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Abstract. Detection of a singleton attractor, which is also called a fixed
point, is known to be NP-hard even for AND/OR BNs (i.e., BNs consist-
ing of AND/OR nodes), where the Boolean network (BN) is a mathe-
matical model of genetic networks and singleton attractors correspond to
steady states. In our recent paper, we developed an O(1.787n) time algo-
rithm for detecting a singleton attractor of a given AND/OR BN where
n is the number of nodes. In this paper, we present an O(1.757n) time
algorithm with which we succeeded in improving the above algorithm.

1 Introduction

Studying biological networks from an algebraic perspective is becoming more
important in various areas such as bioinformatics, computational biology and
systems biology. To analyze them, various kinds of mathematical models of bi-
ological networks have been proposed. Among them, the Boolean network (BN,
in short), which is a model of genetic networks, has received much attention
[2, 3, 6, 12, 13]. It is a very simple model: each node (e.g., gene) takes either 0
(inactive) or 1 (active) and the states of nodes change synchronously according
to regulation rules given as Boolean functions [9, 20].

Stable states are called attractors (or fixed points) in a BN. Since stable
states play an important role in biological systems, attractors have also received
much attention. In particular, extensive studies have been done for analyzing the
number and length of attractors [5, 13, 18]. Most of existing studies on attractors
focus on average case features of random BNs with low indegree (connectivity).
However, not much attention has been paid on analysis of attractors in a specific
BN. In particular, to our knowledge, only several studies have been done on
algorithms for detecting attractors in a given BN.

Detection of a singleton attractor (i.e., an attractor with period 1) is known to
be NP-hard by a polynomial time reduction from SAT (the satisfiability problem
of Boolean formulas in conjunctive normal form) [1]. Milano and Roli indepen-
dently proposed a similar reduction [16]. Zhang et al. developed algorithms with
guaranteed average case time complexity [23]. For example, it is shown that
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in the average case, one of the algorithms identifies all singleton attractors in
O(1.19n) time for a random BN with maximum indegree two. However, these
algorithms may take O(2n) or more time in the worst case even if there exist
only a small number of singleton attractors. Recently, Leone et al. applied SAT
algorithms to identify singleton attractors in a BN [15]. However, they did not
focus on the time complexity issue. Tamura and Akutsu studied the time com-
plexity of that approach and showed that detection of a singleton attractor for
a BN with maximum indegree k can be reduced to (k + 1)-SAT [21].

The attractor detection problem has a close relationship with the SAT prob-
lem, which is a well-known NP-complete problem, as mentioned above. Extensive
studies have been done for developing O(cn) time algorithms with smaller c for
k-SAT, where n is the number of variables and each clause in k-SAT consists of
at most k literals. To our knowledge, the fastest algorithms for 3-SAT and 4-
SAT developed by Iwama and Tamaki run in O(1.324n) time and in O(1.474n)
time, respectively [10]. However, no O((2 − ε)n) (ε > 0) time algorithms are
known for general SAT. On the other hand, Hirsh developed an Õ(1.239m) time
algorithm for SAT with m-clauses [8], which was further improved to Õ(1.234m)
time by Yamamoto [22], where Õ(f(m)) means O(f(m)poly(m,n)). However,
these algorithms cannot be directly applied to our problem although we utilize
the algorithm in [22] as a subroutine.

Recently, we presented an O(1.787n) time algorithm [21] for detecting a sin-
gleton attractor of a given AND/OR BN, in which a Boolean function assigned
to each node is restricted to be a conjunction or disjunction of literals as shown
in Fig.1 (a). This was the first result in which the computation time of the algo-
rithm is O((2− ε)n) (ε > 0) with non-restricted indegree although numbers and
lengths of attractors of AND/OR BNs had been studied in [4, 7]. In this paper,
we present an O(1.757n) time algorithm with which we succeeded in improving
the above algorithm. The O(1.787n) time algorithm is based on an observation
that there exist at most 3 possible assignments (among 22 = 4 assignments) for
two adjacent nodes and utilizes Yamamoto’s algorithm as a subroutine, where
details of the algorithm and analysis are involved. In this paper, we extend this
algorithm and obtain an improved O(1.757n) time algorithm. In this improved
algorithm, we make use of an observation that there exist at most 5 possible
assignments (among 23 = 8 assignments) for three adjacent nodes, in addition
to the observation used in the O(1.787n) time algorithm. However, this im-
provement is far from straight-forward. It requires further ideas and much more
involved analyses, to be presented in Sections 3 and 4.

2 Preliminaries

Here we briefly review BN and attractors. A BN N(V, F ) consists of a set of
n nodes V and a set of n Boolean functions F , where V = {v1, v2, . . . , vn}
and F = {f1, f2, . . . , fn}. In general, V and F correspond to a set of genes
and a set of gene regulatory rules respectively. Let vi(t) represent the state
of vi at time t. The overall expression level of all the genes in the network
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Fig. 1. (a) An example of AND/OR BN where v1(t + 1) = v2(t) ∨ v3(t), v2(t + 1) =
v1(t) ∨ v2(t) ∨ v3(t) and v3(t + 1) = v1(t) ∧ v2(t) are satisfied. “∧”, “∨” and “•” mean
“AND”, “OR” and “NOT” respectively. (b) The state transition of [v1, v2, v3].

at time t is given by the vector v(t) = [v1(t), v2(t), . . . , vn(t)]. This vector is
referred as the Gene Activity Profile (GAP) of the network at time t, where
vi(t) = 1 means that the i-th gene is expressed and vi(t) = 0 means that the
i-th gene is not expressed. Since v(t) ranges from [0, 0, . . . , 0] (all entries are 0)
to [1, 1, . . . , 1] (all entries are 1), there are 2n possible states. The regulatory
rules among the genes are given as vi(t + 1) = fi(v(t)) for i = 1, 2, . . . , n. When
the state of gene vi at time t + 1 depends on the states of ki genes at time t,
the indegree of gene vi is ki and denoted by id(vi). These id(vi) (=ki) genes
are called parents of vi. The number of genes that are directly influenced by
gene vi is called the outdegree of gene vi and denoted by od(vi). Furthermore,
these od(vi) genes are called children of vi. The states of all genes are updated
simultaneously according to the corresponding Boolean functions. A consecutive
sequence of GAPs v(t), v(t + 1), . . . , v(t + p) is called an attractor with period p
if v(t) = v(t+p). When p = 1, an attractor is called a singleton attractor. When
p > 1, it is called a cyclic attractor.

For example, a BN where v1(t+1) = v2(t)∨v3(t), v2(t+1) = v1(t)∨v2(t)∨v3(t)
and v3(t + 1) = v1(t)∧ v2(t) is given in Fig. 1 (a). Note that “•” means “NOT”.
The state transition of [v1, v2, v3] is as shown in Fig. 1 (b). [0, 1, 0] is a singleton
attractor since v(t + 1) = [0, 1, 0] when v(t) = [0, 1, 0].

In this paper, we treat Boolean functions which can be represented by either
(vi1

a1∧vi2
a2∧· · ·∧viki

aki )b or (vi1
a1∨vi2

a2∨· · ·∨viki

aki )b where vij , aj , b ∈ {0, 1}.
Note that a and b express whether or not negations exist. If every Boolean
function of a BN satisfies the above condition, we call it AND/OR Boolean
network. The number of nodes in AND/OR BN is obtained by counting “AND”
and “OR”. For example, in Fig. 1 (a), the AND/OR BN has 3 nodes. If no
confusion arises, we treat an AND/OR BN as a directed graph as shown in Fig.
1 (a) and denote N(V, E) where V is a set of nodes and E is a set of directed
edges.
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If a BN is acyclic and does not have self-loops, there is a polynomial time
algorithm for detecting an attractor [1, 23]. In such a case, the number of attrac-
tors is only one and it is a singleton attractor. On the other hand, if a BN is
acyclic and has self-loops, detection of an attractor is NP-hard [1]. In this paper,
we allow that a BN has self-loops.

In our main algorithm for detecting a singleton attractor, there are steps,
which we call consistency checks, to determine whether or not 0-1 assignments
for nodes contradict 0-1 assignments for their parent nodes. That is, it checks
whether or not a given (partial) 0-1 assignment for nodes is consistent with
the definition of a singleton attractor. For example, in Fig. 1 (a), if v1(t) = 0
and v2(t) = 0 are assigned, the consistency check detects a contradiction since
v1(t + 1) = 1 6= v1(t). Note that consistency checks just detect change of values
of nodes from time steps t to t + 1 and then they do not contribute directly to
reduce the computational time of our proposed algorithm. The following lemma
shows that consistency checks can be done in ignorable time since our main
algorithm takes an exponential time of n and O(nkan) ¿ O((a + ε)n) holds for
any a > 1 and ε > 0, where k is a small positive integer.

Lemma 1. [21] A consistency check for a GAP or a partial GAP can be done
in O(n2) time.

In this paper, we treat only singleton attractors. Since v(t) = v(t+1) must hold
for a singleton attractor, it suffices to consider only time step t. Thus, we omit
t from here on.

As mentioned in Introduction, detection of a singleton attractor for a BN
with maximum indegree k is reduced to (k + 1)-SAT [21]. For example of k = 2,
v1(t + 1) = v2(t) ∧ v3(t) can be represented by 3-SAT as follows:

v1(t + 1) = v2(t) ∧ v3(t) ⇐⇒ v1 = v2 ∧ v3

⇐⇒ (v1 ∨ (v2 ∧ v3)) ∧ (v1 ∨ (v2 ∧ v3))
⇐⇒ (v1 ∨ v2) ∧ (v1 ∧ v3) ∧ (v1 ∨ v2 ∨ v3).

However, the computational time increases as k increases.

3 O(1.774n) time algorithm

In this section, we present an O(1.774n) time algorithm which detects a singleton
attractor of a given AND/OR BN. The O(1.757n) time algorithm, which is to
be shown in the next section, can be obtained by improving the analysis of this
O(1.774n) time algorithm. Although the detection of a singleton attractor for a
BN with maximum indegree k can be reduced to (k + 1)-SAT [21], it cannot be
directly applied to our problem since no O((2− ε)n) (ε > 0) time algorithms are
known for SAT with general k.

Let (V,E) denote the structure of a given BN. An edge (u, v) ∈ E from u to
v is called a non-assigned edge if no assignment has been done on any of u and
v. The notation of (u, v) is treated as if it were undirected although it is actually
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directed in a given BN. It should be noted there exist at most 3 consistent assign-
ments (among 4 possible assignments) on (u, v) even if there exist self-loops since
either a conjunction of literals or a disjunction of literals is assigned to v [21]. For
example in Fig. 2, (k, l) = (0, 0), (0, 1), (1, 1) are consistent, but (k, l) = (1, 0) is
not consistent. Moreover, two undirected edges (u, v), (v, w) ∈ E are called non-
assigned neighboring edges if no assignment has been done on any of u, v and w.
The notations of (u, v), (v, w) are also treated as if they were undirected although
they are actually directed in a given BN. It should also be noted there exist at
most 5 consistent assignments (among 8 possible assignments) on (u, v, w). For
example in Fig. 2, (e, i, j) = (0, 0, 0),(0, 0, 1), (1, 0, 0), (1, 0, 1), (1, 1, 1) are consis-
tent, but (e, i, j) = (0, 1, 0),(0, 1, 1),(1, 1, 0) are not consistent.

We show below a pseudo code of the algorithm, which is to be later explained
using an example.
Begin

/*STEP1*/
for s1 = 1 to n do

vs1 is non-assigned;
/*STEP2*/
for s1 = 1 to n do

for s2 = 1 to n do
for s3 = 1 to n do

if s1 6= s2 and s2 6= s3 and s3 6= s1 and (vs1 , vs2) ∈ E and
(vs2 , vs3) ∈ E and vs1 is non-assigned and vs2 is non-assigned
and vs3 is non-assigned
then examine all possible assignments on {(vs1 , vs2), (vs2 , vs3)},
which are at most 5 cases, recursively;
U = the set of nodes whose values were determined at this step;

/*STEP3*/
for s1 = 1 to n do

for s2 = 1 to n do
if s1 6= s2 and (vs1 , vs2) ∈ E and vs1 is non-assigned and vs2 is
non-assigned
then examine all possible 3 assignments on (vs1 , vs2) recursively;
X = the set of nodes whose values were determined at this step;
W = V − U −X, |U | = K and |X| = L;

/*STEP4*/
if K > α(n− L)
then examine all possible assignments on W and then perform consistency
check;
else compute an appropriate assignment on W by using Yamamoto’s algo-
rithm and then perform consistency check;

End
It is to be noted that the subgraph induced by W is a set of isolated nodes

(with self-loops). Therefore, each node v in W is classified into the following
types:
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type I: the value of v is directly determined from assignment on U + X,
type II: the value of v is not directly determined from assignment on U + X,

where type I nodes consist of the following:

– The value of v is determined from the values of the input nodes to v,
– v is an input of AND node u and 1 is assigned to u,
– v is an input of OR node u and 0 is assigned to u.

Based on this fact, we can use Õ(1.234m) time SAT algorithm for m-clauses
to compute an appropriate assignment on type II nodes of W in the following
way, where Õ(f(m)) means O(f(m)poly(m)). Suppose that vi1 , · · · , vip in W
are type II input nodes to node u ∈ U + X. We assume w.l.o.g. that u is an
AND node to which 0 is already assigned (we can treat analogously the case
where u is an OR node). Furthermore, we can assume w.l.o.g. that u is defined
as u = li1 ∧ li2 ∧ · · · ∧ lip

where lij
is either vij

or vij . Then, the constraint
of li1 ∧ li2 ∧ · · · ∧ lip = 0 can be rewritten as a SAT clause li1 ∨ li2 ∨ · · · ∨ lip .
Therefore, we can use the SAT algorithm to find an assignment on W that leads
to a singleton attractor.

From the above, it is straight-forward to see the correctness of the algorithm.
Thus, we analyze the time complexity.

Lemma 2. Recursive execution of STEP 2 generates O(1.71K) assignments.

Proof. Since at most 5 assignments are examined per three nodes, the number
of possible assignments generated at STEP 2 is bounded by f(K) where f(K)
is defined by f(3) = 5 and f(K) = 5 · f(K − 3). Then, f(K) is O(5K/3), which
is at most O(1.710K) (=O(1.71K)). ut
Lemma 3. Recursive execution of STEP 3 generates O(1.733L) assignments.

Proof. Since 3 assignments are examined per two nodes, the number of possible
assignments generated at STEP 3 is bounded by f(L) where f(L) is defined
by f(2) = 3 and f(L) = 3 · f(L − 2). Then, f(L) is O(3L/2), which is at most
O(1.733L). ut
Lemma 4. If the former part of STEP 4 is executed, the total number of exam-
ined assignments is O(2n−K−L · 1.71K · 1.733L).

Lemma 5. If the latter part of STEP 4 is executed, the total number of examined
assignments is O(1.234K · 1.71K · 1.733L).

Proof. Assume that a SAT clause is constructed when STEP 3 is executed. There
must be a directed edge which is terminated by either u or v and initialized
by a node a ∈ V whose value has not been determined yet. We can assume
w.o.l.g. (a, u) has been a non-assigned edge before values of (u, v) are assigned.
Therefore {(a, u), (u, v)} are non-assigned neighboring edges at the beginning of
STEP 3 and it contradicts the definition of STEP 2. Thus, no SAT-clauses are
constructed in STEP 3. Since the number of constructed SAT clauses in STEP
2 is at most the number of nodes assigned in STEP 2, the lemma holds. ut
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Fig. 2. Example for explaining our proposed algorithm. {(d, g), (g, h)} and {(e, i), (i, j)}
are selected as non-assigned neighboring edges and (k, l) is selected as a non-assigned
edge.

Theorem 1. Detection of a singleton attractor can be done in O(1.774n) time
for AND/OR BNs.

Proof. Assume that L is obtained. If n is a large enough constant, then 2n−K−L ·
1.71K ·1.733L and 1.234K ·1.71K ·1.733L are monotone decreasing and increasing
function of K respectively. Therefore, the computation time of the proposed
algorithm can be bounded by that of the case in which 1.234K = 2n−K−L holds.
By solving 1.234K = 2n−K−L, we obtain K = 0.767n − 0.767L. Therefore, by
letting α = 0.767, the computation time can be bounded by

max
0≤L≤n

{1.2340.767n−0.767L · 1.710.767n−0.767L · 1.733L} (1)

where 0 ≤ K + L ≤ n must hold. However, 0 ≤ K + L ≤ n always holds for any
L (0 ≤ L ≤ n) since K + L = 0.767n + 0.233L holds. Since (1.234 · 1.71)0.767 =
1.773 > 1.733, (1) is a monotone decreasing function of L if n is a large enough
constant. Therefore, (1) takes the maximum value when L = 0. Thus, since the
computation time of the proposed algorithm can be bounded by assigning L = 0
to (1), 1.2340.767n · 1.710.767n < 1.774n is obtained as the upper bound. ut
Example 1. In an example shown in Fig. 2, suppose that (d, g, h) = (0, 1, 0) and
(e, i, j) = (1, 0, 1) are assigned at STEP 2 and (k, l) = (0, 0) is assigned at STEP
3. In STEP 2, SAT clauses (a ∨ b ∨ c), (a ∨ c), (b ∨ f), (a ∨ n), (f ∨ n) are
constructed by d, g, e, i, j respectively. Note that d, g, h, e, i, j, k, l are not
included in SAT clauses since they are assigned either 0 or 1 directly. Since m
and n are determined as 0 by h = 0, they are type I nodes. On the other hand,
a, b, c, f are Type II nodes. In STEP 3, no SAT clauses are constructed (See
Lemma 5). If the former part of STEP 4 is executed, all possible assignments
for a, b, c, f , which has 24 cases, are examined. Otherwise the SAT problem is
solved by Yamamoto’s algorithm [22].
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Fig. 3. Three types of non-assigned neighboring edges. By examining all cases, it is
seen that the numbers of possible assignments and added SAT clauses are at most 5
and 10 (=1+2+2+2+3) respectively for each type. Note that “*” indicates that the
corresponding node adds a SAT clause.

4 Improved Analysis

In this section, we present an improved analysis of the algorithm in Section 3. We
show that the algorithm works in O(1.757n) time. Though this improved analysis
is based on the idea used in the improved analysis of our previous algorithm,
the analysis given here is much more involved and is far from a straight-forward
extension of [19].

For example, in Fig. 3 (a), since v1 and v3 are “∨” and v2 is “∧”, the possible
assignments for [v1, v2, v3] are [0, 0, 0], [0, 0, 1], [1, 0, 0], [1, 0, 1] and [1, 1, 1]. Note
that [0, 1, 0], [0, 1, 1], [1, 1, 0] do not satisfy the condition of a singleton attrac-
tor. Suppose that [v1, v2, v3]=[0, 0, 0] is assigned. Then, values of parents of v1

are determined uniquely. Similarly, values of parents of v3 are also determined
uniquely. However, values of parents of v2 are not determined but a SAT clause
which is a disjunction of values of parent nodes of v2 is constructed. In such a
case, we say that v2 adds a SAT clause.

By applying the above discussion to any non-assigned neighboring edges, the
numbers of added SAT clauses can be bounded for each case. For example, in
Fig. 3 (a), numbers of added SAT clauses by [v1, v2, v3] = [0, 0, 0], [0, 0, 1], [1, 0, 0],
[1, 0, 1] [1, 1, 1] are 1, 2, 2, 3 and 2 respectively. Similarly, in Fig. 3 (b), the pos-
sible assignments for [v4, v5, v6] are [0, 0, 0], [1, 0, 0], [1, 0, 1], [1, 1, 0] and [1, 1, 1]
and numbers of added SAT clauses by them are 2, 3, 2, 2 and 1 respectively.
Furthermore, in Fig. 3 (c), the possible assignments for [v7, v8, v9] are [0, 0, 0],
[0, 1, 0], [1, 0, 0], [1, 1, 0] and [1, 1, 1] and numbers of added SAT clauses by them
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are 1, 2, 2, 3 and 2 respectively. Although there are assignments which add less
numbers of SAT clauses, by examining all cases it is seen that the worst case is
as follows:

– one of the five assignments adds one clause.
– three of the five assignments add two clauses.
– one of the five assignments adds three clause.

From Lemma 2, the number of cases generated in STEP 2 is O(5
K
3 ) (≤ O(1.71K)).

For each case of them, the number of added SAT clauses is determined accord-
ing to which one of five assignments is selected in each non-assigned neighboring
edges. For example, in Fig. 3, if [v1, v2, v3] = [0, 0, 0], [v4, v5, v6] = [0, 0, 0] and
[v7, v8, v9] = [0, 0, 0] are assigned, the total number of added SAT clauses is 4
(=1+2+1). Similarly, if [v1, v2, v3] = [1, 0, 1], [v4, v5, v6] = [1, 0, 0] and [v7, v8, v9]
= [1, 1, 0] are assigned, the total number of added SAT clauses is 9 (=3+3+3).
Then, the number of cases where one clause is added i times and three clauses
are added j times is

K
3∑

i=0

K
3 −i∑

j=0

3( K
3 −i−j) · K

3
Ci · K

3 −iCj

since the number of cases where two clauses are added is 3
K
3 −i−j . Moreover, the

total number of added SAT clauses in this case is 2K
3 − i + j. Therefore, the

computation time in the case where the latter part of STEP 4 is executed is
bounded by

g(K, L) = 1.733L ·
K
3∑

i=0

K
3 −i∑

j=0

1.234( 2K
3 −i+j) · 3( K

3 −i−j) · K
3
Ci · K

3 −iCj .

To estimate g(K, L), we show the following lemmas. Let β and γ be constants
where 0 ≤ β ≤ 1

3 and 0 ≤ γ ≤ 1
3 − β hold.

Lemma 6. K
3
CβK is O

({ 1
3

β3β ·( 1
3−β)1−3β

}K
3
)

and K
3 −βKCγK is

O
({

( 1
3−β)1−3β

γ3γ ·( 1
3−β−γ)1−3β−3γ

}K
3
)

.

Proof. From Stirling’s formula, K
3
CβK is O(p(K, β)) where

p(K,β) =
(K

3 )
K
3

(βK)βK · (K
3 − βK)

K
3 −βK

=

{
K
3

(βK)3β · (K
3 − βK)1−3β

}K
3

=

{
1
3

β3β · ( 1
3 − β)1−3β

}K
3



10

Similarly, K
3 −βKCγK is O(q(K, β, γ)) where

q(K, β, γ) =
(K

3 − βK)
K
3 −βK

(γK)γK · (K
3 − βK − γK)

K
3 −βK−γK

=

{
(K

3 − βK)1−3β

(γK)3γ · (K
3 − βK − γK)1−3β−3γ

}K
3

=

{
( 1
3 − β)1−3β

γ3γ · ( 1
3 − β − γ)1−3β−3γ

}K
3

ut
To estimate terms including K

3
CβK and K

3 −βKCγK , we divide β and γ into
N and 2N intervals respectively.

Lemma 7. Suppose that i−1
3N ≤ β ≤ i

3N , j−1
6N ≤ γ ≤ j

6N and N is a positive
even integer.

1. If i ≤ N
2 , then K

3
CβK ≤ K

3
C iK

3N
holds. Otherwise K

3
CβK ≤ K

3
C (i−1)K

3N
holds.

2. If j ≤ N−i+1, then K
3 −βKCγK ≤ K

3 − (i−1)K
3N

C jK
6N

holds. Otherwise K
3 −βKCγK ≤

K
3 − (i−1)K

3N
C (j−1)K

6N
holds.

Proof. 1. If K is a constant, then K
3
CβK is convex upward with β and takes

the maximum value when β = 1
6 . By solving i

3N = 1
6 , we obtain i = N

2 (See
also Fig. 4 (a)). Note that K

3 and N
2 are integers from their definitions.

2. From the assumption, K
3 −βKCγK ≤ K

3 − i−1
3N KCγK holds. If K is a constant,

then K
3 − i−1

3N KCγK is convex upward with γ and takes the maximum value
when γ = 1

2 ( 1
3 − i−1

3N ). Note that i and N are constants. By solving 1
2 ( 1

3 −
i−1
3N ) = j

6N , we obtain j = N − i + 1 (See also Fig. 4 (b)).
ut

Theorem 2. Detection of a singleton attractor can be done in O(1.757n) time
for AND/OR BNs.

Proof.

g(K, L) = 1.733L · 1.234
2K
3 · 3K

3 ·
K
3∑

i=0

(1.234 · 3)−i · K
3
Ci ·

K
3 −i∑

j=0

(1.234
3

)j

· K
3 −iCj

< 1.733L · 1.234
2K
3 · 3K

3 ·
K
3∑

i=0

0.2702i · K
3
Ci ·

K
3 −i∑

j=0

0.4114j · K
3 −iCj
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β0 1
6

1
3

β1

i
3N

β2

i
3N

1 2

K
3

β KC  < CK
3

i
3N

K
3 β K
C   > CK

3
(i

3N
1 -1)

1
2

(a)

γ0
1
2

1
3

γ1

j
6N

γ2

j
6N

1 2

K
3

K C  <    C

(b)

1
3
-
3N
i-11

3
-
3N
i-1

i
3N
-1- γ K1

K
3

K
i
3N
-1- 6N

j1 K K
3

K
C    >    Ci

3N
-1- γ K2

K
3

K
i
3N
-1- 6N

(j2 K-1)

1
3N

2
3N N

3N=

1
6N

2
6N

2N
6N=

K K2

-1

-1

Fig. 4. (a)If β ≤ 1
6
, then K

3
CβK ≤ K

3
C iK

3N
holds. Otherwise K

3
CβK ≤ K

3
C (i−1)K

3N

holds.

(b)If j ≤ 1
2
( 1
3
− β), then K

3 −βKCγK ≤ K
3 −

(i−1)K
3N

C jK
6N

holds. Otherwise K
3 −βKCγK ≤

K
3 −

(i−1)K
3N

C (j−1)K
6N

holds.
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< 1.733L · (1.2342 · 3)
K
3 ·

( K

3N
· K

6N

)
·

{ N
2∑

i=1

f1

( i− 1
3N

)
· f2

( i

3N

) N−i∑

j=1

f3

(j − 1
6N

)
· f4

( i− 1
3N

,
j

6N

)

+

N
2∑

i=1

f1

( i− 1
3N

)
· f2

( i

3N

) 2(N−i)∑

j=N−i+1

f3

(j − 1
6N

)
· f4

( i− 1
3N

,
j − 1
6N

)

+
N∑

i= N
2 +1

f1

( i− 1
3N

)
· f2

( i− 1
3N

) N−i∑

j=1

f3

(j − 1
6N

)
· f4

( i− 1
3N

,
j

6N

)

+
N∑

i= N
2 +1

f1

( i− 1
3N

)
· f2

( i− 1
3N

) 2(N−i)∑

j=N−i+1

f3

(j − 1
6N

)
· f4

( i− 1
3N

,
j − 1
6N

)}

= 1.733L · (1.2342 · 3)
K
3 · poly(K) · h(K)

where

f1(i) = (0.27023i)
K
3 , f2(i) =

{
1
3

i3i · ( 1
3 − i)1−3i

}K
3

,

f3(j) = (0.41143j)
K
3 , f4(i, j) =

{
( 1
3 − i)1−3i

j3j · ( 1
3 − i− j)1−3i−3j

}K
3

hold from Lemma 6. By setting N = 10000, it can be confirmed that h(K) <

O(1.683
K
3 ). Although this confirmation can be done manually, we used a com-

puter since it requires a vast amount of routine works. Note that larger N yields
a smaller upper bound of h(K). However, O(1.683

K
3 ) is almost not improved by

N which is larger than 10000. Thus, if the latter part of STEP 4 is executed, the
computation time of the proposed algorithm is O((1.2342 ·3 ·1.683)

K
3 ·1.733L) <

O(1.974K · 1.733L). Similar to the proof of the previous theorem, assume that
L is obtained. If n is a large enough constant, then 2n−K−L · 1.71K · 1.733L

and 1.974K · 1.733L are monotone decreasing and increasing functions of K re-
spectively. Therefore, the computation time of the proposed algorithm can be
bounded by that of the case in which 1.974K = 2n−K−L · 1.71K holds. By
solving this equation, we obtain K = 0.8286n − 0.8286L. Therefore, by letting
α = 0.8286, the computation time can be bounded by

max
0≤L≤n

{1.9740.8286n−0.8286L · 1.733L} (2)

where 0 ≤ K + L ≤ n must hold. However, 0 ≤ K + L ≤ n always holds for
any L (0 ≤ L ≤ n) since K + L = 0.8286n + 0.1714L holds. Since 1.9740.8286 =
1.757 > 1.733, (2) is a monotone decreasing function of L if n is a large enough
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constant. Therefore, (2) takes the maximum value when L = 0. Thus, since the
computation time of the proposed algorithm can be bounded by assigning L = 0
to (2),

O(1.9740.8286n) < O(1.757n)

is obtained as the upper bound. ut

5 Conclusion and future works

We improved the computation time of the algorithm for detecting a singleton
attractor in a given AND/OR BN from O(1.787n) [21] to O(1.757n). Readers
may think that further improvement is possible by making use of 4 or more
adjacent nodes (in addition to 2 and 3 adjacent nodes). However, it is unclear
whether such a simple idea leads to an improvement. At least, algorithm and
analysis would be quite involved. Thus, improvement of the proposed algorithm
is left as an open problem. Extension of the proposed algorithm to the enumer-
ation problem (i.e., efficient and output-sensitive enumeration of all singleton
attractors) is also left as an open problem.

For the singleton attractor detection problem, every BN can be transformed
into an AND/OR BN although additional nodes are needed as discussed in [21].
If the number of additional nodes is less than 0.229n, the computation time of our
algorithm is still O((2−ε)n) (ε > 0) for general BNs because 1.757n+0.229n < 2n.
This value (0.229n) was also improved from that of [21]. Since canalizing func-
tions and nested canalizing functions are known to be good models for regulatory
rules of eukaryotic genes [14, 19], the number of such additional nodes are con-
sidered to be not large for real biological networks when compared to the case
where Boolean functions are assigned to nodes purely at random. It also deserves
to mention that the class of nested canalizing functions is equal to that of unate
cascade functions [11]. An experimental comparison of proposed algorithms is
also one of our future works.

Although this paper focused on the Boolean network as a biological network
model, the proposed techniques might be useful for designing algorithms which
find steady states in other models [17] as already discussed in [21]. Application
and extension of the proposed techniques to other types of biological networks
are important future works.
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