterministic algorithm?
Common solutions:
– given-pair algorithm (Wos, Carson, Robinson 1964)
– Huet’s algorithm (Huet 1981)
– given-clause algorithm (Overbeek 1971)
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Given-clause Algorithm

• Approach: incrementally precompute all expansion steps
assess candidate equations heuristically by weighting function ϕ

• Active facts A for rewriting and superposition
Passive facts P: critical pairs descending from A

A P

s=t: ϕ(s=t) min.

CP>(s=t, A )
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Proof Procedure

FUNCTION WALDMEISTER(Σ, E , C,>,ϕ) : BOOL
1: (A,P) := (∅, E)
2: WHILE ¬trivial(C) ∧ P 6= ∅ DO
3: e := minϕ(P); P := P \ {e}

4: e := Normalize>
A(e)

5: IF ¬redundant(e) THEN
6: (A, P1) := Interred>(A, e)

7: A := A ∪ {Orient>(e)}

8: P2 := CP>(e,A)
9: P := Update(P ∪ P1 ∪ P2) Normalize...

10: C := Normalize>
A(C)

11: END
12: END
13: RETURN trivial(C)
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Proof Procedure

FUNCTION WALDMEISTER(Σ, E , C,>,ϕ) : BOOL
1: (A,P) := (∅, E)
2: WHILE ¬trivial(C) ∧ P 6= ∅ DO
3: e := minϕ(P); P := P \ {e}

4: e := Normalize>
A(e)

5: IF ¬redundant(e) THEN
6: (A, P1) := Interred>(A, e)

7: A := A ∪ {Orient>(e)}

8: P2 := CP>(e,A)

9: P := Normalize>
A(P ∪ P1 ∪ P2) OTTER loop – eager

10: C := Normalize>
A(C)

11: END
12: END
13: RETURN trivial(C)
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Proof Procedure

FUNCTION WALDMEISTER(Σ, E , C,>,ϕ) : BOOL
1: (A,P) := (∅, E)
2: WHILE ¬trivial(C) ∧ P 6= ∅ DO
3: e := minϕ(P); P := P \ {e}

4: e := Normalize>
A(e)

5: IF ¬redundant(e) THEN
6: (A, P1) := Interred>(A, e)

7: A := A ∪ {Orient>(e)}

8: P2 := CP>(e,A)

9: P := P ∪ Normalize>
A(P1 ∪ P2) DISCOUNT loop – lazy

10: C := Normalize>
A(C)

11: END
12: END
13: RETURN trivial(C)
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II Prover Engineering
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Introduction

• For actual realization of proof procedure:
Design / adapt appropriate algorithms and data structures!
Functionality, time efficiency, space efficiency

• Time-space tradeoffs frequent in CS
Additionally: take modern memory hierarchies into account!
Can quickly access only a small part of memory

• Entitities to represent: active facts, passive facts, conjecture

• Control parameters of proof procedure:
reduction ordering and weighting function
Pragmatic approach of automating control
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Representing the Active Facts

• Essentially: incrementally constructed data base of term( pair)s
Inferencing, simplifying = complex retrieval from data base

• Retrieval conditions: more general / unifiable / less general terms
Major part of system’s work: normalizing new critical pairs,
requires retrieval of generalizations

• Inference rate soon sharply decreases if retrieval handled 1:1
“Performance degradation” (Wos 1992)

• Remedy: retrieval in set-based fashion
Process at a time one query against a compiled data base!
“Term indexing”, indispensable in today’s ATP systems
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Discrimination Trees (1)

a

a

x1

g b

f

gx1

x1 b x1

x2

g

• Term as string of its symbols, indexed in trie data structure
Sharing of common prefixes (Christian 1989)

• Example: Index for term set
f (x1, x1)

f (x1, b)

f (a, g(x1))

f (g(x1), g(x2))

f (g(b), a)

• Retrieval typically via backtracking
due to non-determinism in descent
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Discrimination Trees (2)

b
g
x1

g
x2

a

f

a gx1

x1 b x1

• Optimization: collapse subtrees with only one leaf node
May cut away more than half of the nodes
Data structure more compact, retrieval faster

• Query terms traversed “from left to right”
Hard-wired into term representation: . . .
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Discrimination Trees (2)

• Optimization: collapse subtrees with only one leaf node
May cut away more than half of the nodes
Data structure more compact, retrieval faster

• Query terms traversed “from left to right”
Hard-wired into term representation:

Flatterms (Christian 1989) instead of tree-like

x2x1ff g gx1

x1

g

g x2

f

f

x1
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Which Indexing Technique is Optimal?

• Complexity analysis of indexing techniques difficult (Graf 1996)

• COMPIT initiative (Nieuwenhuis, H., Riazanov, Voronkov 2001):
Compare implementations of different techniques
on benchmarks corresponding to real runs of real provers

• Speed in 2000:
code trees : discr. trees : context trees

1.91 : 1.37 : 1.00

• Participants have improved their implementations since
DTs: nearly twice as fast just by more compact node format

• Careful coding counts!
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Representing the Passive Facts

• P ordered under ϕ: functionality of priority queue

• Typically |P| exceeding |A| by three orders of magnitude
Space can become a problem!
Standard solution: discard heavy equations – completeness lost

• DISCOUNT loop: no rewriting on passive facts!
Successively more compact representations:

flatterms

stringterms

implicit

f x1 f a x2 f x1 x2

f x1 f a x2 f x1 x2

<s[l']p=t, l=r >
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Space Behaviour over Time
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Towards the WALDMEISTER Loop

• Group together elements generated during same loop iteration:
themselves ordered by ϕ, occasional removal of lightest element

• If re-generation + re-normalization available and weights unique:
only need to store the next minimal weight retrievable from group!
Priority queue on top of these entries as before

• Crucial issue in reproduction:
need same weights, hence same normal forms
Nice: whole history of A fits into one DT with age constraints
Prerequisite for practicality: cache for lightweight entries

• All in all: space for P linear in |A|. Laziness works!
Besides: proof objects for free, parallelization possible
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Space Behaviour over Time (revisited)
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Representing the Conjecture

• Instead of termpair, consider sets of rewrite successors
in order to join left- and right-hand side earlier

• Example: GRP141-1 when 10 rewrite rules derived

u

v

u

v
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Representing the Conjecture

• Instead of termpair, consider sets of rewrite successors
in order to join left- and right-hand side earlier

• Example: GRP141-1 when 12 rewrite rules derived

u

v

u

v
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Representing the Conjecture

• Instead of termpair, consider sets of rewrite successors
in order to join left- and right-hand side earlier

• Example: GRP141-1 when 13 rewrite rules derived

u

v

u

v
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Representing the Conjecture

• Instead of termpair, consider sets of rewrite successors
in order to join left- and right-hand side earlier

• Example: GRP141-1 when 19 rewrite rules derived

u

v

u

v
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Representing the Conjecture

• Instead of termpair, consider sets of rewrite successors
in order to join left- and right-hand side earlier

• Example: GRP141-1 when 30 rewrite rules derived

u

v

u

v
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Benefit Derived from Successor Sets

• Proofs are found
– in many cases with less steps of saturating the axiomatization
– at least with no more steps

• Some proofs only found with enlarging

• Focus of completion-based proving slightly shifts
from axioms to conjecture

• Extension: consider (some) rewrite predecessors as well
Danger of combinatorical explosion – strict limit needed
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Automating Control: Weighting Function

• Comparison of weighting functions ϕ in various domains

t/s [SPARC] addweight gtweight

BOO003-2 >300 0.1
BOO007-2 >300 81.8
BOO008-4 61.1 7.0
LCL153-1 2.1 >300
LCL154-1 2.0 >300
LCL155-1 1.2 >300

Σ Boolean 22 / 29 29 / 29
25.4 4.5

Σ Wajsberg 21 / 25 17 / 25
0.9 0.9

• Must employ different weighting functions on different structures!
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Automating Control: Reduction Ordering

• Lexicographic path ordering: lifts operator precedence to terms
Knuth-Bendix ordering: orders terms according to their length

t/s [SPARC] LPO KBO

COL063-4 223.0 0.0
COL063-6 >300 0.0
COL064-6 >300 0.0
Σ BT fragment 21 / 27 25 / 27

16.6 0.5

Σ non-associa- 21 / 38 11 / 38
tive rings 3.0 1.4

A>C>∗>−>+>0

Σ lattice-ordered 98 / 102 90 / 102
groups 12.7 23.8

+>∧>−>∨>0

• Must employ different orderings on different structures!
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Control Component (1)

• Recognize known axiomatizations within input specification E

• Stage 1: extract known axioms
E : Table 1:

+(x , +(y , z))= + (+(x , y), z) F (x , F (y , z))=F (F (x , y), z) =⇒ Ass(F )

+(x , 0)=x F (x , E )=x =⇒ Neutr(F , E )

+(x ,−(x))=0 F (x , I (x))=E =⇒ Invr(F , I , E )

• Stage 2: match known structures on extracted axiom set
extracted axioms: Table 2:

{Ass(+), Neutr(+, 0), Invr(+,−, 0)} {Neutr(F , E ), Ass(F ), Invr(F , I , E )}

=⇒ Group(F , I , E )

• Similarly staged: theory directory in (Kirchner, Kirchner 1994–)
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Control Component (2)

• Stage 2: match known structures on extracted axiom set
extracted axioms: Table 2:

{Ass(+), Neutr(+, 0), Invr(+,−, 0)} {Neutr(F , E ), Ass(F ), Invr(F , I , E )}

=⇒ Group(F , I , E )

• Stage 3: instantiate strategy
detected axiomatization: Table 3:

Group(+,−, 0) Group(F , I , E ) =⇒

>:= LPO(I>F>E ), ϕ := gtweight

• Start proof search with reduction ordering LPO(−>+>0)
and weighting function gtweight
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III Controlling Redundancy
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Introduction (1)

• Efficiency of completion depends on number of rules
and critical pairs generated: Prune the search space!

• Simplification and redundancy elimination:
Safely cut off possiby infinite bands of derivable facts
Occasionally completion finite, then word problem decidable

• Particular interest in techniques beyond comparing normal forms
In the spirit of critical pair criteria like
– connectedness (Winkler, Buchberger 1983)
– compositeness (Kapur, Musser, Narendran 1985)

• Revisit redundancy criteria realized in WALDMEISTER
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Introduction (2)

• Caveat: not every criterion speeds up proof search!
Even if so: mind trade-off between cost and benefit

• Working horse: an equation s = t redundant wrt. E

if every ground instance has a smaller proof in E

(since ordered completion only strives for ground confluence)

• Different ground instances may enjoy different proofs.
Hence often stronger than comparing normal forms

• Approach here: establish ground joinability sσ↓E>tσ

Then proof complexity dominated by first step on greater side
Need only compare say sσ −→p

u⇒v s ′ and sσ −→λ
s⇒t tσ
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Ground Convergent Subsystems (1)

• Many presentations confluent only on the ground level, e.g. for:
– AC, ACI, Boolean rings (Martin, Nipkow 1990)
– Abelian groups, rings (WM)

• Improvements in presence of AC axioms pressing:
From these alone, infinite band of equations . . .

Grows 1, 3, 11, 53, 313, . . . = 1
2
(I (n − 1) + (n − 1)(n − 1)!) ∈ O(n!)

• As reduction ordering, fix an arbitrary KBO or LPO
Then ACC′ = AC ∪ {x + (y + z) = y + (x + z)} ground confluent

• Thm.: Every AC-valid s =m t outside ACC’ redundant
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Ground Convergent Subsystems (1)

• Many presentations confluent only on the ground level, e.g. for:
– AC, ACI, Boolean rings (Martin, Nipkow 1990)
– Abelian groups, rings (WM)

• Improvements in presence of AC axioms pressing:
From these alone, infinite band of equations
Grows 1, 3, 11, 53, 313, . . . = 1

2
(I (n − 1) + (n − 1)(n − 1)!) ∈ O(n!)

• As reduction ordering, fix an arbitrary KBO or LPO
Then ACC′ = AC ∪ {x + (y + z) = y + (x + z)} ground confluent

• Thm.: Every AC-valid s =m t outside ACC’ redundant

(x1 + x2) + x3 = x1 + (x2 + x3)
x1 + x2 = x2 + x1

x1 + (x2 + x3) = x2 + (x1 + x3)
x1 + (x2 + x3) = x3 + (x1 + x2)
x1 + (x2 + x3) = x3 + (x2 + x1)
x1 + (x2 + (x3 + x4)) = x2 + (x1 + (x4 + x3))
x1 + (x2 + (x3 + x4)) = x2 + (x4 + (x1 + x3))
x1 + (x2 + (x3 + x4)) = x3 + (x1 + (x2 + x4))
x1 + (x2 + (x3 + x4)) = x3 + (x2 + (x1 + x4))
x1 + (x2 + (x3 + x4)) = x3 + (x2 + (x4 + x1))
x1 + (x2 + (x3 + x4)) = x3 + (x4 + (x1 + x2))
x1 + (x2 + (x3 + x4)) = x4 + (x1 + (x2 + x3))
x1 + (x2 + (x3 + x4)) = x4 + (x1 + (x3 + x2))
x1 + (x2 + (x3 + x4)) = x4 + (x2 + (x3 + x1))
x1 + (x2 + (x3 + x4)) = x4 + (x3 + (x1 + x2))
x1 + (x2 + (x3 + x4)) = x4 + (x3 + (x2 + x1))

...
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Ground Convergent Subsystems (1)

• Many presentations confluent only on the ground level, e.g. for:
– AC, ACI, Boolean rings (Martin, Nipkow 1990)
– Abelian groups, rings (WM)

• Improvements in presence of AC axioms pressing:
From these alone, infinite band of equations
Grows 1, 3, 11, 53, 313, . . . = 1

2
(I (n − 1) + (n − 1)(n − 1)!) ∈ O(n!)

• As reduction ordering, fix an arbitrary KBO or LPO
Then ACC′ = AC ∪ {x + (y + z) = y + (x + z)} ground confluent

• Thm.: Every AC-valid s =m t outside ACC’ redundant
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Ground Convergent Subsystems (2)

• Proof steps:
– sσ ↓ACC′ tσ only by skeleton rewrites, by ground confluence
– applies in particular to crucial first step sσ[uρ] −→u⇒nv sσ[vρ]
– complexities: ({sσ}, s, m, tσ) undercut by ({sσ}, u, n, sσ[vρ])
– provided labels in ACC’ are minimal
Works the same for ACI etc.

• Empirical finding: better extend ACC’ with
x + (y + z) = z + (x + y) and x + (y + z) = z + (y + x)

• CPs/problem ROB005-1 RNG027-5 LAT023-1 RNG035-7 GRP180-1

WM 305 000 418 000 130 000 237 000 83 000

WM-AC 33 000 49 000 66 000 161 000 88 000
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Ground Convergent Subsystems (2)

• Proof steps:
– sσ ↓ACC′ tσ only by skeleton rewrites, by ground confluence
– applies in particular to crucial first step sσ[uρ] −→u⇒nv sσ[vρ]
– complexities: ({sσ}, s, m, tσ) undercut by ({sσ}, u, n, sσ[vρ])
– provided labels in ACC’ are minimal
Works the same for ACI etc.

• Empirical finding: better extend ACC’ with
x + (y + z) = z + (x + y) and x + (y + z) = z + (y + x)

• Proof problems with AC operators become feasible
Low-budget technology: easy to implement
(High budget: completion modulo AC (Lankford,
Ballantyne 1977; Peterson, Stickel 1981; . . .))
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Case Analysis by Variables (1)

• Approximate ground joinability by case split on
ordering relationships between variables (Martin, Nipkow 1990)

• Implementation simple: map variables to constants
LPO: ordering relationships mirrored in precedence
KBO: plus restriction on number of constants’ occurences
Then run through case and check >enc in first step

• Number of cases necessary for n variables:

grows 1, 3, 13, 75, 541, . . . =
∑n

k=1

〈

n

k − 1

〉

2k−1 ∈ O(n!)

Escalation: split only on subset of variables
Last resort: abort at some limit
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Case Analysis by Variables (2)

• Experimental finding: proof search often blurred!
However beneficial if redundant equations kept for rewriting,
but not for critical pairing: all descendants redundant

• CPs/problem ROB005-1 RNG027-5 LAT023-1 RNG035-7 GRP180-1

WM 305 000 418 000 130 000 237 000 83 000

WM-AC 33 000 49 000 66 000 161 000 88 000

WM-AC-GJ 18 000 54 000 54 000 148 000 65 000

• Criterion not limited to fixed theories, but most useful for AC
Ground convergent systems for Abelian groups and rings
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Confluence Trees

• Decision procedure for ground confluence if > is LPO
(Comon, Narendran, Nieuwenhuis, Rusinowitch 1998)
LPO constraint solver of (Nieuwenhuis, Rivero 2002)

• Tree nodes marked with equation and ordering constraint
Branching wrt. arbitrary terms if ordered rewriting (im)possible
Ground joinability if all leaves tautologies, redundancy if >enc

• Computationally expensive: constraint solving NP-hard already
Trees not unique: one may fail, another succeed
Implementation effort tremendous

• t/s [PIII 1GHz] BOO023-1 BOO026-1 GRP181-3 RNG028-5 ROB006-1

WM-GJ > 600 2.7 127.8 13.9 44.9

WM-CT 5.9 144.2 92.9 68.7 35.0
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Confluence Trees

• Decision procedure for ground confluence if > is LPO
(Comon, Narendran, Nieuwenhuis, Rusinowitch 1998)
LPO constraint solver of (Nieuwenhuis, Rivero 2002)

• Tree nodes marked with equation and ordering constraint
Branching wrt. arbitrary terms if ordered rewriting (im)possible
Ground joinability if all leaves tautologies, redundancy if >enc

• Computationally expensive: constraint solving NP-hard already
Trees not unique: one may fail, another succeed
Implementation effort tremendous

• Effect on proof search: rather mixed
May help on individual problems
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AC Ground Reducibility

• Aim: stronger criterion for AC case
without computational effort of confluence trees
Idea: from AC class of s = t distill subset w/o redundancy

• Check (permutations of) s and t for ground reducibility wrt. CC’
Restricted to skeleton: expressible by usual ordering constraints

• Necessary criterion for constraint satisfiability, polynomial cost
Closes constraint under some ordering-specific consequences

• t/h [PIII 1GHz] ROB020-1 ROB007-1 LAT018-1 RNG036-7

WM-GJ 6.0 39.4 > 300 888.2

WM-GR 2.6 13.4 13.2 291.2
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Epilogue: AC Deletion Proliferated

• Superposition provers E (Schulz 2001) and PROVER9 (McCune
2008): Discard C ∨ s = t outside ACC’ if AC |= s = t

• No correctness proof so far – impossible the standard way
say of (Nieuwenhuis, Rubio 2001 HAR): > as LPO(+>a>b>c)

ACC′ |= a + (c + b) = c + (b + a)} needs
at least

{a + (c + b) = c + (a + b)

but {a + (c + b), c + (b + a)} < {a + (c + b), c + (a + b)}

Hence not redundant, incompleteness possible

• Remedy: refine definition of literal complexity. For sσ > tσ:

(s ./m t)σ 7−→ ({sσ}, ./, s, m, tσ)

Now superposition redundancy subsumes completion redundancy!
Cf. framework of canonical inference (Dershowitz, Kirchner 2006)
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IV Applications
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WALDMEISTER in Practice

• Foremost: educational, reference implementation . . .

• User-reported application areas:
– reasoning in specific algebraic structures
– program transformation
– modelling of agent systems
– hardware verification
– knowledge representation
– protocol synthesis
– disambiguation in language processing
– modelling of bible interpretations

• Integration into interactive systems:
ILF – ΩMEGA – THEOREMA – MATHEMATICA
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Commuting Group Endomorphisms

• Small conflict clauses for theory reasoners in equality with UIF
Algebra of equality proofs (Stump, Tan 2005 RTA) ∼= free groups
Proof mining: canonical forms hint at minimal assumptions

• Adding k congruence proof rules gives theory CGEk

WALDMEISTER delivers k 2 3 4 5
ground convergent size 24 70 566 11910
system for small k: CPs 320 2676 229371 118887623

• Normal forms difficult to characterize. But for k=2:
With APROVE-ordering system orientable and convergent
Leads to: generic description (Stump, Löchner 2006),
completion with termination checking (SLOTHROP 2006 RTA)
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Quasigroup Problems for Theorem Provers

• (Phillips, Stanovský 2008) at upcoming ESARM workshop:
Automated reasoning tools of increasing impact on loop theory!
Survey LT contributions obtained with AR support

• Selection of 80 representative proof problems (QPTP)
Compare performance of various automated theorem provers
Finding: on equational problems WALDMEISTER performs best

• Example: Is every F-quasigroup isotopic to a Moufang loop?

“. . . the result in [KKP07] was originally derived as a series of

results, a number of steps eventually leading to the main

theorem. . . Waldmeister proved it from scratch in 40 minutes.”

Had been open since 1967. [KKP07]: 27 pages in J Alg
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Single Axioms for the Sheffer Stroke

• (Wolfram 2002): empirical and systematic study
of computational systems such as cellular
automata, Turing machines, operator systems
In every class, among simplest cases always
instances of great complexity

• Simplest axiomatizations of Boolean algebra?
Thm.: ((x | y) | z) | (x | ((x | z) | x)) = z specifies Sheffer stroke
Proved with WALDMEISTER and reprinted . . .
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Single Axioms for the Sheffer Stroke

• (Wolfram 2002): empirical and systematic study
of computational systems such as cellular
automata, Turing machines, operator systems
In every class, among simplest cases always
instances of great complexity

• Recognizes progress in AR over the decades:

“Ever since the 1970s I at various times investigated using

automated theorem-proving systems. But it always seemed

that extensive human input . . . was needed to make such

systems actually find non-trivial proofs. In the late 1990s,

however, I decided to try the latest systems and was surprised

that some of them could routinely produce proofs hundreds of

steps long with little or no guidance.”
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Integration into MATHEMATICA

• Consequence of these experiments:

“We are interested in adding theorem proving capabilities to

MATHEMATICA.” (Oct. 2002)

• Introduced SW engineers of Wolfram, Inc. into WM code
System had to become re-entrant, danger of memory leaks
Patent attorneys of MPG worked out license agreement

• Functionality available since release of version 6.0 in mid-2007
Encapsulated within FullSimplify[expr, assum] ...
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Integration into MATHEMATICA

• Consequence of these experiments:

“We are interested in adding theorem proving capabilities to

MATHEMATICA.” (Oct. 2002)

• Introduced SW engineers of Wolfram, Inc. into WM code
System had to become re-entrant, danger of memory leaks
Patent attorneys of MPG worked out license agreement

• Functionality available since release of version 6.0 in mid-2007
Encapsulated within FullSimplify[expr, assum]

• Gives evidence that automated theorem proving is spreading
Seize the opportunity!
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Conclusion

• Analysis of proof procedure leads to smart system design

• Prover engineering produces high-performance system

• Controlling redundancy is the key to solving difficult problems

• Taking all this together, applications are out there somewhere

• Future work includes:
– Horn theories, by the lazy programmer
– joint efforts on open problems
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