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Abstract. Boolean networks (BNs) are known as a mathematical model
of genetic networks. In this paper, we overview algorithmic aspects of
inference, analysis and control of BNs while focusing on the authors’
works. For inference of BN, we review results on the sample complexity
required to uniquely identify a BN. For analysis of BN, we review efficient
algorithms for identifying singleton attractors. For control of BN, we
review NP-hardness results and dynamic programming algorithms for
general and special cases.

1 Introduction

Mathematical analysis of biological networks is an important topic in bioinfor-
matics, systems biology, and algebraic biology. For that purpose, various kinds
of mathematical models have been proposed. Among them, the Boolean network
(BN, in short) model has received much attention [16] as a model of genetic
networks. BN is a very simple model: each node (e.g., gene) takes either 0 (in-
active) or 1 (active) and the states of nodes change synchronously according to
regulation rules given as Boolean functions. Though various aspects of BNs have
been studied, this paper focuses on the following three problems.

Inference of BN: Given a part of the state transition table (which corresponds
to time series data of gene expression), infer a BN that is consistent with
given data.

Identification of Attractors: Given a BN, identify all attractors where at-
tractors correspond to steady-states.

Control of BN: Given a BN with control nodes, its initial and target states,
find a sequence of 0-1 vectors for control nodes which leads BN from the
initial state to the target state.

These problems are considered to be fundamental and are interesting from
an algorithmic viewpoint. The purpose of this review paper is not to give a
comprehensive survey, but to explain the key ideas and proofs in algorithmic
and mathematical results mainly obtained by the authors.
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Fig. 1. Example of a Boolean network. Dynamics of BN (A) is well-described by a
state transition table (B) and by a state transition diagram (C).

PP RPPRPOOOO
PP OORROO
PORPORORO
PrOOORrROOO
PR PRPPRPROOOO
OCORrRFRPROOR B

©

?

2 Boolean Network

In this section, we briefly review BN [16].

A BN is represented by a set of nodes and a set of regulation rules for nodes,
where each node corresponds to a gene if BN is regarded as a model of a genetic
network. Each node takes either 0 or 1 at each discrete time ¢, where 1 (resp. 0)
means that the corresponding gene is expressed (resp. not expressed) at time ¢.
A regulation rule for each node is given in the form of a Boolean function and
the states of nodes change synchronously. An example is given in Fig. 1. In this
example, the state of node v; at time ¢ + 1 is determined by the logical AND
of the states of nodes vy and v at time ¢. The states of node vy and vz at time
t + 1 are determined by the state of node v; and the logical NOT of the state
of node v at time t, respectively. We use x Ay, x Vy, x ®y, T to denote logical
AND of x and y, logical OR of xz and y, exclusive OR of =z and y, and logical
NOT of z, respectively. Dynamics of a BN is well-described by a state transition
table and a state transition diagram shown in Fig. 1. For example, the third row
of the table means that if the state of BN is [0, 1,0] at time ¢ then the state will
be [0,0,0] at time ¢ + 1, and the arc from 111 to 110 in the diagram means that
if the state of BN is [1,1, 1] at time ¢ the state will be [1, 1,0] at time ¢ + 1.

Now we will give a formal definition of BN. A Boolean network G(V,F)
consists of a set V = {v1,...,v,} of nodes and a list F' = (f1,..., fn) of Boolean
functions, where a Boolean function f;(v;,,...,v;, ) with inputs from specified
nodes v;,, ..., v;, is assigned to each node v;. We use IN(v;) to denote the set
of input nodes v;,,...,v;, to v;. Each node takes either 0 or 1 at each discrete



time ¢, and the state of node v; at time ¢ is denoted by v;(t). Then, the state of
node v; at time ¢ 4+ 1 is determined by

’Ui(t —+ ].) = fi(Uil (t), - 7Uiki (t))

Here we let v(t) = [vi(t),...,vn(f)], which is called a Gene Activity Profile
(GAP) at time t. We also write v;(t+1) = f;(v(t)) to denote the regulation rule
for v; and v(t + 1) = f(v(t)) to denote the regulation rule for the whole BN.
We define the set of edges E by E = {(vi;,vi)vi; € IN(v;)}. Then, G(V, E)
is a directed graph representing the network topology of a BN. It is worthy to
mention that an edge from v;; to v; means that v;; directly affects expression
of v;. The number of input nodes to v; is called the indegree of v;. We use K to
denote the mazimum indegree of a BN, which plays an important role in both
inference and analysis of BNs.

Though BNs are deterministic, many real biological systems contain stochas-
tic subsystems. Thus, several probabilistic extensions of BN have been proposed,
which include Noisy Boolean Networks [3] and Probabilistic Boolean Networks
(PBNs) [28]. Since this paper focuses on BNs, readers interested in these models
are referred to [3, 8,25, 26, 28].

3 Inference of Boolean Networks

Due to the development of DNA microarray technology, it has been made pos-
sible to observe time series data of expression of several thousands of genes,
and thus extensive studies have been done for inferring genetic networks using
these time series data. In order to infer genetic networks, mathematical models
of genetic networks are usually required. In 1998, Liang et al. developed the
REVEAL algorithm for inference of BNs from gene expression data [20]. Inde-
pendently, Akutsu et al. studied in 1998 algorithmic strategies for identification
of Boolean-like networks using gene disruption and gene overexpression [4]. By
combining these two, Akutsu et al. derived a fundamental result on the number
of samples (gene expression profiles) that are required to uniquely identify a BN
[1]. In this section, we review this result of the sample complexity along with
some algorithmic issues.

3.1 Problem Definition and Simple Inference Algorithm

Let (I7,07) (j = 1,...,m) be a pair of expression profiles (i.e., 0-1 vectors) of
Vi,...,Upn, where I7 corresponds to a GAP at time ¢ and 07 corresponds to a
GAP at time ¢ 4+ 1. I] (resp. O}) denotes the expression (0 or 1) of gene v; in
I’ (resp. O7). Each pair (I7,07) is called a sample. We say that a node v; in a
BN G(V,F) is consistent with a sample (I7,07) if O] = fi(I} ,..., I} ) holds.
We say that G(V, F) is consistent with (I7,07) if all nodes are consistent with
(I7,07). For a set of samples EX = {(I1,0%),(1%,0?),...,(I™,0™)}, we say
that G(V, F) (resp. node v;) is consistent with EX if G(V, F) (resp. node v;) is
consistent with all (I7,07) for 1 < j < m. Then, the inference problem and the
identification problem are defined as follows [1].
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Fig. 2. Inference of BN. In this example, BNs consistent with given samples are not
determined uniquely because both BN; and BNz are consistent with samples.

Definition 1. [Inference of BN]

Instance: the number of nodes n and a set of samples EX = {(I7,07) | j =
1,...,m},

Problem: decide whether or not there exists a BN of n nodes consistent with
EX and output one if it exists.

Definition 2. [Identification of BN]

Instance: the number of nodes n and a set of samples EX = {(I7,07) | j =
1,...,m},

Problem: decide whether or not there exists a unique BN of n nodes consistent
with EX and output it if it exists.

It is to be noted that both problems are very similar: the difference lies only in
a point that the uniqueness of the solution should be verified in the identification
problem.

3.2 Upper and Lower Bounds on Sample Complexity

To study the sample complexity, we consider the following quite simple algorithm
for inference of BNs: for each node v;, we generate all possible Boolean functions
fi and output a function that satisfies O} = fi(I] ,..., I} ) for all j = 1,...,m.
If there is no restriction, it is well known that the number of possible Boolean
functions for each v; is 22". If the maximum indegree is bounded by K, the
number of possible Boolean functions (along with possible sets of input nodes)

is at most (n

K) 22K, which is a polynomial of n if K can be regarded as a

constant.

Now we analyze the sample complexity: the number of samples that are
required to uniquely identify a BN. It is known that BNs correspond to state-
transition tables in the one-to-one manner. This means that all rows of a state-
transition table are required in order to uniquely specify a BN.

Proposition 1. [1] 2" samples are required to uniquely identify a BN if there
18 no restriction on a BN.

This proposition suggests that an exponential number of gene expression
profiles are required, which is non-realistic. However, if the maximum indegree
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Table 1. Explanation of Proposition 3. For K = 1, EX; satisfies the condition of the
proposition, whereas FX> does not satisfy since [v2 = 0,v3 = 0] does not appear.
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is bounded, the situation drastically changes. First, we show a lower bound on
the sample complexity.

Proposition 2. [1] (25 + Klogn) samples are necessary in the worst case
to identify a BN of mazimum indegree K.

Proof. We consider the number of mutually distinct Boolean networks. Since
there are §2(n’€) possible combinations of input nodes and 22" possible Boolean
functions per node, there are Q((22K -n)") BNs whose maximum indegree is
K.! Therefore, 2(25n 4+ nK logn) bits are required to represent a BN. On
the other hand, each sample gives information quantity of n bits. Therefore,
(2% + Klogn) samples are required in the worst case. O

Next, we show an upper bound of the sample complexity. For that purpose,
we need the following proposition (see also Table 1).

Proposition 3. [4] If all assignments (i.e., 225 assignments) of Boolean val-

ues to all subsets of V' with 2K nodes (i.e., (2712) subsets) appear in I's, the
Boolean function together with input nodes for each node is determined uniquely,
if it exists.

Theorem 1. [1] If O(22K . (2K + a) - logn) samples (i.e., I’s) are given
uniformly randomly, the following holds with probability at least 1 — == there

ne’

exists at most one BN of n nodes with mazimum indegree < K which is consistent
with given samples.

Proof. We derive the number of I’s satisfying the condition of Proposition 3.
For that purpose, we consider the probability that the condition is not satisfied
when m random I7s are given.

For any fixed set of nodes {v;,, ..., v, }, the probability that a sub-assignment

22—K . Thus,

the probability that v;, = --- = v;,,, = 1 does not appear in any of m random Is

Vi; = Vi, =+ = Vi, = 1 does not appear in one random I7 is 1 —

! The same Boolean functions may be counted multiple times. But, it does not cause
a problem since we use {2 notation.



™ Since the number of combinations of 2K nodes is less than n?%,

the probability that there exists a combination of 2K nodes for which an assign-

ment v;, = -+ = v;,,, = 1 does not appear in any of m random I’s is at most

n?K .1 - 22—K)m Since there are 22X possible assignments to 2K variables,

the probability that the condition of Proposition 3 is not satisfied is at most

1 1
22K . 2K (1 — 22—K)m It is not difficult to see that 225 . n2X . (1 — 22—K)m <p

noo

1

holds for m > 1n2- 225 . (2K + 2K logn + log -). Letting p = -, we obtain
p

the theorem. O

3.3 Computational Complexity Issue

The simple algorithm shown in Section 3.2 works in O(mn®+1) time for constant
K. Though it is polynomial, the degree of the polynomial becomes very high
as K increases. Several efforts have been done to reduce the worst case time
complexity and the practical computation time. However, it still takes long time
for large K. Indeed, both the inference and identification problems are shown to
be NP-hard if there is no restriction on K [2].

Though it is quite difficult to reduce the worst case time complexity, some
greedy type approximation algorithms have been proposed. It is proven under
the uniform distribution of samples that greedy type algorithms can identify BNs
with high probability for wide-class of Boolean functions [6,12]. Furthermore,
some sophisticated algorithms are proposed which work for all types of Boolean
functions under the uniform distribution [23].

4 Identification of Attractors

One of extensively studied topics for BNs is analysis of the number and length of
attractors in randomly generated BNs with average indegree K, where attractors
correspond to steady-states. Starting from [16], a fast increase of number of
attractors has been seen [7, 10, 27]. Although there is no conclusive result on the
mean length of attractors, many researches have also been done [10, 16]. Recently,
several methods have been developed for efficient identification of attractors [9,
13,15, 30], whereas it is known that finding a singleton attractor (i.e., a fixed
point) is NP-hard [21, 30]. Devloo et al. developed a method using transformation
to a constraint satisfaction problem [9]. Garg et al. developed a method based on
Binary Decision Diagrams (BDDs) [13]. Irons developed a method that makes use
of small subnetworks [15]. However, theoretical analysis of the average case time
complexity was not performed in these works. We recently developed algorithms
for identifying singleton attractors and small attractors and analyzed the average
case time complexities of these algorithms [30]. In this section, we overview our
algorithms and their analyses.



4.1 Attractors in Boolean Networks

As mentioned in Section 2, v(t + 1) is determined from v(¢) in a BN. Starting
from an initial GAP v(0), a BN will eventually reach a set of global states,
called an attractor (a directed cycle in the state transition diagram). An attractor
consisting of only one global state (i.e., v = f(v)) is called a singleton attractor,
which corresponds to a fixed point. Otherwise, it is called a cyclic attractor
with period p if it consists of p global states (i.e., vi = f(vP) = f(f(vP~ 1)) =

- = f(f(---f(v!)--+))). The set of all GAPs that eventually evolve into the
same attractor is called the basin of attraction. Different basins of attraction
correspond to different connected components in the state transition diagram,
and each connected component contains exactly one directed cycle. For example,
in Fig. 1, 001 is a singleton attractor, {011, 100} is a cyclic attractor with period
2, and {111, 110,010, 000,001} are the basin of the singleton attractor 001.

In this paper, the attractor identification problem is defined as a problem of
enumerating all attractors for a given BN. However, it is very difficult to find
attractors with long periods. Thus, we focus on identification of singleton attrac-
tors and identification of attractors with period at most some given threshold
Pmaz- LThese problems are defined as below, where the singleton attractor iden-
tification problem corresponds to the case of Py = 1.

Definition 3. [Identification of Attractors in BN]
Instance: a BN and the mazimum length of period pmaz,
Problem: enumerate all attractors with period at most pmaz.-

4.2 Simple Recursive Algorithm and Its Average Case Analysis

We developed several algorithms for identifying singleton attractors and cyclic
attractors with short periods [30]. For that purpose, we proposed a very simple
algorithm, which is referred to as the basic recursive algorithm in this paper.

The number of singleton attractors in a BN depends on the regulatory rules
of the network. If the rules are given as v;(t + 1) = v;(¢) for all ¢, the number
of singleton attractors is 2”. Thus, it would take O(2™) time in the worst case if
all the singleton attractors are to be identified. On the other hand, it is known
that the average number of singleton attractors is 1 regardless of the number of
genes n and the maximum indegree K [22]. The basic recursive algorithm was
designed based on these facts. It examines much smaller number of states than
2™ in the average case.

In the algorithm, a partial GAP (i.e., profile with m (< n) genes) is extended
one by one towards a complete GAP (i.e., singleton attractor), according to a
given gene ordering (i.e., a random gene ordering). If it is found that a partial
GAP cannot be extended to a singleton attractor, the next partial GAP is ex-
amined. The pseudocode of this algorithm is given below, where this procedure
is invoked with m = 1.



Procedure IdentSingletonAttractor(v, m)
ifm=n+1
then Output vy (¢),v2(t), -+, vn(t), return;
for b=0to 1 do
Um (1) := b;
if it is found that f;(v(t)) # v,(t) for some j <m
then continue
else IdentSingletonAttractor(v, m + 1);
return;

This algorithm extends a partial GAP by one gene at a time in a recursive
manner. At the m-th recursive step, the states of the first m — 1 genes (i.e., a
partial GAP) are already determined. Then, the algorithm extends the partial
GAP by letting v, (¢t) = 0. If v;(t + 1) = v;(¢) holds or the value of v;(t + 1)
is not determined for each j = 1,...,m, the algorithm proceeds to the next
recursive step. That is, if there is a possibility that the current partial GAP can
be extended to a singleton attractor, it goes to the next recursive step. Otherwise,
it extends the partial GAP by letting v,,,(¢t) = 1 and executes a similar procedure.
After examining vy, (t) = 0 and vy, (t) = 1, the algorithm returns to the previous
recursive step. Since the number of singleton attractors is small in most cases, it
is expected that the algorithm does not examine many partial GAPs with large
m. The average case time complexity is estimated as follows [30].

Assume that we have tested the first m out of n genes, where m > K. For
all i < m, v;(t) # v;(t + 1) holds with probability

(i)
(&)

where we assume that Boolean functions of k; inputs are selected at uniformly
random. If v;(t) # v;(t + 1) holds for some ¢ < m, the algorithm cannot go to
the next recursive level. Therefore, the probability that the algorithm examines
the (m + 1)-th gene is no more than

P(Ui(t) # Ui(t + 1)) = 0.5-

1= Pli(t) A vt + )" = [1=-0.5- (=) ]™,

Thus, the number of recursive calls executed for the first m genes is at most

m

fim) = 2™ [1-0.5-(—)K]™.

n
Let s = 2 and F(s) = [2° - (1 — 0.5 - s%)*]" = [(2 — s%)*]". The average case
time complexity is estimated by computing the maximum value of F(s). Though
an additional O(nm) factor is required, it can be ignored since O(n2a™) <
O((a + €)™) holds for any @ > 1 and € > 0.

Since we want to analyze the time complexity as a function of n, we only
need to compute the maximum value of the function g(s) = (2 —s%)*, which can
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Table 2. Theoretically estimated average case time complexities of basic, outdegree-
based, and BFS-based algorithms for the singleton attractor detection problem [30].

K 2 3 4 5

basic 1.35™ 1.43™ 1.49™ 1.53™
outdegree-based|1.19™ 1.27™ 1.34™ 1.41"
BFS-based 1.16™ 1.27™ 1.35™ 1.41™

be obtained by a simple numerical calculations for fixed K. Then, the average
case time complexity of the algorithm can be estimated as O((max(g))™). The
average case time complexities for K = 2,...,5 are listed in the first row of
Table 2. It should be noted that the naive exhaustive search-based algorithm
takes at least O(2") time. Thus, the basic recursive algorithm is much faster
than the naive algorithm for small K.

We obtained variants of this basic recursive algorithm by sorting nodes be-
fore invoking the recursive procedure [30]. In particular, we used the orderings of
nodes according to the outdegree and BFS (breadth-first search). For these al-
gorithms, we obtained theoretical estimates of the average case time complexity
(see Table 2). We also performed computational experiments to confirm these
theoretical results (it is to be noted that some approximations were included
in theoretical analyses). As a result, good agreement was observed. We also ex-
tended the basic recursive algorithm for identifying cyclic attractors with short
period [30]. Though the extended algorithm is not efficient compared with those
in Table 2, it still works in 0(2") time in the average case.

4.3 Issues on the Worst Case Time Complexity

We have considered the average case time complexity in the above. However,
it is also very important to consider the worst case time complexity. We have
shown that the singleton attractor detection problem (i.e., decide whether or not
there exists a singleton attractor) can be solved in 0(2") time for constant K by
a reduction to the satisfiability problem for CNF (conjunctive normal form). We
have also shown that the singleton attractor detection problem can be solved
in 0(2™) time for general K if Boolean functions are restricted to AND/OR of
literals [29]. However, no o(2") time algorithm is known for more general cases
of the singleton attractor detection problem and thus development of such an
algorithm is left as an open problem.

5 Control of Boolean Networks

One of the major goals of systems biology is to develop a control theory for bio-
logical systems [17, 18]. Development of such a control theory is important both
from a theoretical viewpoint and from a practical viewpoint. From a theoretical
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viewpoint, biological systems are complex and contain highly non-linear subsys-
tems and thus existing methods in control theory cannot be directly applied to
control of biological systems. Therefore, it is quite interesting to develop the-
ory and methods for control of biological systems. From a practical viewpoint,
control of cells may be useful for systems-based drug discovery and cancer treat-
ment [17,18]. Since BNs are highly non-linear systems, it is reasonable to try to
develop methods for control of BNs.

Datta et al. proposed a method for finding a control strategy for PBN [8],
from which many extensions followed [11, 25, 26]. In their approach, it is assumed
that states of some nodes can be externally controlled and the objective is to find
a sequence of control actions with the minimum cost that leads to a desirable
state of a network. Their approach is based on the theory of Markov chains
and makes use of the classical technique of dynamic programming. Since BNs
are special cases of PBNs, their methods can also be applied to control of BNs.
However, it is required in their methods to handle exponential size matrices and
thus their methods can only be applied to small biological systems. Therefore,
it is reasonable to ask how difficult it is to find control strategies for BNs. We
showed that finding control strategies for BNs is NP-hard [5], which means that
there is no polynomial time algorithm unless P=NP [14]. On the other hand,
we showed that this problem can be solved in polynomial time if BN has a tree

structure. In this section, we review these results along with the essential idea
of [8].

5.1 Definition of the Control Problem

Here we give a formal definition of the problem of finding control strategies for
BNs (Control of BN) [5].

In Control of BN, it is assumed that there exist two types of nodes: internal
nodes and external nodes, where internal nodes correspond to usual nodes (i.e.,
genes) in BN and external nodes correspond to control nodes. Let a set V of n+m

nodes be V- = {v1,...,Un,Vnt1,. -, Untm}, where vy, ..., v, are internal nodes
and vp41, ..., Unt+m are external nodes. For convenience, we use x; to denote an
external node v,,4;. Then, states of internal nodes (v;(t+1) fori =1,...,n) are

determined by

vi(t +1) = filvi, (), ..., vy, (),
where each v;, is either an internal node or an external node. Here, we let v(t) =
[v1(t),...,v,(t)] and x(¢) = [x1(t),. .., zm(t)]. We can describe the dynamics of
a BN by v(t + 1) = f(v(¢),x(t)), where x(t)s are determined externally. Then,
Control of BN is defined as follows (see also Fig. 3) [5].

Definition 4. (Control of BN)

Instance: a BN, an initial state of the network for internal nodes v°, and the
desired state of the network v™ at the M-th time step,

Problem: find a sequence of 0-1 wvectors (x(0),...,x(M)) such that v(0) =
v0 and v(M) = v™. If there does not exist such a sequence, “None” should be
the output.



11

X3 X5 initial (t=0) | O
desired (t=3) 0 1 1

AND @

OR

NOT

WNPFPO |~

Vs

Fig. 3. Example of Control of BN. In this problem, given initial and desired states of
internal nodes (v1,v2,vs), it is required to compute a sequence of states of external
nodes (z1,z2) leading to the desired state.

5.2 Dynamic Programming Algorithms for Control of BNs

As mentioned before, Datta et al. proposed a dynamic programming based
method for finding a control strategy for PBN [8], which can also be applied
to BN. Here, we briefly review their method in the context of BN.

We use a table D[by, ..., by, t], where each entry takes either 0 or 1. D[by, ..., by, t]

takes 1 if there exists a control sequence (x(t),...,x(M)) which leads to the
target state v beginning from the state [by,...,b,] at time ¢. This table is
computed from ¢t = M to t = 0 by using the following procedure:

1, if [by,...,bs] = vM,
0, otherwise,
1, if there exists (c,x) such that Dici,...,cpn,t] =1

Dilby,..., byt —1] = and ¢ = f(b,x),
0, otherwise,

D[blv"'vbn;M] _{

where b = [by,...,b,] and ¢ = [c1,...,¢y]. Then, there exists a desired control
sequence if and only if D[as,...,a,,0] = 1 holds for v’ = [ay,...,a,]. Once
the table is constructed, a desired control sequence can be obtained using the
traceback technique, which is a standard technique in dynamic programming.

In this method, the size of table Dby, ..., by, t] is clearly O(M -2™). Moreover,
we should examine pairs of O(2") internal states and O(2™) external states for
each time ¢. Thus, it requires O(M -2"T™) time excluding the time for calculation
of Boolean functions. Therefore, the dynamic programming algorithm in [8] is
an exponential time algorithm.

As shown in the next subsection, control of BN is NP-hard, which suggests
that exponential time is inevitable in a general case. However, we may be able
to develop polynomial time algorithms for special cases. We developed such an
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algorithm for the case where the network has a tree structure (i.e., the graph
is connected and there is no cycle). Since the algorithm is a bit complicated,
we show here a simple algorithm for the case where the network has a rooted
tree structure (i.e., all paths are directed from leaves to the root). In order to
compute a control strategy, we employ dynamic programming. Though dynamic
programming is also employed in the above, it is used here in a significantly
different way.

In order to apply dynamic programming, we define a table S[v;, ¢, b] as below,
where v; is a node in a BN, ¢ is a time step and b is a Boolean value (i.e., 0 or
1). Here S[uv;,t,b] takes 1 if there exists a control sequence (up to time ¢) that
makes v;(t) = b.

1, if there exists (x(0),...,x(t)) such that v;(t) =1,
0, otherwise.
1, if there exists (x(0),...,x()) such that v;(t) = 0,
0, otherwise.

Slvs, t,1] = {
smmmz{

Then, S[v;, t, 1] can be computed by the following dynamic programming proce-
dure.

1, if there exists [b;,, ..., b;, ] such that f;(b;,,...,b;,) =1
Svi, t+1,1] = holds and S[v;;,t,b;,] = 1 holds for all j =1,...,k,

0, otherwise.

Slv;, t,0] can be computed in a similar way. It should be noted that each leaf
is either a constant node or an external node. For a constant node, either
Slvi, t,1] = 1 and S[v;, t,0] = 0 hold for all ¢, or S[v;,t,1] = 0 and S|v;,t,0] =1
hold for all ¢t. For an external node, S[v;,t,1] = 1 and S[v;,¢,0] = 1 hold for
all ¢. Since the size of table S[v;,t,b] is O((n + m)M), the above dynamic pro-
gramming algorithm works in polynomial time where we assume that the value
of each Boolean function can be computed in polynomial time. A desired con-
trol sequence can also be obtained from the table in polynomial time using the
traceback technique. This algorithm was extended for BNs with general tree
structures [5].

Theorem 2. [5] Control of BN can be solved in polynomial time if BN has a
tree structure.

5.3 NP-hardness Results on Control of BNs

As mentioned in the above, the dynamic programming algorithm for control
of general BNs takes exponential time and thus is not efficient. However, the
following theorem suggests that it is impossible (under the assumption of P#NP)
to develop a polynomial time algorithm for the general case.

Theorem 3. [5] Control of BN is NP-hard.
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Fig. 4. Reduction from 3SAT to Control of BN. An instance of 3SAT {y1Vy2Vys, 71V
Y2 VY, y2 Vs V ya} is transformed into this instance of Control of BN.

Proof. We present a simple polynomial time reduction from 3SAT [14]. Let
Y1,.-.,yn be Boolean variables (i.e., 0-1 variables). Let ¢1,...,cr be a set of
clauses over y1,...,ynN, where each clause is a logical OR of at most three liter-
als. It should be noted that a literal is a variable or its negation (logical NOT).
Then, 3SAT is a problem of asking whether or not there exists an assignment
of 0-1 values to y1,...,yn which satisfies all the clauses (i.e., the values of all
clauses are 1).

From an instance of 3SAT, we construct a BN as follows (see also Fig. 4).
We let the set of nodes V = {v1,...,vp,21,...,2x5} where each v; corresponds
to ¢; and each x; corresponds to y;. Suppose that f;(vs,,...,%i;) is a Boolean
function assigned to ¢; in 3SAT. Then, we assign f;(zi,,...,Zi,;) to v; in the BN.
Finally, we let M =1, v? = [0,0,...,0] and v¥ =[1,1,...,1].

Then, it is straight-forward to see that there exists a control strategy (x(0),x(1))

which makes v(1) = [1,1,...,1] if and only if there exists an assignment which
satisfies all the clauses. Since the reduction can be done in linear time, Control
of BN is NP-hard. a

It is also shown in [5] that the control problem remains NP-hard even for BNs
having very restricted network structures. Especially, it is shown that it remains
NP-hard if the network contains only one control node and all the nodes are OR,
or AND nodes (i.e., there is no negative control). However, it is unclear whether
the control problem is NP-hard or can be solved in polynomial time if a BN
contains a fixed number of directed cycles or loops (it is unclear even for the
case of two cycles). Deciding the complexity of such a special case is left as an
open problem.

Though we have shown negative results, NP-hardness does not necessarily
mean that we cannot develop practical algorithms which work efficiently in the
average case. For that purpose, an approximate finite-horizon optimal control
has been introduced [24] and a heuristic method based on Q-learning algorithm
for approximating the optimal infinite-horizon control policy has been proposed
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[11]. However, application of these approaches is still limited to small networks.
Recently, Langmund and Jha proposed a method using techniques from the field
of model checking [19]. They reported that the method could be applied to a BN
model of embryogenesis in D. melanogaster with 15,360 Boolean variables.

6 Concluding Remarks

We have overviewed algorithmic aspects of inference, analysis and control of BNs
with focusing on the authors’ works. We understand that there is a criticism that
BN is too simple as a model of genetic networks and /or other biological networks.
However, studies on BNs may provide some insights into other models. At least,
negative results should hold for more general models. Some ideas in positive
results may also be useful for theoretical analyses and design of algorithms for
more general models. For instance, Mochizuki performed theoretical analysis on
the number of steady states in some continuous biological networks that are
based on nonlinear differential equations [22]. The core part of the analysis is
done in a combinatorial manner and is very close to that for BNs. Therefore,
it is worthy to study extensions of the methods and results on BNs for more
general models.
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