Fast Equational Reasoning with Waldmeister

Thomas Hillenbrand

Max-Planck-Institut für Informatik Saarbrücken

Aim of this Talk

- RTA organizers:
"... would be nice to show how a combination of the theory of rewriting, implementation techniques, heuristics, ideas ... whatever else ... lead to a design of the fastest equational reasoner in the world"
- Some evidence of "fastest" from performance in the CADE ATP System Competitions. A.D. 2007 (100 problems attempted):

	WM Vampire	E	Otter	Metis	Equinox	Geo	
solved	91	63	59	27	15	2	2
av. time	18.2	42.3	16.7	21.6	38.3	13.4	255.8

- What are the underlying concepts?

Outline

- Foundations
- Prover engineering
- Controlling redundancy
- Applications

I Foundations

Equational Logic

- Example: group axiomatization

$$
E:(x+y)+z=x+(y+z) \quad x+0=x \quad x+(-x)=0
$$

Word problem: Does $E \models x=--x$ hold?
(Birkhoff 1935): replace equals by equals

- Confluent and terminating theory presentation:

Apply equations non-deterministically and in one direction only Word problem decidable by computation of normal forms

- If terminating: confluence = local confluence (Newman 1942), effective test via Critical Pair Lemma (Knuth, Bendix 1970): Check if critical pairs rewrite into tautologies

Completion

- In the negative case:
- enrich presentation with rewritten critical pairs
- perform mutual simplification
- iterate the procedure!
essence of
completion
- Fails if non-orientable equations encountered Ordered completion takes orientable instances into account, produces ground confluent system in the limit (Lankford 1975)
- Limit normal form reached in finite approximation already Semi-decision procedure for word problem with drastically reduced search space (Hsiang, Rusinowitch 1987)

Ordered Completion

- Proof-theoretic framework (Bachmair, Dershowitz, Hsiang 1986): Completion as transformation of proofs, contained in well-founded proof ordering where rewrite proofs are minimal Proof steps weighted according to

$$
s \longleftrightarrow_{u \Rightarrow_{m} v} t \longmapsto(\{s\}, u, m, t) \text { if } s \succ t
$$

- Deduction of new facts must ensure fairness: eventually smaller proof for every persistent ground peak $s \longleftarrow t \longrightarrow u$ in Σ^{e} Equation redundant if every ground instance has smaller proof
- Waldmeister as an implementation of ordered completion: performs fully automated proof search, returns proof log in case of success ...

Waldmeister Searching for a Proof

new rule:	1	+ (x1, 0) -> x 1
new rule:	2	$+(\mathrm{x} 1,-(\mathrm{x} 1)$) $->0$
new rule:	3	$+(+(x 1, x 2), \mathrm{x} 3)->+(\mathrm{x} 1,+(\mathrm{x} 2, \mathrm{x} 3))$
new rule:	4	$+(\mathrm{x} 1,+(0, \mathrm{x} 2))->+(\mathrm{x} 1, \mathrm{x} 2)$
new rule:	5	+(x1, -(0)) -> x 1
new rule:	6	+(x1, +(-(x1), x2)) -> +(0, x2)
new rule:	7	+(0,-(-(x1))) -> x1
new rule:	8	$+(\mathrm{x} 1,-(-(\mathrm{x} 2) \mathrm{)})->+(\mathrm{x} 1, \mathrm{x} 2)$
remove rule:	7	
new rule:	9	$+(0, x 1)->\mathrm{x} 1$
remove rule:	4	
simplify rhs of rule:	6	
new rule:	10	-(0) -> 0
remove rule:	5	
new rule:	11	-(-(x1)) -> x1
remove rule:	8	
joined goal:	1 c	? $=-(-(\mathrm{c})$) to c

this proves the goal

Proved Goals:
No. 1: c ? $=-(-(c))$ joined, current: $c=c$
1 goal was specified, which was proved.
Waldmeister states: Goal proved.

Waldmeister Presenting a Proof

Consider the following set of axioms:

Axiom 1: $x+0=x$
Axiom 2: $x+(-x)=0$
Axiom 3: $(x+y)+z=x+(y+z)$

This theorem holds true:

Theorem 1: $x=--x$

Proof:

```
Lemma 1: \(0+(--x)=x\)
    \(0+(--x)\)
\(=\quad\) by Axiom \(2 R L\)
    \((x+(-x))+(--x)\)
\(=\quad\) by Axiom 3 LR
    \(x+((-x)+(--x))\)
\(=\quad\) by Axiom 2 LR
    \(x+0\)
\(=\quad\) by Axiom 1 LR
```

Theorem 1: $x=--x$ $x+(--y)$
$=\quad$ by Axiom 1 RL $(x+0)+(--y)$
$=\quad$ by Axiom 3 LR $x+(0+(--y))$
$=\quad$ by Lemma 1 LR $x+y$

Lemma 3: $0+x=x$
$0+x$
$=\quad$ by Lemma $2 R L$ $0+(--x)$
$=\quad$ by Lemma 1 LR

Calculus and Proof Procedure

- Ordered / unfailing completion: given as set of calculus rules expanding: $\quad \frac{l=r \quad s\left[l^{\prime}\right]=t}{(s[r]=t) \sigma} \quad$ critical pairing
contracting: rewrite-based simplification rules
- Additional control constraint: fairness Parameter: reduction ordering
- How to turn this into a deterministic algorithm?

Common solutions:

- given-pair algorithm (Wos, Carson, Robinson 1964)
- Huet's algorithm (Huet 1981)
- given-clause algorithm (Overbeek 1971)

Given-clause Algorithm

- Approach: incrementally precompute all expansion steps assess candidate equations heuristically by weighting function φ
- Active facts \mathcal{A} for rewriting and superposition Passive facts \mathcal{P} : critical pairs descending from \mathcal{A}

$$
\mathrm{CP}^{>}(s=t, \mathfrak{A})
$$

Proof Procedure

FUNCTION Waldmeister $(\Sigma, \mathcal{E}, \mathcal{C},>, \varphi):$ BOOL
1: $(\mathcal{A}, \mathcal{P}):=(\varnothing, \mathcal{E})$
2: WHILE \rightarrow trivial $(\mathcal{C}) \wedge \mathcal{P} \neq \varnothing$ DO
3: $\quad e:=\min _{\varphi}(\mathcal{P}) ; \mathcal{P}:=\mathcal{P} \backslash\{e\}$
4: $\quad e:=$ Normalize $_{\mathcal{A}}^{>}(e)$
5: IF \neg redundant (e) THEN
6: $\quad\left(\mathcal{A}, P_{1}\right):=\operatorname{Interred}{ }^{>}(\mathcal{A}, e)$
7: $\mathcal{A}:=\mathcal{A} \cup\left\{\right.$ Orient $\left.{ }^{>}(e)\right\}$
8: $\quad P_{2}:=\mathrm{CP}^{>}(e, \mathcal{A})$
9: $\quad \mathcal{P}:=\operatorname{Update}\left(\mathcal{P} \cup P_{1} \cup P_{2}\right)$
Normalize...
10: $\quad \mathcal{C}:=\operatorname{Normalize}_{\mathcal{A}}^{>}(\mathcal{C})$
11: END
12: END
13: RETURN trivial(C)

Proof Procedure

FUNCTION Waldmeister $(\Sigma, \mathcal{E}, \mathcal{C},>, \varphi):$ BOOL
1: $(\mathcal{A}, \mathcal{P}):=(\varnothing, \mathcal{E})$
2: WHILE \rightarrow trivial $(\mathcal{C}) \wedge \mathcal{P} \neq \varnothing$ DO
3: $\quad e:=\min _{\varphi}(\mathcal{P}) ; \mathcal{P}:=\mathcal{P} \backslash\{e\}$
4: $\quad e:=$ Normalize $_{\mathcal{A}}^{>}(e)$
5: IF \neg redundant (e) THEN
6: $\quad\left(\mathcal{A}, P_{1}\right):=\operatorname{Interred}{ }^{\prime}(\mathcal{A}, e)$
7: $\mathcal{A}:=\mathcal{A} \cup\left\{\right.$ Orient $\left.{ }^{>}(e)\right\}$
8: $\quad P_{2}:=\mathrm{CP}^{>}(e, \mathcal{A})$
9: $\quad \mathcal{P}:=\operatorname{Normalize}_{\mathcal{A}}^{>}\left(\mathcal{P} \cup P_{1} \cup P_{2}\right) \quad$ OtTER loop - eager
10: $\quad \mathcal{C}:=\operatorname{Normalize}_{\mathcal{A}}^{\perp}(\mathcal{C})$

11: END

12: END

13: RETURN trivial(C)

Proof Procedure

FUNCTION Waldmeister $(\Sigma, \mathcal{E}, \mathcal{C},>, \varphi):$ BOOL
1: $(\mathcal{A}, \mathcal{P}):=(\varnothing, \mathcal{E})$
2: WHILE \rightarrow trivial $(\mathcal{C}) \wedge \mathcal{P} \neq \varnothing$ DO
3: $\quad e:=\min _{\varphi}(\mathcal{P}) ; \mathcal{P}:=\mathcal{P} \backslash\{e\}$
4: $\quad e:=$ Normalize $_{\mathcal{A}}^{>}(e)$
5: IF \neg redundant (e) THEN
6: $\quad\left(\mathcal{A}, P_{1}\right):=\operatorname{Interred}{ }^{\prime}(\mathcal{A}, e)$
7: $\mathcal{A}:=\mathcal{A} \cup\left\{\right.$ Orient $\left.{ }^{>}(e)\right\}$
8: $\quad P_{2}:=\operatorname{CP}^{>}(e, \mathcal{A})$
9: $\quad \mathcal{P}:=\mathcal{P} \cup$ Normalize ${ }_{\mathcal{A}}\left(P_{1} \cup P_{2}\right) \quad$ DISCOUNT loop - lazy
10: $\quad \mathcal{C}:=\operatorname{Normalize}_{\mathcal{A}}^{>}(\mathcal{C})$

11: END

12: END

13: RETURN trivial(C)

II Prover Engineering

Introduction

- For actual realization of proof procedure:

Design / adapt appropriate algorithms and data structures! Functionality, time efficiency, space efficiency

- Time-space tradeoffs frequent in CS

Additionally: take modern memory hierarchies into account!
Can quickly access only a small part of memory

- Entitities to represent: active facts, passive facts, conjecture
- Control parameters of proof procedure: reduction ordering and weighting function Pragmatic approach of automating control

Representing the Active Facts

- Essentially: incrementally constructed data base of term(pair)s Inferencing, simplifying = complex retrieval from data base
- Retrieval conditions: more general / unifiable / less general terms Major part of system's work: normalizing new critical pairs, requires retrieval of generalizations
- Inference rate soon sharply decreases if retrieval handled 1:1 "Performance degradation" (Wos 1992)
- Remedy: retrieval in set-based fashion

Process at a time one query against a compiled data base! "Term indexing", indispensable in today's ATP systems

Discrimination Trees (1)

- Term as string of its symbols, indexed in trie data structure Sharing of common prefixes (Christian 1989)
- Example: Index for term set

$$
\begin{aligned}
& f\left(x_{1}, x_{1}\right) \\
& f\left(x_{1}, b\right) \\
& f\left(a, g\left(x_{1}\right)\right) \\
& f\left(g\left(x_{1}\right), g\left(x_{2}\right)\right) \\
& f(g(b), a)
\end{aligned}
$$

- Retrieval typically via backtracking due to non-determinism in descent

Discrimination Trees (2)

- Optimization: collapse subtrees with only one leaf node May cut away more than half of the nodes Data structure more compact, retrieval faster
- Query terms traversed "from left to right" Hard-wired into term representation: ...

Discrimination Trees (2)

- Optimization: collapse subtrees with only one leaf node May cut away more than half of the nodes Data structure more compact, retrieval faster
- Query terms traversed "from left to right" Hard-wired into term representation:

Flatterms (Christian 1989)

instead of tree-like

Which Indexing Technique is Optimal?

- Complexity analysis of indexing techniques difficult (Graf 1996)
- Compit initiative (Nieuwenhuis, H., Riazanov, Voronkov 2001): Compare implementations of different techniques on benchmarks corresponding to real runs of real provers
- Speed in 2000 : code trees : discr. trees : context trees

$$
1.91: 1.37 \text { : } 1.00
$$

- Participants have improved their implementations since DTs: nearly twice as fast just by more compact node format
- Careful coding counts!

Representing the Passive Facts

- \mathcal{P} ordered under φ : functionality of priority queue
- Typically $|\mathcal{P}|$ exceeding $|\mathcal{A}|$ by three orders of magnitude Space can become a problem! Standard solution: discard heavy equations - completeness lost
- DISCOUNT loop: no rewriting on passive facts! Successively more compact representations:

$$
\begin{array}{ll}
\text { flatterms } & f-\underline{x_{1}}-f-\underline{a}-x_{2} \\
\text { stringterms } & f-\underline{x_{1}}-x_{2} \\
\text { implicit } & <s\left[\left|x_{1}\right| f|a| x_{p}=t, l \mid=r>\right.
\end{array}
$$

Space Behaviour over Time

Towards the WALDMEISTER Loop

- Group together elements generated during same loop iteration: themselves ordered by φ, occasional removal of lightest element
- If re-generation + re-normalization available and weights unique: only need to store the next minimal weight retrievable from group! Priority queue on top of these entries as before
- Crucial issue in reproduction: need same weights, hence same normal forms
Nice: whole history of \mathcal{A} fits into one DT with age constraints Prerequisite for practicality: cache for lightweight entries
- All in all: space for \mathcal{P} linear in $|A|$. Laziness works! Besides: proof objects for free, parallelization possible

Space Behaviour over Time (revisited)

Representing the Conjecture

- Instead of termpair, consider sets of rewrite successors in order to join left- and right-hand side earlier
- Example: GRP141-1 when 0 rewrite rules derived

$$
\underset{\bullet}{\boldsymbol{U}}
$$

\square

Representing the Conjecture

- Instead of termpair, consider sets of rewrite successors in order to join left- and right-hand side earlier
- Example: GRP141-1 when 2 rewrite rules derived

i
i

Representing the Conjecture

- Instead of termpair, consider sets of rewrite successors in order to join left- and right-hand side earlier
- Example: GRP141-1 when 13 rewrite rules derived

i
i

Representing the Conjecture

- Instead of termpair, consider sets of rewrite successors in order to join left- and right-hand side earlier
- Example: GRP141-1 when 19 rewrite rules derived

i

Representing the Conjecture

- Instead of termpair, consider sets of rewrite successors in order to join left- and right-hand side earlier
- Example: GRP141-1 when 30 rewrite rules derived

Benefit Derived from Successor Sets

- Proofs are found
- in many cases with less steps of saturating the axiomatization
- at least with no more steps
- Some proofs only found with enlarging
- Focus of completion-based proving slightly shifts from axioms to conjecture
- Extension: consider (some) rewrite predecessors as well Danger of combinatorical explosion - strict limit needed

Automating Control: Weighting Function

- Comparison of weighting functions φ in various domains

t/s [SPARC]	addweight	gtweight
BOO003-2	>300	0.1
BOO007-2	>300	81.8
BOO008-4	61.1	7.0
LCL153-1	2.1	>300
LCL154-1	2.0	>300
LCL155-1	1.2	>300
Σ Boolean	$22 / 29$	$29 / 29$
	25.4	4.5
Σ Wajsberg	$21 / 25$	$17 / 25$
	0.9	0.9

- Must employ different weighting functions on different structures!

Automating Control: Reduction Ordering

- Lexicographic path ordering: lifts operator precedence to terms Knuth-Bendix ordering: orders terms according to their length

t/s [SPARC]	LPO	KBO
COLO63-4	223.0	0.0
COL063-6	>300	0.0
COL064-6	>300	0.0
Σ BT fragment	$21 / 27$	$25 / 27$
	16.6	0.5
Σ non-associa-	$21 / 38$	$11 / 38$
tive rings	3.0	1.4
	$A>C>*>->+>0$	
Σ lattice-ordered	$98 / 102$	$90 / 102$
groups	12.7	23.8
	$+>\wedge>->\vee>0$	

- Must employ different orderings on different structures!

Control Component (1)

- Recognize known axiomatizations within input specification \mathcal{E}
- Stage 1: extract known axioms

$$
\begin{aligned}
& \mathcal{E}: \\
& +(x,+(y, z))=+(+(x, y), z) \\
& +(x, 0)=x \\
& +(x,-(x))=0
\end{aligned}
$$

Table 1:

$$
\begin{aligned}
& F(x, F(y, z))=F(F(x, y), z) \Longrightarrow \operatorname{Ass}(F) \\
& F(x, E)=x \Longrightarrow \operatorname{Neut}_{r}(F, E) \\
& F(x, I(x))=E \Longrightarrow \operatorname{lnv}_{r}(F, I, E)
\end{aligned}
$$

- Stage 2: match known structures on extracted axiom set
extracted axioms:

$$
\left\{\operatorname{Ass}(+), \operatorname{Neut}_{r}(+, 0), \operatorname{lnv}_{r}(+,-, 0)\right\}
$$

Table 2:
$\left\{\operatorname{Neut}_{r}(F, E), \operatorname{Ass}(F), \operatorname{lnv}_{r}(F, I, E)\right\}$

$$
\Longrightarrow \operatorname{Group}(F, I, E)
$$

- Similarly staged: theory directory in (Kirchner, Kirchner 1994-)

Control Component (2)

- Stage 2: match known structures on extracted axiom set
extracted axioms:
$\left\{\operatorname{Ass}(+), \operatorname{Neut}_{r}(+, 0), \operatorname{lnv}_{r}(+,-, 0)\right\}$

Table 2:
$\left\{\operatorname{Neut}_{r}(F, E), \operatorname{Ass}(F), \operatorname{lnv}_{r}(F, I, E)\right\}$
$\Longrightarrow \operatorname{Group}(F, I, E)$

- Stage 3: instantiate strategy detected axiomatization:

Group(+,-,0)

Table 3:

$$
\begin{aligned}
\operatorname{Group} & (F, I, E) \Longrightarrow \\
\quad> & :=\mathrm{LPO}(I>F>E), \varphi:=\text { gtweight }
\end{aligned}
$$

- Start proof search with reduction ordering LPO $(->+>0)$ and weighting function gtweight

III Controlling Redundancy

Introduction (1)

- Efficiency of completion depends on number of rules and critical pairs generated: Prune the search space!
- Simplification and redundancy elimination:

Safely cut off possiby infinite bands of derivable facts Occasionally completion finite, then word problem decidable

- Particular interest in techniques beyond comparing normal forms In the spirit of critical pair criteria like
- connectedness (Winkler, Buchberger 1983)
- compositeness (Kapur, Musser, Narendran 1985)
- Revisit redundancy criteria realized in WaLdmeister

Introduction (2)

- Caveat: not every criterion speeds up proof search! Even if so: mind trade-off between cost and benefit
- Working horse: an equation $s=t$ redundant wrt. E if every ground instance has a smaller proof in E (since ordered completion only strives for ground confluence)
- Different ground instances may enjoy different proofs. Hence often stronger than comparing normal forms
- Approach here: establish ground joinability $s \sigma \downarrow_{E}>t \sigma$ Then proof complexity dominated by first step on greater side Need only compare say $s \sigma \longrightarrow_{u \Rightarrow v}^{p} s^{\prime}$ and $s \sigma \longrightarrow_{s \Rightarrow t}^{\lambda} t \sigma$

Ground Convergent Subsystems (1)

- Many presentations confluent only on the ground level, e.g. for: - AC, ACI, Boolean rings (Martin, Nipkow 1990)
- Abelian groups, rings (WM)
- Improvements in presence of AC axioms pressing:

From these alone, infinite band of equations ...
Grows $1,3,11,53,313, \ldots=\frac{1}{2}(I(n-1)+(n-1)(n-1)!) \in O(n!)$

- As reduction ordering, fix an arbitrary KBO or LPO Then $\mathrm{ACC}^{\prime}=\mathrm{AC} \cup\{x+(y+z)=y+(x+z)\}$ ground confluent
- Thm.: Every AC -valid $s={ }_{m} t$ outside ACC' redundant

Ground Convergent Subsystems (1)

- Many presentations confluf - AC, ACI, Boolean rings (
- Abelian groups, rings (W
- Improvements in presence From these alone, infinite b
Grows $1,3,11,53,313, \ldots=$
- As reduction ordering, fix a Then $\mathrm{ACC}^{\prime}=\mathrm{AC} \cup\{x+(y$

$$
\begin{aligned}
& \left(x_{1}+x_{2}\right)+x_{3}=x_{1}+\left(x_{2}+x_{3}\right) \\
& x_{1}+x_{2}=x_{2}+x_{1} \\
& x_{1}+\left(x_{2}+x_{3}\right)=x_{2}+\left(x_{1}+x_{3}\right) \\
& x_{1}+\left(x_{2}+x_{3}\right)=x_{3}+\left(x_{1}+x_{2}\right) \\
& x_{1}+\left(x_{2}+x_{3}\right)=x_{3}+\left(x_{2}+x_{1}\right) \\
& x_{1}+\left(x_{2}+\left(x_{3}+x_{4}\right)\right)=x_{2}+\left(x_{1}+\left(x_{4}+x_{3}\right)\right) \\
& x_{1}+\left(x_{2}+\left(x_{3}+x_{4}\right)\right)=x_{2}+\left(x_{4}+\left(x_{1}+x_{3}\right)\right) \\
& x_{1}+\left(x_{2}+\left(x_{3}+x_{4}\right)\right)=x_{3}+\left(x_{1}+\left(x_{2}+x_{4}\right)\right) \\
& x_{1}+\left(x_{2}+\left(x_{3}+x_{4}\right)\right)=x_{3}+\left(x_{2}+\left(x_{1}+x_{4}\right)\right) \\
& x_{1}+\left(x_{2}+\left(x_{3}+x_{4}\right)\right)=x_{3}+\left(x_{2}+\left(x_{4}+x_{1}\right)\right) \\
& x_{1}+\left(x_{2}+\left(x_{3}+x_{4}\right)\right)=x_{3}+\left(x_{4}+\left(x_{1}+x_{2}\right)\right) \\
& x_{1}+\left(x_{2}+\left(x_{3}+x_{4}\right)\right)=x_{4}+\left(x_{1}+\left(x_{2}+x_{3}\right)\right) \\
& x_{1}+\left(x_{2}+\left(x_{3}+x_{4}\right)\right)=x_{4}+\left(x_{1}+\left(x_{3}+x_{2}\right)\right) \\
& x_{1}+\left(x_{2}+\left(x_{3}+x_{4}\right)\right)=x_{4}+\left(x_{2}+\left(x_{3}+x_{1}\right)\right) \\
& x_{1}+\left(x_{2}+\left(x_{3}+x_{4}\right)\right)=x_{4}+\left(x_{3}+\left(x_{1}+x_{2}\right)\right) \\
& x_{1}+\left(x_{2}+\left(x_{3}+x_{4}\right)\right)=x_{4}+\left(x_{3}+\left(x_{2}+x_{1}\right)\right)
\end{aligned}
$$

- Thm.: Every $A C$-valid $s={ }_{m}$ \qquad

Ground Convergent Subsystems (1)

- Many presentations confluent only on the ground level, e.g. for: - AC, ACI, Boolean rings (Martin, Nipkow 1990)
- Abelian groups, rings (WM)
- Improvements in presence of AC axioms pressing:

From these alone, infinite band of equations
Grows $1,3,11,53,313, \ldots=\frac{1}{2}(I(n-1)+(n-1)(n-1)!) \in O(n!)$

- As reduction ordering, fix an arbitrary KBO or LPO

Then $\mathrm{ACC}^{\prime}=\mathrm{AC} \cup\{x+(y+z)=y+(x+z)\}$ ground confluent

- Thm.: Every $A C$-valid $s={ }_{m} t$ outside ACC' redundant

Ground Convergent Subsystems (2)

- Proof steps:
- $s \sigma \downarrow_{\mathrm{Acc}}, t \sigma$ only by skeleton rewrites, by ground confluence
- applies in particular to crucial first step $s \sigma[u \rho] \longrightarrow_{u \Rightarrow_{n} v} s \sigma[v \rho]$
- complexities: (\{s $\sigma\}, s, m, t \sigma)$ undercut by ($\{s \sigma\}, u, n, s \sigma[v \rho]$) provided labels in ACC' are minimal
Works the same for ACl etc.
- Empirical finding: better extend ACC' with
$x+(y+z)=z+(x+y)$ and $x+(y+z)=z+(y+x)$
- CPs/problem ROB005-1 RNG027-5 LAT023-1 RNG035-7 GRP180-1

WM	305000	418000	130000	237000	83000
WM-AC	33000	49000	66000	161000	88000

Ground Convergent Subsystems (2)

- Proof steps:
- $s \sigma \downarrow_{\mathrm{Acc}}, t \sigma$ only by skeleton rewrites, by ground confluence
- applies in particular to crucial first step $s \sigma[u \rho] \longrightarrow_{u \Rightarrow_{n} v} s \sigma[v \rho]$
- complexities: (\{s $\sigma\}, s, m, t \sigma)$ undercut by ($\{s \sigma\}, u, n, s \sigma[v \rho]$) provided labels in ACC' are minimal
Works the same for ACl etc.
- Empirical finding: better extend ACC' with
$x+(y+z)=z+(x+y)$ and $x+(y+z)=z+(y+x)$
- Proof problems with AC operators become feasible Low-budget technology: easy to implement (High budget: completion modulo AC (Lankford, Ballantyne 1977; Peterson, Stickel 1981; . . .))

Case Analysis by Variables (1)

- Approximate ground joinability by case split on ordering relationships between variables (Martin, Nipkow 1990)
- Implementation simple: map variables to constants LPO: ordering relationships mirrored in precedence KBO: plus restriction on number of constants' occurences Then run through case and check $>_{\text {enc }}$ in first step
- Number of cases necessary for n variables:
grows $1,3,13,75,541, \ldots=\sum_{k=1}^{n}\left\langle\begin{array}{c}n \\ k-1\end{array}\right\rangle 2^{k-1} \in O(n!)$
Escalation: split only on subset of variables
Last resort: abort at some limit

Case Analysis by Variables (2)

- Experimental finding: proof search often blurred! However beneficial if redundant equations kept for rewriting, but not for critical pairing: all descendants redundant
- CPs/problem ROB005-1 RNG027-5 LAT023-1 RNG035-7 GRP180-1

WM	305000	418000	130000	237000	83000
WM-AC	33000	49000	66000	161000	88000
WM-AC-GJ	18000	54000	54000	148000	65000

- Criterion not limited to fixed theories, but most useful for AC Ground convergent systems for Abelian groups and rings

Confluence Trees

- Decision procedure for ground confluence if $>$ is LPO (Comon, Narendran, Nieuwenhuis, Rusinowitch 1998) LPO constraint solver of (Nieuwenhuis, Rivero 2002)
- Tree nodes marked with equation and ordering constraint Branching wrt. arbitrary terms if ordered rewriting (im)possible Ground joinability if all leaves tautologies, redundancy if $>_{\text {enc }}$
- Computationally expensive: constraint solving NP-hard already Trees not unique: one may fail, another succeed Implementation effort tremendous
- t/s [PIII 1GHz] BOOO23-1 BOO026-1 GRP181-3 RNGO28-5 ROB006-1

WM-GJ	>600	2.7	127.8	13.9	44.9
WM-CT	5.9	144.2	92.9	68.7	35.0

Confluence Trees

- Decision procedure for ground confluence if $>$ is LPO (Comon, Narendran, Nieuwenhuis, Rusinowitch 1998) LPO constraint solver of (Nieuwenhuis, Rivero 2002)
- Tree nodes marked with equation and ordering constraint Branching wrt. arbitrary terms if ordered rewriting (im)possible Ground joinability if all leaves tautologies, redundancy if $>_{\text {enc }}$
- Computationally expensive: constraint solving NP-hard already Trees not unique: one may fail, another succeed Implementation effort tremendous
- Effect on proof search: rather mixed May help on individual problems

AC Ground Reducibility

- Aim: stronger criterion for AC case without computational effort of confluence trees Idea: from AC class of $s=t$ distill subset w/o redundancy
- Check (permutations of) s and t for ground reducibility wrt. CC' Restricted to skeleton: expressible by usual ordering constraints
- Necessary criterion for constraint satisfiability, polynomial cost Closes constraint under some ordering-specific consequences
- t / h [PIII 1GHz] ROB020-1 ROB007-1 LAT018-1 RNG036-7

WM-GJ	6.0	39.4	>300	888.2
WM-GR	2.6	13.4	13.2	291.2

Epilogue: AC Deletion Proliferated

- Superposition provers E (Schulz 2001) and Prover9 (McCune 2008): Discard $C \vee s=t$ outside ACC' if $\mathrm{AC} \models s=t$
- No correctness proof so far - impossible the standard way say of (Nieuwenhuis, Rubio 2001 HAR): $>$ as LPO $(+>a>b>c)$ $\mathrm{ACC}^{\prime} \models a+(c+b)=c+(b+a) \begin{gathered}\text { needs } \\ \text { at least }\end{gathered} a+(c+b)=c+(a+b)$ but $\{a+(c+b), c+(b+a)\}<\{a+(c+b), c+(a+b)\}$ Hence not redundant, incompleteness possible
- Remedy: refine definition of literal complexity. For $s \sigma>t \sigma$:

$$
\left(s \bowtie_{m} t\right) \sigma \longmapsto(\{s \sigma\}, \bowtie, s, m, t \sigma)
$$

Now superposition redundancy subsumes completion redundancy! Cf. framework of canonical inference (Dershowitz, Kirchner 2006)

IV Applications

Waldmeister in Practice

- Foremost: educational, reference implementation ...
- User-reported application areas:
- reasoning in specific algebraic structures
- program transformation
- modelling of agent systems
- hardware verification
- knowledge representation
- protocol synthesis
- disambiguation in language processing
- modelling of bible interpretations
- Integration into interactive systems:

Ilf - תmega - Theorema - Mathematica

WALDME

- Foremost: educational,
- User-reported applicatı - reasoning in specific - program transformati - modelling of agent sy - hardware verification
- knowledge represent
- protocol synthesis
- disambiguation in lan
- modelling of bible ints
- Integration into interact ILF - $\Omega \mathrm{mega}$ -

Waldmeister in Practice

- Foremost: educational, reference implementation
- User-reported application areas:
- reasoning in specific algebraic structures
- program transformation
- modelling of agent systems
- hardware verification
- knowledge representation
- protocol synthesis
- disambiguation in language processing
- modelling of bible interpretations
- Integration into interactive systems:

Ilf - $\Omega \mathrm{mega}$ - Theorema - Mathematica

Commuting Group Endomorphisms

- Small conflict clauses for theory reasoners in equality with UIF Algebra of equality proofs (Stump, Tan 2005 RTA) \cong free groups Proof mining: canonical forms hint at minimal assumptions
- Adding k congruence proof rules gives theory $\mathrm{CGE}_{\mathrm{k}}$ $\begin{array}{llrrrr}\text { WALDMEISTER delivers } & k & 2 & 3 & 4 & 5 \\ \text { ground convergent } & \text { size } & 24 & 70 & 566 & 11910 \\ \text { system for small } k \text { : } & \text { CPs } & 320 & 2676 & 22937118887623\end{array}$
- Normal forms difficult to characterize. But for $\mathrm{k}=2$: With AProVE-ordering system orientable and convergent Leads to: generic description (Stump, Löchner 2006), completion with termination checking (SLOTHROP 2006 RTA)

Quasigroup Problems for Theorem Provers

- (Phillips, Stanovský 2008) at upcoming ESARM workshop: Automated reasoning tools of increasing impact on loop theory! Survey LT contributions obtained with AR support
- Selection of 80 representative proof problems (QPTP) Compare performance of various automated theorem provers Finding: on equational problems WALDMEISTER performs best
- Example: Is every F-quasigroup isotopic to a Moufang loop?
". . . the result in [KKP07] was originally derived as a series of results, a number of steps eventually leading to the main theorem. . . Waldmeister proved it from scratch in 40 minutes." Had been open since 1967. [KKP07]: 27 pages in J Alg

Single Axioms for the Sheffer Stroke

- (Wolfram 2002): empirical and systematic study of computational systems such as cellular automata, Turing machines, operator systems In every class, among simplest cases always instances of great complexity

- Simplest axiomatizations of Boolean algebra? Thm.: $((x \mid y) \mid z) \mid(x \mid((x \mid z) \mid x))=z$ specifies Sheffer stroke Proved with Waldmeister and reprinted ...
- (Wolfram of compu automata In every instances
- Simplest Thm.: ((x Proved w

L63 ((bc) $(b c))(((b c)(b c))((((b c) a)(a b)))(((b c) a)(a b)))$

($(a c)(b c))(((b c)(a b))((((b c) a)(a b))(((b c) a)(a b)))$
$L 73)((b c)(b c))((1(b c)(b c))(a b))$
$63)((a b)(a b))((b c)(b c))$
47 ((ab) $(a b))((1)((a b)(b c)))(c)((a b)(b c)))$
$L 755(a b)(a b)) c$

- $77.1 a((b a)(b a))$
L27al $a(c((a b)(a b)))$
$=[42 a(c)(\mid b a)(b a))]$
$=L 42 a(c((b a)(b a)))$
$=L 78 a(((b c)(b c)) a)$
$=L 62(((b c))(b c))((b c)(b c))] a$
$=[22(b c) a$

L70(c) (ba)) a
LT9 a $a((b a))((a c)(a c))$
L42 $a((1 a c)(a c))(b a))$
$L 77$
$a(l(a c)(a c))(b b))$
L78 a (c (la (bb)) (a(bb)))
$=L 79$ ($(1 b b) c) a$
[28] ($(c a)(a b))((c a)(a b))$
$=L 40 \mid((1(a))(a b))((c a)(a b))\|(((c a))(a b))\|((c a)(a b))))((a a) \mid((c a)(a b))$
((ca) (ab) 川")
$L 75)$ ((1(ca) $(a b))((c a)(a b)))(((c a)(a b)))((c a)(a b)))((a a)(c a))$
L22 ((ca) (ab))((aa) (ca))
L70 ($(a a)$) $(c a)$) ($(a b)(c a))$
L40 a ($(a b)$ (ca))
L70 af(ab)((a(ca)) (a(ca)))
LT00 al((a)(ca)) (a(ca)))(ba))
L77] al(($(a(c a))(a(c a)))(b b))$
$L 78 a((c a))((a)(b b))(a(b b)))$
$=\square 79]((b b)(c a) / a$
TT3 ((bb)a) ($(c c) a)$
$=L 42((b b) a)(a(c c))$
$=L 42(a(c c))((b b) a)$
L22) (($(a a)(a a))(c a))((b b) a)$
Lso ((bb)a) ((laa))((bb)a)) (cc)
$=L 70$ ($(c c)$)($(a a)((b b) a)))((b b) a)$

$=L 40(((1(b b)(b b)) c) a)((1((b b)(b b)) c) a)$
$=L 42((c((b b)(b b)) / a)((c)((b b)(b b)) \mid a)$
$=L 40)((l(c)((b b))$

b)lllb)al

b) 111 a)
$=L 78((1(c b)(c b))(((b b)(b b)) / a)((1(c b)(c b))((b b)(b b)) 1 a)$

b) (ca) $1(b)(1 b b))(c b) \mu 川 1)$
$=L(65)((\|(c b)(c b))((b)(c b)(b)((b b)(c b)) \|)(b)((c b)(b)((b b)(c b)) \mu) \mu a)$
$(\|(c b)(c b))((b)((c b)(b)((b b))(c b) \|))(b\|(c b)(b)((b b)(c b) \|)\| \|)$
$=L 75(1((c b)(c b)) b) a)(((1(c b)(c b)) b) a)$
$==L 75)(((b)((c b))(c b) \| a)((b)(c b)(c b) \| a)$
$=\square 31((c b) a)((c b) a)$
$=L 70(a(b c))(a(b c))$

A proof that the axiom system $\{((b \circ c) \circ a) \circ(b \circ((b \circ a) \circ b))=a\}$ given as example (g) on page 808 can reproduce the Sheffer axiom system (c), and is thus a complete axiom system for logic. The proof involves taking the original axiom A and using it to establish a sequence of lemmas $L n$, from which it is eventually possible to prove the three Sheffer axioms $I n$. In each part of the proof each line can be obtained from the previous one just as on page 775 by applying the axiom or lemma indicated. Explicit π operators have been omitted to allow expressions to be printed more compactly. The proof shown takes a total of 343 steps, and involves intermediate expressions with as many as 128 NANDs. It is quite possible that the proof could be considerably shortened. Note that any proof can always be recast without lemmas, but will usually then be much longer.

Single Axioms for the Sheffer Stroke

- (Wolfram 2002): empirical and systematic study of computational systems such as cellular automata, Turing machines, operator systems In every class, among simplest cases always instances of great complexity

- Recognizes progress in $A R$ over the decades:
"Ever since the 1970s I at various times investigated using automated theorem-proving systems. But it always seemed that extensive human input ... was needed to make such systems actually find non-trivial proofs. In the late 1990s, however, I decided to try the latest systems and was surprised that some of them could routinely produce proofs hundreds of steps long with little or no guidance."

Integration into MATHEMATICA

- Consequence of these experiments:
"We are interested in adding theorem proving capabilities to Mathematica." (Oct. 2002)
- Introduced SW engineers of Wolfram, Inc. into WM code System had to become re-entrant, danger of memory leaks Patent attorneys of MPG worked out license agreement
- Functionality available since release of version 6.0 in mid-2007 Encapsulated within FullSimplify[expr, assum] ...
- Consequence of these "We are interested in Mathematica." (Oct.
- Introduced SW enginee System had to become Patent attorneys of MPC
- Functionality available s Encapsulated within Fu

Equational Theorem Proving

Mathematica 6 for the first time brings general automated theorem proving into an immediate interactive environment. Extending Mathematica's already uniquely powerful algebraic theorem-proving capabilities, Mathematica 6 introduces equational theorem proving capable of operating on industrial-scale arbitrary abstract systems of axioms or relations, and integrating theorem proving into the computational workflow.

- Advanced equational theorem proving automatically accessed directly from FullSimplify.
- Full support for ForAll, Exists, etc. quantifiers.
- Immediately allows Mathematica arbitrary symbolic notation for maximum readability.
- Uses state-of-the-art unfailing completion methods.

Prove an Abstract
Algebraic Theorem

Prove a Theorem
about Programs

Prove a Recently
Discovered Theorem

Integration into MATHEMATICA

- Consequence of these e
"We are interested in a Mathematica." (Oct. 2

Prove a Recently Discovered Theorem

Mathematica 6 can establish commutativity from Wolfram's recent minimal axiom for Boolean algebra.

Out[1]

True

- Functionality available sir Encapsulated within Ful

Integration into MATHEMATICA

- Consequence of these experiments:
"We are interested in adding theorem proving capabilities to Mathematica." (Oct. 2002)
- Introduced SW engineers of Wolfram, Inc. into WM code System had to become re-entrant, danger of memory leaks Patent attorneys of MPG worked out license agreement
- Functionality available since release of version 6.0 in mid-2007 Encapsulated within Fullsimplify[expr, assum]
- Gives evidence that automated theorem proving is spreading Seize the opportunity!

Conclusion

- Analysis of proof procedure leads to smart system design
- Prover engineering produces high-performance system
- Controlling redundancy is the key to solving difficult problems
- Taking all this together, applications are out there somewhere
- Future work includes:
- Horn theories, by the lazy programmer
- joint efforts on open problems

References (1)

Bachmair, Dershowitz, Hsiang 1986: Orderings for equational proofs. LICS-1.
Birkhoff 1935: On the structure of abstract algebras. Proc.
Cambridge Phil. Soc. 31.
Christian 1989: Fast Knuth-Bendix completion: summary. RTA-3.
Comon, Narendran, Nieuwenhuis, Rusinowitch 1998: Decision problems in ordered rewriting. LICS-13.
Graf 1996: Term Indexing. LNCS 1053.
Dershowitz, Kirchner 2006: Abstract canonical presentations. TCS 357(1-3).
Huet 1981: A complete proof of correctness of the Knuth-Bendix completion algorithm. JCSS 23.
Hsiang, Rusinowitch 1987: On word problems in equational theories. ICALP-14.

References (2)

Kapur, Musser, Narendran 1985: Only prime superpositions need be considered in the Knuth-Bendix procedure. GE Report.
Kirchner, Kirchner 1994-: Rewriting Solving Proving. See authors' web pages.
KKP07: The structure of F-quasigroups. J Alg 317.
Knuth, Bendix 1970: Simple word problems in universal algebras. In Leech: Computational Problems in Abstract Algebra.
Lankford 1975: Canonical inference. ATP-32, UT Austin.
Lankford, Ballantyne 1977: Decision procedures for simple equational theories with commutative-associative axioms. ATP-39, UT Austin.
Martin, Nipkow 1990: Ordered rewriting and confluence. CADE-10.
McCune 2008: Prover9 manual. www. prover9. org.
Newman 1942: On theories with a combinatorial definition of "equivalence". Annals of Mathematics 43(2).

References (3)

Nieuwenhuis, H., Riazanov, Voronkov 2001: On the evaluation of indexing techniques for theorem proving. IJCAR-1.
Nieuwenhuis, Rubio 2001 HAR: Paramodulation-based theorem proving. In Robinson, Voronkov: Handbook of Automated Reasoning.
Nieuwenhuis, Rivero 2002: Practical algorithms for deciding path ordering constraint satisfaction. I\&C 178(2).
Overbeek 1971: A New Class of Automated Theorem-Proving Algorithms. PhD thesis, Penn State.
Peterson, Stickel 1981: Complete sets of reduction for some equational theories. JACM 28.
Phillips, Stanovský 2008: Automated theorem proving in loop theory. ESARM 2008.
Slothrop 2006 RTA: Wehrman, Stump, Westbrook: Slothrop: Knuth-Bendix completion with a modern termination checker. RTA-17.

References (4)

Stump, Löchner 2006: Knuth-Bendix completion of theories of commuting group endomorphisms. IPL 98(5).
Stump, Tan 2005 RTA: The algebra of equality proofs. RTA-16.
Schulz 2001: System abstract: E 0.61. IJCAR-1.
Winkler, Buchberger 1983: A criterion for eliminating unnecessary reductions in the Knuth-Bendix algorithm. CACLCS.
Wolfram 2002: A New Kind of Science. Wolfram Media.
Wos 1992: Note on McCune's article on discrimination trees. JAR 9(2).
Wos, Carson, Robinson 1964: The unit preference strategy in theorem proving. AFIPSP 26(1).

