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Abstract. Symbolic methods for investigating Hopf bifurcation prob-
lems of vector fields arising in the context of algebraic biology have
recently obtained renewed attention. However, the symbolic investiga-
tions have not been fully algorithmic but required a sequence of sym-
bolic computations intervened with ad hoc insights and decisions made
by a human. In this paper we discuss the use of generic methods to re-
duce questions on the existence of Hopf bifurcations in parameterized
polynomial vector fields to quantifier elimination problems over the reals
combined with simplification techniques available in REDLOG. We can
reconstruct most of the results given in the literature within a few sec-
onds of computation time. As no tedious hand computations are involved
we presume that the use of these generic methods will be a useful tool
for investigating other examples.

1 Introduction

Symbolic methods to investigate Hopf bifurcation problems of vector fields aris-
ing in the context of algebraic biology have recently obtained renewed attention
[1–3]. A major reason for this attention is the relationship between Hopf bifur-
cation fixed points and the occurrence of oscillations. Although this relationship
is subtle—we refer to [1, 3] for nice introductions containing further references—
the topic of investigating “oscillations” in systems for biologically or chemically
relevant values of parameters is of such great interest that considerable work has
been done to investigate various biological and chemical systems with respect to
Hopf bifurcation fixed points, see e.g. [4–8] to mention only some.

There exist software packages such as AUTO3 or XPPAUT4, which locate
Hopf bifurcations by means of numerical calculations. They allow one to evi-
dence the existence of Hopf bifurcations. However, if one wants to prove that
no Hopf bifurcation fixed point exists at all, then numeric methods fail in prin-
ciple. Furthermore, if there are ranges of parameters for which there are Hopf
bifurcations but these ranges are rather small, then numeric methods might not
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detect them—a possibility that is not only of theoretical interest in the context
of algebraic biology and chemical reaction systems.

Whereas theoretically the problem is known to be decidable [9, 2, 3] the sym-
bolic investigations carried out for specific parameterized polynomial vector fields
arising from larger examples, e.g. the ones investigated in [1, 2], have not been
fully algorithmic up to now but required a sequence of symbolic computation
intervened with ad hoc insights and decisions made by a human, and sometimes
of sophisticated coordinate transforms. The aim of this paper is to demonstrate
how to proceed fully algorithmically for the examples discussed there.

For this we proceed as follows: We use the method described by El Kahoui
and Weber [9, 10] to generate from the symbolic description of the respective
ordinary differential equation a first-order formula in the language of ordered
rings, where our domain is the real numbers. This is always possible if the vector
field consists of polynomials in the variables and parameters.

If one suspects that there is no Hopf bifurcation fixed point or one just wants
to assert that there is one, then one can apply quantifier elimination to the ex-
istential closure, i.e. all parameters are existentially quantified, of our generated
formula. More generally, applying quantifier elimination to the original formula
yields in principle a quantifier-free semi-algebraic description of the parameters
for which Hopf bifurcation fixed points exist. In practice this latter variant does
not finish within reasonable time at present. There is, however, an alternative,
which provides at least one sample solution in the positive case; viz. extended
quantifier elimination [11].

For the quantifier elimination we use REDLOG [12], which provides an au-
tomatic combination of virtual substitution methods [13] with partial CAD [14].
After noticing quite soon that most of our generated formulae were intractable
by the regular elimination method, we developed a modified quantifier elim-
ination procedure called positive quantifier elimination. This is based on the
observation that in the considered examples, the variables as well as almost all
of the parameters can be restricted to positive values. It has turned out that
this knowledge greatly supports the elimination process. A current version of
REDLOG including positive quantifier elimination is available for free download
on the REDLOG website5. All computational examples discussed throughout
this paper are contained in the online database REMIS there [15].

We can reconstruct the results of [1] in some seconds of computation time.
Also the main example given in [2] could be handled in principle—without using
the sophisticated coordinate transform used there.

2 Quantifier Elimination over the Reals

2.1 A Survey of Regular Quantifier Elimination

In order to summarize the basic idea of real quantifier elimination, we introduce
first-order logic on top of polynomial equations and inequalities.
5 www.redlog.eu



We consider multivariate polynomials f(u, x) with rational coefficients, where
u = (u1 . . . , um) and x = (x1, . . . , xn). We call u parameters and we call x vari-
ables. Equations will be expressions of the form f = 0, inequalities are of the
form f ≤ 0, f < 0, f ≥ 0, f > 0, or f 6= 0. Equations and inequalities are called
atomic formulae. Quantifier-free formulae are Boolean combinations of atomic
formulae by the logical operators “∧,” “∨,” and “¬.” Existential formulae are of
the form ∃x1 . . .∃xnψ(u, x), where ψ is a quantifier-free formula. Similarly, uni-
versal formulae are of the form ∀x1 . . .∀xnψ(u, x). A general (prenex) first-order
formula has several alternating blocks of existential and universal quantifiers in
front of a quantifier-free formula.

The real quantifier elimination problem can be phrased as follows: Given a
formula ϕ, find a quantifier-free formula ϕ′ such that both ϕ and ϕ′ are equivalent
in the domain of the real numbers. A procedure computing such a ϕ′ from ϕ is
called a real quantifier elimination procedure.

Quantifier elimination for an existential formula ϕ(u) ≡ ∃x1 . . .∃xnψ(u, x)
has a straightforward geometric interpretation: Let

M = { (u, x) ∈ Rm+n | ψ(u, x) },

and let M ′ = {u ∈ Rm | ϕ(u) }. Then M ′ is the projection of M along the coor-
dinate axes of the existentially quantified variables x onto the parameter space.
Quantifier elimination yields a quantifier-free description of this projection.

Sets defined by first-order formulae are called definable sets. Sets defined
by quantifier-free formulae are called semi-algebraic sets. Obviously, every semi-
algebraic set is definable. The existence of a quantifier elimination procedure
implies that, vice versa, every definable set is already semi-algebraic.

Obviously, quantifier elimination for existential formulae provides a test that
determines the solvability of a parametric system of equations in dependence on
the parameters. The procedure gives, however, no information on possible solu-
tions of the input system. This point of view gives rise to the following generaliza-
tion of quantifier elimination: Given an existential formula ϕ ≡ ∃x1 . . . xnψ(u, x),
we wish to compute a set

Φ′ =
{ (
ϕ′

k(u), αk(u)
)
| k ∈ K }, K finite,

which has the following properties:

1. The ϕ′
k are quantifier-free formulae. The αk provide terms t1(u), . . . , tn(u)

corresponding to the eliminated variables x1, . . . , xn.
2. Define ϕ′ as

∨
k∈K ϕ′

k. Then ϕ′ is equivalent to ϕ in the reals. In other words,
ϕ′ is obtained from ϕ by quantifier elimination.

3. Fix real values for the parameters u: if ϕ and hence ϕ′ holds, then there is
some ϕ′

k which holds. The corresponding answer αk is a sample point, which
when virtually substituted for x satisfies ψ.

The notion of virtual substitution refers to the fact that the terms t1(u), . . . , tn(u)
possibly contain some non-standard symbols like quotients, root expressions, or



infinitesimals, which can be substituted into quantifier-free formulae in such a
way that they do not formally occur in the substitution result. An algorithm
mapping ϕ to Φ′ as described above is called an extended quantifier elimination
procedure, or a quantifier elimination with answer.

2.2 Positive Quantifier Elimination

In the context of algebraic biology it is often known that all (or at least most)
variables and parameters are positive. Let us assume first that all variables and
parameters are positive. Such a global information greatly supports the quantifier
elimination process by virtual substitution. We call the resulting procedure pos-
itive quantifier elimination. We do not go into technical details on this here but
indicate a few major points, where positivity can be exploited. To start with, re-
call that the practical applicability of substitution methods depends crucially on
efficient and powerful simplification of intermediate and final results [16]. These
simplification methods can be considerably improved by positivity assumptions
on all variables:

– There is an established simplification strategy which checks for terms that
are (strict) trivial squaresums [16]. These are by definition sums of monomi-
als with positive coefficients and even degree in all variables (and a positive
absolute summand). Obviously, trivial squaresums are positive semi-definite,
and strict trivial squaresums are positive definite. Thus corresponding atomic
formulae can be evaluated to true or false or at least be simplified to equa-
tions or negated equations. On the assumption that all variables are positive,
we need not check for positive degrees. For instance, we generally know that

3x2y4 + 7x2 ≥ 0.

With positive quantifier elimination, we may go further and even equivalently
replace by “true” the atomic formula

3xy + 7x > 0.

Notice that technically we need only literally check for a minus sign in some
canonical recursive or distributive representation of left hand side polynomi-
als.

– The search for (generalized) trivial squaresums can be extended to testing
irreducible factors of the occurring polynomials. For instance, in the positive
case we can go

ax2 + axy2 − bx2 − by2 ≤ 0←→ (ax− b)(x+ y2) ≤ 0←→ ax− b ≤ 0.

Since our positivity assumptions greatly increase our chance to discover such
squaresums, it pays off in many cases to factorize more systematically. In or-
der to optionally do so we have introduced into REDLOG a switch rlsifaco
(“simplifier factorization with ordering relations”), which is going to play a
role in the discussion of our computation examples later on.



Next, we illustrate two situations, where we can exploit positivity within the
virtual substitution process itself:

– When virtually substituting into atomic formulae quotients with parametric
denominators one must in general multiply with the square of the denomi-
nator in order to preserve signs. As an example consider(

ax− b > 0
)[
x// c

y+z2

]
≡ acy + acz2 − by2 − 2byz2 − bz4 > 0.

With positive quantifier elimination one heuristically discovers non-negative
denominators or at least non-negative factors based on strategies as sketched
for simplification above. In our example, this allows to simply drop the then
positive denominator:(

ax− b > 0
)[
x// c

y+z2

]
≡ ac− by − bz2 > 0.

At this point one possibly avoids subsequent degree violations for quanti-
fied variables in the denominator; in our example, z might be a quantified
variable.

– There is a degree decreasing shift operation which essentially divides all ex-
ponents of quantified variables by the GCD of these exponents [17]. Doing
so, one obviously has to take care of positivity, e.g., when switching be-
tween even and odd degrees. This operation can be simplified and slightly
generalized on our positivity assumption. As a simple example consider the
following transformation, where with positive quantifier elimination we need
not add a condition z ≥ 0:

∃z(az2 − bz4 > 0 ∧ z4 − 3z2 < 0)←→ ∃z(az − bz2 > 0 ∧ z2 − 3z < 0).

For our set of input formulas discussed throughout this paper, it turns out
that all optimizations discussed above become relevant at some point. For input
problems from other fields of applications, positive quantifier elimination has not
been systematically evaluated yet.

Notice that positive quantifier elimination as a concept is not at all restricted
to virtual substitution methods. For instance, during the projection phase of par-
tial CAD one could drop polynomials that are definite on positivity assumptions.

It is theoretically quite straightforward to equip positive quantifier elimina-
tion with an optional argument to pass a list of parameters and variables that
are not known to be positive. This is, however, not yet implemented at present.
We are now going to discuss how to alternatively deal with a parameter that is
not known to be positive, say λ1.

In applications, it might happen that the parameter occurs in a linear equa-
tion. In this special case, one can eliminate it by solving for λ1 in one of the
linear equations involving this parameter. Algorithmically, this strategy can be
realized in a preprocessing step, e.g. the one realized by Brown and Groß [18],
but is of course restricted to special cases.

One generally applicable procedure is to perform a case distinction on λ1 > 0,
λ1 < 0, or λ1 = 0. This results in three positive quantifier elimination runs,



where in the two latter cases we substitute λ1 ← −λ1 and λ1 ← 0, respectively.
Iterating this procedure for other general parameters λ2, . . . , λn yields 3n many
case distinctions, so that the case distinction is only feasible for small n, i.e.
there are only few parameters not known to be positive.

There is another theoretically interesting option: For quantified non-positive
variables we observe that every real number is a difference of two positive real
numbers and go λ1 ← λ1 − λ′1, where λ′1 is quantified in the same way as λ1.

Note that both our substitution techniques sketched above are completely
algorithmic. They can easily be implemented on top of any implementation of
positive quantifier elimination.

3 Computation Examples

3.1 Models of Genetic Circuits

The examples investigated in [1] consist of a family of ordinary differential equa-
tions of the following form:

d
dt
G(t) = ϑ(γ0 −G(t)−G(t)P (t)n),

d
dt
P (t) = nα(γ0 −G(t)−G(t)P (t)n) + δ(M(t)− P (t)),

d
dt
M(t) = λ1G(t) + γ0µ−M(t), (1)

where n is a natural number. We have renamed λ to λ1 because lambda is
obviously a bad choice for a variable name in Lisp systems. All variables and
parameters except λ1 are known to be positive. For a description of the model,
from which this family of ordinary differential equations arise, we refer to [1].

Using a Maple library6 containing the methods described in [9] we can gen-
erate the first order formulae stating the question on the existence of Hopf bi-
furcation fixed points (taking into account the known positivity conditions) by
the Maple script in Figure 1.

Here we generate formulae up to n = 10 in a slight extension of the cases
considered in [1]. There it is proved that no Hopf bifurcations exist for n ≤ 8
and a Hopf bifurcations fixed point exists for n = 9.

In Figure 2 we present the generated first-order input formulae for n = 2
and n = 9. The system variables are renamed to vv1, vv2, vv3 by the Maple
library; as they occur in quantified form only, this renaming is of little concern.
For better readability they are typeset as v1, v2, v3. Apart from this, we literally
give the formulae as they are output by Maple. They happen to contain some
redundant parentheses.

As indicated in the introduction, we consider for now exclusively the existen-
tial closures ∃ϕ2, . . . , ∃ϕ10 of our formulae. Then quantifier elimination yields
6 The current version of the library can be obtained at cg.cs.uni-bonn.de/project-

pages/symbolicanalysis/.



eq1n := diff(G(t),t)=(theta*(gamma0-G(t)-G(t)*P(t)^n));

eq2n := diff(P(t),t)=n*alpha*(gamma0-G(t)-G(t)*P(t)^n)+delta*(M(t)-P(t));

eq3n := diff(M(t),t)=lambda1*G(t)+gamma0*mu-M(t);

fcns1 := {G(t),P(t),M(t)};

params1 := [theta,alpha,gamma0,mu,lambda1];

paramcondlist := [theta>0, gamma0>0, mu>0, delta>0, alpha>0];

funccondlist := [G(t)>0, P(t)>0, M(t)>0];

lown:= 0; upn :=10;

for nn from lown to upn do

eq11 := eval(subs(n=nn,eq1n));

eq21 := eval(subs(n=nn,eq2n));

eq31 := eval(subs(n=nn,eq3n));

DEHopfexistence({eq11,eq21,eq31},

fcns1,params1,funccondlist,paramcondlist);

od;

Fig. 1. A Maple script for generating the first-order input formulae ϕ2, . . . , ϕ10 for
Section 3.1.

ϕ2 ≡ ∃v1∃v2∃v3(((0 < v1 ∧ 0 < v3) ∧ 0 < v2) ∧
(((((((ϑ(γ0 − v1 − v1v

2
3) = 0 ∧

λ1v1 + γ0µ− v2 = 0) ∧
2α(γ0 − v1 − v1v

2
3) + δ(v2 − v3) = 0) ∧

(0 < ϑδ + ϑv2
3δ + 2λ1ϑv1v3δ ∧

ϑv2
3 + 2ϑδ + 8ϑαv1v3 + 4αv1v3ϑδ + 4αv1v

3
3ϑδ + 8αv1v3δ + δ2 +

ϑδ2 + 16α2v2
1v

2
3 + ϑv2

3δ
2 + 2ϑ2v2

3δ + ϑ2v4
3δ + δ + ϑ2δ + ϑ2 +

2ϑ2v2
3 + ϑ2v4

3 + 4αv1v3 + ϑ + 2ϑv2
3δ + 8ϑv3

3αv1 − 2λ1ϑv1v3δ = 0)) ∧
0 < ϑ) ∧ 0 < γ0) ∧ 0 < µ) ∧ 0 < δ ∧ 0 < α)),

ϕ9 ≡ ∃v2∃v1∃v3(((0 < v1 ∧ 0 < v3) ∧ 0 < v2) ∧
(((((((ϑ(γ0 − v1 − v1v

9
3) = 0 ∧

λ1v1 + γ0µ− v2 = 0) ∧
9α(γ0 − v1 − v1v

9
3) + δ(v2 − v3) = 0) ∧

(0 < ϑδ + ϑv9
3δ + 9λ1ϑv1v

8
3δ ∧

162ϑv17
3 αv1 + 162ϑαv1v

8
3 + 162αv1v

8
3δ + ϑ + 2ϑv9

3δ + ϑ2v18
3 δ +

ϑv9
3 + 2ϑδ + 81αv1v

8
3ϑδ + 81αv1v

17
3 ϑδ + δ2 + ϑδ2 + ϑ2δ + ϑ2 +

2ϑ2v9
3 + ϑ2v18

3 + 6561α2v2
1v

16
3 + 2ϑ2v9

3δ + δ + 81αv1v
8
3 + ϑv9

3δ
2 −

9λ1ϑv1v
8
3δ = 0)) ∧

0 < ϑ) ∧ 0 < γ0) ∧ 0 < µ) ∧ 0 < δ ∧ 0 < α)).

Fig. 2. The input formulae ϕ2 and ϕ9 generated by the Maple script in Figure 1. The
Maple variables vv1, . . . , vv3 generated by the function DEHopfexistence in the script
are typeset as v1, . . . , v3 here.



Table 1. Applying regular quantifier elimination to the existential closures ∃ϕ2,
. . . , ∃ϕ10 of the formulae in Section 3.1. We systematically try several switch settings
in REDLOG.

n rlsifaco rlqeprecise rlqevarseltry result time (s)

2 ◦ ◦ ◦ sigxcpu > 600

3 ◦ ◦ ◦ sigxcpu > 600

4 ◦ ◦ ◦ sigxcpu > 600
4 ◦ ◦ • false 113.26
4 • ◦ • false 84.10

5 ◦ ◦ ◦ sigxcpu > 600

6 ◦ ◦ ◦ sigxcpu > 600
6 • ◦ • false 170.10

7 ◦ ◦ ◦ sigxcpu > 600

8 ◦ ◦ ◦ sigxcpu > 600
8 ◦ ◦ • false 407.63
8 • ◦ • false 346.77

9 ◦ ◦ ◦ sigxcpu > 600

10 ◦ ◦ ◦ sigxcpu > 600
10 • ◦ • true 543.82

either “true” or “false” depending on whether or not Hopf bifurcations exist. We
are going to algorithmically treat the positive cases in more detail later on.

Applying Regular Quantifier Elimination Using the regular quantifier
elimination of REDLOG or QEPCAD with their default settings we could not
decide any of the existential sentences. Systematically trying some REDLOG
switches, we managed to determine special settings that deliver results also for
n = 4, 6, 8, 10. Table 1 summarizes this experiment, where all rows with unsuc-
cessful non-standard switch settings have been deleted. The keyword sigxcpu in
the result column indicates that the computation has been automatically inter-
rupted after exceeding our chosen limit of 10 minutes of CPU time. The switch
rlsifaco (“simplifier factorization with ordering relations”) toggles the factor-
ization of left hand side polynomials of ordering inequalities for the purpose of
simplification; rlqeprecise (“quantifier elimination using precise test points”)
avoids to some extent the substitution of non-standard symbols with virtual
substitution; rlqevarseltry (“quantifier elimintion variable selection try sys-
tematically”) does not only apply the standard heuristics for choosing the next
variable to be eliminated but additionally breaks tries by trying all best choices
and continuing with the smallest result. By default all theses switches are off—for
good reason, since this provides in general the by far best performance. Alto-
gether, we consider these results not at all satisfactory: a regular user of some
software must not be expected to run lengthy experiments with switch settings
in order to hopefully obtain some results.



Table 2. Applying positive quantifier elimination to the existential closures ∃ϕ2,
. . . , ∃ϕ10 of the formulae in Section 3.1. We use the standard switch settings in RED-
LOG; rlsifaco is switched on, which is a general recommendation for positive quan-
tifier elimination.

n ∃ϕn ∃ϕn[λ1 ← −λ1] ∃ϕn[λ1 ← 0] time (s) ∃ϕ[λ1 ← λ1 − λ′
1] time (s)

2 false false false < 0.01 sigxcpu > 600

3 false false false 19.28 sigxcpu > 600

4 false false false 21.58 sigxcpu > 600

5 false false false 19.09 sigxcpu > 600

6 false false false 23.72 sigxcpu > 600

7 false false false 23.89 sigxcpu > 600

8 false false false 22.35 sigxcpu > 600

9 true false false 0.17 true 69.10

10 true false false 0.17 true 69.19

Applying Positive Quantifier Elimination Our idea is now to improve the
situation by making use of the observation that all variables and parameters
except λ1 are known to be positive. This observation has in fact been used also
in [1] by solving for λ1 in one of the linear equations involving this parameter, so
that all remaining variables and parameters are known to be positive and then
performing a “hand analysis.”

Our approach avoids any hand analysis, because by using the generally ap-
plicable case distinction approach on λ1, cf. Sect. 2.2, we can solve each of the
examples in less than half a minute of computation time, cf. the left part of
Table 2. Our results for n = 2, . . . , 9 confirm those in [1]; for our additional case
n = 10, we discover the existence of a Hopf bifurcation fixed point. The compu-
tation times are the sums of times for all three respective eliminations. For this
example, however, the cases λ1 < 0 and λ1 = 0 turn out to take no considerable
time.

The right hand side part of Table 2 summarizes the alternative approach
introducing instead of a case distinction a new variable λ′1 and substituting λ1 ←
λ1 − λ′1. It performs considerably worse on these examples. This might appear
not surprising from the point of view that the complexity of our elimination
procedure is exponential in the number of quantified variables. On the other
hand, however, iterating case distinctions is exponential as well.

Obtaining Sample Points For the cases in which a Hopf bifurcation fixed
point exists the extended quantifier elimination [11] in REDLOG computes in
addition a “sample point” fulfilling the existential quantifiers. For the following
experiments, we turn on the switch rlqeaprecise (“quantifier elimination with
answer using precise test points”), which is the analogue for extended quanti-
fier elimination of rlqeprecise discussed above. It reduces the introduction of
infinitesimals to some extent though not completely. In addition, we switch off



rlsiexpla (“simplifier explode always”) so that atomic formulae are not split
by polynomial factorization unless the Boolean structure is preserved.

For the system with n = 9 we obtain within 0.11 s the following sample point:

α = 1

γ0 =
−2 ·

√
1180986− 2187 · ε1 + 2187

2187
δ = 1
λ1 = L(ε1, ε2)
µ = M(ε1, ε2)
ϑ = T (ε1, ε2)

v1 =
−2 ·

√
1180986− 2187 · ε1 + 2187

43048908
v2 = 3
v3 = 3.

Here the ε1, ε2 are positive infinitesimals, which have to be interpreted as follows:
There are 0 < ε1, ε2 ∈ R, which yield valid sample points, and moreover all
positive choices less than ε1 and ε2, respectively, yield valid sample points too.
The symbols L,M , and T denote rather complicated algebraic expressions, which
we present in Appendix A.

In order to get an idea about approximate solutions we set ε1 = ε2 = 0,
which yields:

γ0 = 0.00618948546946, λ1 = 9540696.11947,
ϑ = 0.0000571304095036, v1 = 0.000000314442464411.

For the case n = 10 the same procedure yields within 0.09 s the following
approximate sample point, where again γ0, λ1, ϑ, and v1 are approximated by
fixing two infinitesimals to 0:

α = 1
γ0 = 0.0100554964908
δ = 1
λ1 = 17617230.5528
µ = 0
ϑ = 0.0000211443608455

v1 = 0.000000170287832189
v2 = 3
v3 = 3.

One can now systematically enumerate further solutions by adding to the
input formulae conditions prohibiting for one or several variables or parameters
the solutions already found.



3.2 Mass Action Systems

As an example of a mass action system we consider the system investigated in
[2, Example 2.1]. It is described by the following system of differential equations:

d
dt
x1(t) = k21x1(t)2x2(t) + k46 − k64x1(t)− k34x1(t) + k43

d
dt
x2(t) = −k21x1(t)2x2(t) + k56 − k65x2(t)

d
dt
x3(t) = k34x1(t)− k43x3(t). (2)

Again only positive values for the variables are of interest. The automatic gener-
ation of a first-order formula stating the question on the existence of Hopf bifur-
cation fixed points and taking into account the positivity conditions is straight-
forward. Figure 3 shows our Maple script for this.

The script produces the first-order input formula in Figure 4, which gives
the exact, i.e. both necessary and sufficient condition for the existence of a Hopf
bifurcation fixed point.

The original literature [2], in contrast, does less: it first derives a necessary
condition, and then in a another analysis a sufficient one. To illustrate the dif-
ference, notice that “true” is always necessary and “false” is always sufficient
but neither of them is generally necessary and sufficient.

Our formulation uses the original coordinates and does not use a coordinate
transform as in [2]. Of course, such a coordinate transform could also be realized
with our approach in a preprocessing step.

Tables 3 and 4 show the timings and results for regular and for positive
quantifier elimination, respectively, on the existential closure of ϕ. Most sur-
prisingly, on this example regular quantifier elimination performs considerably
better than its positive variant. We consider this a rare exception. Anyway it
will not be completely ignored: We expect from a careful analysis of the vari-
ous quantifier elimination runs some insights and ideas for improvements of the
procedures. There is another annoying fact, which cannot be ignored: In the pre-
vious section we had found that switching on rlsifaco (“simplifier factorization
with ordering relations”) and switching off rlqeprecise (“quantifier elimination
using precise test points”) and rlqevarseltry (“quantifier elimination variable
selection try systematically”) should be the default choice for positive quanti-
fier elimination. The 5th row in Table 4 shows that this very choice fails on
this particular example. Notice, however, that things look much better when
experimentally switching on rlqevarseltry. This indicates that the unusual
behavior is mainly caused by the fact that good variables orderings cannot be
easily recognized.

Anyway, good news is that we can decide the existence of a Hopf bifurcation
fixed point within a few seconds. As the answer is affirmative, also sample answer
points can be computed. For this we use regular extended quantifier elimination
with the most efficient switch settings given in the 4th row of Table 3. We obtain



eq11 := diff(x1(t),t)=k21*x1(t)^2*x2(t)+k46-k64*x1(t)-k34*x1(t)+k43*x3(t);

eq12 := diff(x2(t),t)=-k21*x1(t)^2*x2(t)+k56-k65*x2(t);

eq13 := diff(x3(t),t)=k34*x1(t)-k43*x3(t);

fcns1 := {x1(t),x2(t),x3(t)};

params1 := [k21,k46,k64,k34,k43,k56,k65];

paramcondlist1 := [k21>0, k46>0, k64>0, k34>0, k43>0, k56>0, k65>0];

funccondlist1 := [x1(t)>0, x2(t)>0, x3(t)>0];

DEHopfexistence({eq11,eq12,eq13},

fcns1,params1,funccondlist1,paramcondlist1);

Fig. 3. A Maple script for generating the first-order input formula ϕ for Section 3.2.

ϕ ≡ ∃v3∃v2∃v1(((0 < v1 ∧ 0 < v2) ∧ 0 < v3) ∧
((((((((((k21v

2
1v2 + k46 − k64v1 − k34v1 + k43v3 = 0 ∧

−k21v
2
1v2 + k56 − k65v2 = 0) ∧

k34v1 − k43v3 = 0) ∧
(0 < k64k65k43 + k64k21v

2
1k43 − 2k21v1v2k65k43 ∧

k21v
2
1k

2
43 + k2

21v
4
1k43 + k2

21v
4
1k34 + 2k34k65k43 + 2k64k34k65 + 2k64k65k43 +

k2
64k21v

2
1 + k2

21v
4
1k64 + k2

34k21v
2
1 + k34k64k43 + k64k

2
43 + k65k

2
43 + k64k

2
65 +

k2
65k43 + k34k

2
65 + k2

64k65 + k2
64k43 + 2k64k21v

2
1k43 + 2k34k21v

2
1k43 +

2k21v
2
1k64k65 + 2k21v

2
1k65k43 + 2k21v

2
1k34k65 + 2k64k34k21v

2
1 −

4k2
21v

3
1v2k43 − 2k2

21v
3
1v2k64 − 2k2

21v
3
1v2k34 + 4k2

21v
2
1v

2
2k43 + 4k2
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2
1v
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2k2
21v

3
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2
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2
65 + k2

34k65 − 4k21v1v2k65k43 −
4k21v1v2k64k65 − 4k21v1v2k64k43 − 4k21v1v2k34k65 − 2k34k21v1v2k43 = 0)) ∧

0 < k21) ∧ 0 < k46) ∧ 0 < k64) ∧ 0 < k34) ∧ 0 < k43) ∧ 0 < k56) ∧ 0 < k65))

Fig. 4. The formula ϕ generated by the Maple script in Figure 3. The Maple variables
vv1, . . . , vv3 generated by the function DEHopfexistence in the script are typeset as
v1, . . . , v3 here.



Table 3. Applying regular quantifier elimination to the existential closures ∃ϕ of the
formula in Section 3.2. We systematically try several switch settings in REDLOG.

rlsifaco rlqeprecise rlqevarseltry result time (s)

◦ ◦ ◦ sigxcpu > 600
◦ ◦ • true 261.72
◦ • ◦ true 3.03
◦ • • true 1.54
• ◦ ◦ sigxcpu > 600
• ◦ • true 264.73
• • ◦ true 3.35
• • • true 1.79

Table 4. Applying positive quantifier elimination to the existential closures ∃ϕ of the
formula in Section 3.2. We systematically try several switch settings in REDLOG.

rlsifaco rlqeprecise rlqevarseltry result time (s)

◦ ◦ ◦ true 20.79
◦ ◦ • true 32.20
◦ • ◦ sigxcpu > 600
◦ • • sigxcpu > 600
• ◦ ◦ sigxcpu > 600
• ◦ • true 32.54
• • ◦ sigxcpu > 600
• • • true 8.03

after 3.05 s:

k21 = 32, k34 = 2/3, k43 = 1, k46 = 1/12, k56 = 1,
k64 = 14/3, k65 = 1/2, v1 = 1/8, v2 = 1, v3 = 1/12.

So for this example, the switch rlqeaprecise is powerful enough to entirely
avoid the introduction of infinitesimals. Again, further sample points can be
enumerated by explicitly excluding in the input formula the ones already found.

4 Conclusions and Future Work

Using generic methods to reduce the Hopf bifurcation problem to a quantifier
elimination problem and then using quantifier elimination methods available in
REDLOG we can reconstruct most of the results given in the literature within
less than a minute of computation time.

We have restricted ourselves to examples already treated in the literature
by other symbolic methods. However, we presume that our generic methods are
applicable not only to many other problems in theory but also in practice. As
no tedious hand computations are involved the use of these generic methods will



hopefully be a useful tool for investigating a wide variety of other examples. In
future work we will test our generic methods for parametrically investigating
Hopf bifurcation fixed points on examples treated in the literature by numerical
computations or pure hand calculations, e.g. on the systems described in [4–6,
19]. As there is the option to have some parameters fixed and only to inves-
tigate few others symbolically—still extending the possibilities of pure numeric
investigations—one can also apply these techniques to larger systems, which can-
not be expected to be amenable for a full parametric analysis, e.g. the systems
described in [7, 8].

On the quantifier elimination side, the great challenge is to improve the pro-
cedure such that the original elimination problems, in contrast to the existential
closures, become tractable. There is actually good hope for success: In principle
the elimination for the closure is a harder problem than that for the original
formula, but we apparently benefit from the greater freedom in choosing the
variable order for elimination. The fact that this is successful indicates that the
problems are not inherently hard.
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A Exact Solutions with Infinitesimals for Section 3.1
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√
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